blob: 5f9623db241631c96d6d4de6b8b4a20dfcae4e5b [file] [log] [blame]
//===--- ExprObjC.h - Classes for representing ObjC expressions -*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the ExprObjC interface and subclasses.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_AST_EXPROBJC_H
#define LLVM_CLANG_AST_EXPROBJC_H
#include "clang/AST/DeclObjC.h"
#include "clang/AST/Expr.h"
#include "clang/AST/SelectorLocationsKind.h"
#include "clang/Basic/IdentifierTable.h"
#include "llvm/Support/Compiler.h"
namespace clang {
class IdentifierInfo;
class ASTContext;
/// ObjCStringLiteral, used for Objective-C string literals
/// i.e. @"foo".
class ObjCStringLiteral : public Expr {
Stmt *String;
SourceLocation AtLoc;
public:
ObjCStringLiteral(StringLiteral *SL, QualType T, SourceLocation L)
: Expr(ObjCStringLiteralClass, T, VK_RValue, OK_Ordinary, false, false,
false, false),
String(SL), AtLoc(L) {}
explicit ObjCStringLiteral(EmptyShell Empty)
: Expr(ObjCStringLiteralClass, Empty) {}
StringLiteral *getString() { return cast<StringLiteral>(String); }
const StringLiteral *getString() const { return cast<StringLiteral>(String); }
void setString(StringLiteral *S) { String = S; }
SourceLocation getAtLoc() const { return AtLoc; }
void setAtLoc(SourceLocation L) { AtLoc = L; }
SourceLocation getLocStart() const LLVM_READONLY { return AtLoc; }
SourceLocation getLocEnd() const LLVM_READONLY { return String->getLocEnd(); }
static bool classof(const Stmt *T) {
return T->getStmtClass() == ObjCStringLiteralClass;
}
// Iterators
child_range children() { return child_range(&String, &String+1); }
};
/// ObjCBoolLiteralExpr - Objective-C Boolean Literal.
///
class ObjCBoolLiteralExpr : public Expr {
bool Value;
SourceLocation Loc;
public:
ObjCBoolLiteralExpr(bool val, QualType Ty, SourceLocation l) :
Expr(ObjCBoolLiteralExprClass, Ty, VK_RValue, OK_Ordinary, false, false,
false, false), Value(val), Loc(l) {}
explicit ObjCBoolLiteralExpr(EmptyShell Empty)
: Expr(ObjCBoolLiteralExprClass, Empty) { }
bool getValue() const { return Value; }
void setValue(bool V) { Value = V; }
SourceLocation getLocStart() const LLVM_READONLY { return Loc; }
SourceLocation getLocEnd() const LLVM_READONLY { return Loc; }
SourceLocation getLocation() const { return Loc; }
void setLocation(SourceLocation L) { Loc = L; }
static bool classof(const Stmt *T) {
return T->getStmtClass() == ObjCBoolLiteralExprClass;
}
// Iterators
child_range children() {
return child_range(child_iterator(), child_iterator());
}
};
/// ObjCBoxedExpr - used for generalized expression boxing.
/// as in: @(strdup("hello world")), @(random()) or @(view.frame)
/// Also used for boxing non-parenthesized numeric literals;
/// as in: @42 or \@true (c++/objc++) or \@__yes (c/objc).
class ObjCBoxedExpr : public Expr {
Stmt *SubExpr;
ObjCMethodDecl *BoxingMethod;
SourceRange Range;
public:
ObjCBoxedExpr(Expr *E, QualType T, ObjCMethodDecl *method,
SourceRange R)
: Expr(ObjCBoxedExprClass, T, VK_RValue, OK_Ordinary,
E->isTypeDependent(), E->isValueDependent(),
E->isInstantiationDependent(), E->containsUnexpandedParameterPack()),
SubExpr(E), BoxingMethod(method), Range(R) {}
explicit ObjCBoxedExpr(EmptyShell Empty)
: Expr(ObjCBoxedExprClass, Empty) {}
Expr *getSubExpr() { return cast<Expr>(SubExpr); }
const Expr *getSubExpr() const { return cast<Expr>(SubExpr); }
ObjCMethodDecl *getