blob: 1d29c228a4b3c7eb5ac0ea760cccd2eb2cf8ea5e [file] [log] [blame]
//===--- StmtCXX.h - Classes for representing C++ statements ----*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the C++ statement AST node classes.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_AST_STMTCXX_H
#define LLVM_CLANG_AST_STMTCXX_H
#include "clang/AST/DeclarationName.h"
#include "clang/AST/Expr.h"
#include "clang/AST/NestedNameSpecifier.h"
#include "clang/AST/Stmt.h"
#include "llvm/Support/Compiler.h"
namespace clang {
class VarDecl;
/// CXXCatchStmt - This represents a C++ catch block.
///
class CXXCatchStmt : public Stmt {
SourceLocation CatchLoc;
/// The exception-declaration of the type.
VarDecl *ExceptionDecl;
/// The handler block.
Stmt *HandlerBlock;
public:
CXXCatchStmt(SourceLocation catchLoc, VarDecl *exDecl, Stmt *handlerBlock)
: Stmt(CXXCatchStmtClass), CatchLoc(catchLoc), ExceptionDecl(exDecl),
HandlerBlock(handlerBlock) {}
CXXCatchStmt(EmptyShell Empty)
: Stmt(CXXCatchStmtClass), ExceptionDecl(nullptr), HandlerBlock(nullptr) {}
SourceLocation getLocStart() const LLVM_READONLY { return CatchLoc; }
SourceLocation getLocEnd() const LLVM_READONLY {
return HandlerBlock->getLocEnd();
}
SourceLocation getCatchLoc() const { return CatchLoc; }
VarDecl *getExceptionDecl() const { return ExceptionDecl; }
QualType getCaughtType() const;
Stmt *getHandlerBlock() const { return HandlerBlock; }
static bool classof(const Stmt *T) {
return T->getStmtClass() == CXXCatchStmtClass;
}
child_range children() { return child_range(&HandlerBlock, &HandlerBlock+1); }
friend class ASTStmtReader;
};
/// CXXTryStmt - A C++ try block, including all handlers.
///
class CXXTryStmt : public Stmt {
SourceLocation TryLoc;
unsigned NumHandlers;
CXXTryStmt(SourceLocation tryLoc, Stmt *tryBlock, ArrayRef<Stmt*> handlers);
CXXTryStmt(EmptyShell Empty, unsigned numHandlers)
: Stmt(CXXTryStmtClass), NumHandlers(numHandlers) { }
Stmt const * const *getStmts() const {
return reinterpret_cast<Stmt const * const*>(this + 1);
}
Stmt **getStmts() {
return reinterpret_cast<Stmt **>(this + 1);
}
public:
static CXXTryStmt *Create(const ASTContext &C, SourceLocation tryLoc,
Stmt *tryBlock, ArrayRef<Stmt*> handlers);
static CXXTryStmt *Create(const ASTContext &C, EmptyShell Empty,
unsigned numHandlers);
SourceLocation getLocStart() const LLVM_READONLY { return getTryLoc(); }
SourceLocation getLocEnd() const LLVM_READONLY { return getEndLoc(); }
SourceLocation getTryLoc() const { return TryLoc; }
SourceLocation getEndLoc() const {
return getStmts()[NumHandlers]->getLocEnd();
}
CompoundStmt *getTryBlock() {
return cast<CompoundStmt>(getStmts()[0]);
}
const CompoundStmt *getTryBlock() const {
return cast<CompoundStmt>(getStmts()[0]);
}
unsigned getNumHandlers() const { return NumHandlers; }
CXXCatchStmt *getHandler(unsigned i) {
return cast<CXXCatchStmt>(getStmts()[i + 1]);
}
const CXXCatchStmt *getHandler(unsigned i) const {
return cast<CXXCatchStmt>(getStmts()[i + 1]);
}
static bool classof(const Stmt *T) {
return T->getStmtClass() == CXXTryStmtClass;
}
child_range children() {
return child_range(getStmts(), getStmts() + getNumHandlers() + 1);
}
friend class ASTStmtReader;
};
/// CXXForRangeStmt - This represents C++0x [stmt.ranged]'s ranged for
/// statement, represented as 'for (range-declarator : range-expression)'.
///
/// This is stored in a partially-desugared form to allow full semantic
/// analysis of the constituent components. The original syntactic components
/// can be extracted using getLoopVariable and getRangeInit.
class CXXForRangeStmt : public Stmt {
SourceLocation ForLoc;
enum { RANGE, BEGINSTMT, ENDSTMT, COND, INC, LOOPVAR, BODY, END };
// SubExprs[RANGE] is an expression or declstmt.
// SubExprs[COND] and SubExprs[INC] are expressions.
Stmt *SubExprs[END];
SourceLocation CoawaitLoc;
SourceLocation ColonLoc;
SourceLocation RParenLoc;
friend class ASTStmtReader;
public:
CXXForRangeStmt(DeclStmt *Range, DeclStmt *Begin, DeclStmt *End,
Expr *Cond, Expr *Inc, DeclStmt *LoopVar, Stmt *Body,
SourceLocation FL, SourceLocation CAL, SourceLocation CL,
SourceLocation RPL);
CXXForRangeStmt(EmptyShell Empty) : Stmt(CXXForRangeStmtClass, Empty) { }
VarDecl *getLoopVariable();
Expr *getRangeInit();
const VarDecl *getLoopVariable() const;
const Expr *getRangeInit() const;
DeclStmt *getRangeStmt() { return cast<DeclStmt>(SubExprs[RANGE]); }
DeclStmt *getBeginStmt() {
return cast_or_null<DeclStmt>(SubExprs[BEGINSTMT]);
}
DeclStmt *getEndStmt() { return cast_or_null<DeclStmt>(SubExprs[ENDSTMT]); }
Expr *getCond() { return cast_or_null<Expr>(SubExprs[COND]); }
Expr *getInc() { return cast_or_null<Expr>(SubExprs[INC]); }
DeclStmt *getLoopVarStmt() { return cast<DeclStmt>(SubExprs[LOOPVAR]); }
Stmt *getBody() { return SubExprs[BODY]; }
const DeclStmt *getRangeStmt() const {
return cast<DeclStmt>(SubExprs[RANGE]);
}
const DeclStmt *getBeginStmt() const {
return cast_or_null<DeclStmt>(SubExprs[BEGINSTMT]);
}
const DeclStmt *getEndStmt() const {
return cast_or_null<DeclStmt>(SubExprs[ENDSTMT]);
}
const Expr *getCond() const {
return cast_or_null<Expr>(SubExprs[COND]);
}
const Expr *getInc() const {
return cast_or_null<Expr>(SubExprs[INC]);
}
const DeclStmt *getLoopVarStmt() const {
return cast<DeclStmt>(SubExprs[LOOPVAR]);
}
const Stmt *getBody() const { return SubExprs[BODY]; }
void setRangeInit(Expr *E) { SubExprs[RANGE] = reinterpret_cast<Stmt*>(E); }
void setRangeStmt(Stmt *S) { SubExprs[RANGE] = S; }
void setBeginStmt(Stmt *S) { SubExprs[BEGINSTMT] = S; }
void setEndStmt(Stmt *S) { SubExprs[ENDSTMT] = S; }
void setCond(Expr *E) { SubExprs[COND] = reinterpret_cast<Stmt*>(E); }
void setInc(Expr *E) { SubExprs[INC] = reinterpret_cast<Stmt*>(E); }
void setLoopVarStmt(Stmt *S) { SubExprs[LOOPVAR] = S; }
void setBody(Stmt *S) { SubExprs[BODY] = S; }
SourceLocation getForLoc() const { return ForLoc; }
SourceLocation getCoawaitLoc() const { return CoawaitLoc; }
SourceLocation getColonLoc() const { return ColonLoc; }
SourceLocation getRParenLoc() const { return RParenLoc; }
SourceLocation getLocStart() const LLVM_READONLY { return ForLoc; }
SourceLocation getLocEnd() const LLVM_READONLY {
return SubExprs[BODY]->getLocEnd();
}
static bool classof(const Stmt *T) {
return T->getStmtClass() == CXXForRangeStmtClass;
}
// Iterators
child_range children() {
return child_range(&SubExprs[0], &SubExprs[END]);
}
};
/// \brief Representation of a Microsoft __if_exists or __if_not_exists
/// statement with a dependent name.
///
/// The __if_exists statement can be used to include a sequence of statements
/// in the program only when a particular dependent name does not exist. For
/// example:
///
/// \code
/// template<typename T>
/// void call_foo(T &t) {
/// __if_exists (T::foo) {
/// t.foo(); // okay: only called when T::foo exists.
/// }
/// }
/// \endcode
///
/// Similarly, the __if_not_exists statement can be used to include the
/// statements when a particular name does not exist.
///
/// Note that this statement only captures __if_exists and __if_not_exists
/// statements whose name is dependent. All non-dependent cases are handled
/// directly in the parser, so that they don't introduce a new scope. Clang
/// introduces scopes in the dependent case to keep names inside the compound
/// statement from leaking out into the surround statements, which would
/// compromise the template instantiation model. This behavior differs from
/// Visual C++ (which never introduces a scope), but is a fairly reasonable
/// approximation of the VC++ behavior.
class MSDependentExistsStmt : public Stmt {
SourceLocation KeywordLoc;
bool IsIfExists;
NestedNameSpecifierLoc QualifierLoc;
DeclarationNameInfo NameInfo;
Stmt *SubStmt;
friend class ASTReader;
friend class ASTStmtReader;
public:
MSDependentExistsStmt(SourceLocation KeywordLoc, bool IsIfExists,
NestedNameSpecifierLoc QualifierLoc,
DeclarationNameInfo NameInfo,
CompoundStmt *SubStmt)
: Stmt(MSDependentExistsStmtClass),
KeywordLoc(KeywordLoc), IsIfExists(IsIfExists),
QualifierLoc(QualifierLoc), NameInfo(NameInfo),
SubStmt(reinterpret_cast<Stmt *>(SubStmt)) { }
/// \brief Retrieve the location of the __if_exists or __if_not_exists
/// keyword.
SourceLocation getKeywordLoc() const { return KeywordLoc; }
/// \brief Determine whether this is an __if_exists statement.
bool isIfExists() const { return IsIfExists; }
/// \brief Determine whether this is an __if_exists statement.
bool isIfNotExists() const { return !IsIfExists; }
/// \brief Retrieve the nested-name-specifier that qualifies this name, if
/// any.
NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
/// \brief Retrieve the name of the entity we're testing for, along with
/// location information
DeclarationNameInfo getNameInfo() const { return NameInfo; }
/// \brief Retrieve the compound statement that will be included in the
/// program only if the existence of the symbol matches the initial keyword.
CompoundStmt *getSubStmt() const {
return reinterpret_cast<CompoundStmt *>(SubStmt);
}
SourceLocation getLocStart() const LLVM_READONLY { return KeywordLoc; }
SourceLocation getLocEnd() const LLVM_READONLY { return SubStmt->getLocEnd();}
child_range children() {
return child_range(&SubStmt, &SubStmt+1);
}
static bool classof(const Stmt *T) {
return T->getStmtClass() == MSDependentExistsStmtClass;
}
};
/// \brief Represents the body of a coroutine. This wraps the normal function
/// body and holds the additional semantic context required to set up and tear
/// down the coroutine frame.
class CoroutineBodyStmt : public Stmt {
enum SubStmt {
Body, ///< The body of the coroutine.
Promise, ///< The promise statement.
InitSuspend, ///< The initial suspend statement, run before the body.
FinalSuspend, ///< The final suspend statement, run after the body.
OnException, ///< Handler for exceptions thrown in the body.
OnFallthrough, ///< Handler for control flow falling off the body.
ReturnValue, ///< Return value for thunk function.
FirstParamMove ///< First offset for move construction of parameter copies.
};
Stmt *SubStmts[SubStmt::FirstParamMove];
friend class ASTStmtReader;
public:
CoroutineBodyStmt(Stmt *Body, Stmt *Promise, Stmt *InitSuspend,
Stmt *FinalSuspend, Stmt *OnException, Stmt *OnFallthrough,
Expr *ReturnValue, ArrayRef<Expr *> ParamMoves)
: Stmt(CoroutineBodyStmtClass) {
SubStmts[CoroutineBodyStmt::Body] = Body;
SubStmts[CoroutineBodyStmt::Promise] = Promise;
SubStmts[CoroutineBodyStmt::InitSuspend] = InitSuspend;
SubStmts[CoroutineBodyStmt::FinalSuspend] = FinalSuspend;
SubStmts[CoroutineBodyStmt::OnException] = OnException;
SubStmts[CoroutineBodyStmt::OnFallthrough] = OnFallthrough;
SubStmts[CoroutineBodyStmt::ReturnValue] = ReturnValue;
// FIXME: Tail-allocate space for parameter move expressions and store them.
assert(ParamMoves.empty() && "not implemented yet");
}
/// \brief Retrieve the body of the coroutine as written. This will be either
/// a CompoundStmt or a TryStmt.
Stmt *getBody() const {
return SubStmts[SubStmt::Body];
}
Stmt *getPromiseDeclStmt() const { return SubStmts[SubStmt::Promise]; }
VarDecl *getPromiseDecl() const {
return cast<VarDecl>(cast<DeclStmt>(getPromiseDeclStmt())->getSingleDecl());
}
Stmt *getInitSuspendStmt() const { return SubStmts[SubStmt::InitSuspend]; }
Stmt *getFinalSuspendStmt() const { return SubStmts[SubStmt::FinalSuspend]; }
Stmt *getExceptionHandler() const { return SubStmts[SubStmt::OnException]; }
Stmt *getFallthroughHandler() const {
return SubStmts[SubStmt::OnFallthrough];
}
Expr *getReturnValueInit() const {
return cast<Expr>(SubStmts[SubStmt::ReturnValue]);
}
SourceLocation getLocStart() const LLVM_READONLY {
return getBody()->getLocStart();
}
SourceLocation getLocEnd() const LLVM_READONLY {
return getBody()->getLocEnd();
}
child_range children() {
return child_range(SubStmts, SubStmts + SubStmt::FirstParamMove);
}
static bool classof(const Stmt *T) {
return T->getStmtClass() == CoroutineBodyStmtClass;
}
};
/// \brief Represents a 'co_return' statement in the C++ Coroutines TS.
///
/// This statament models the initialization of the coroutine promise
/// (encapsulating the eventual notional return value) from an expression
/// (or braced-init-list), followed by termination of the coroutine.
///
/// This initialization is modeled by the evaluation of the operand
/// followed by a call to one of:
/// <promise>.return_value(<operand>)
/// <promise>.return_void()
/// which we name the "promise call".
class CoreturnStmt : public Stmt {
SourceLocation CoreturnLoc;
enum SubStmt { Operand, PromiseCall, Count };
Stmt *SubStmts[SubStmt::Count];
friend class ASTStmtReader;
public:
CoreturnStmt(SourceLocation CoreturnLoc, Stmt *Operand, Stmt *PromiseCall)
: Stmt(CoreturnStmtClass), CoreturnLoc(CoreturnLoc) {
SubStmts[SubStmt::Operand] = Operand;
SubStmts[SubStmt::PromiseCall] = PromiseCall;
}
SourceLocation getKeywordLoc() const { return CoreturnLoc; }
/// \brief Retrieve the operand of the 'co_return' statement. Will be nullptr
/// if none was specified.
Expr *getOperand() const { return static_cast<Expr*>(SubStmts[Operand]); }
/// \brief Retrieve the promise call that results from this 'co_return'
/// statement. Will be nullptr if either the coroutine has not yet been
/// finalized or the coroutine has no eventual return type.
Expr *getPromiseCall() const {
return static_cast<Expr*>(SubStmts[PromiseCall]);
}
SourceLocation getLocStart() const LLVM_READONLY { return CoreturnLoc; }
SourceLocation getLocEnd() const LLVM_READONLY {
return getOperand()->getLocEnd();
}
child_range children() {
return child_range(SubStmts, SubStmts + SubStmt::Count);
}
static bool classof(const Stmt *T) {
return T->getStmtClass() == CoreturnStmtClass;
}
};
} // end namespace clang
#endif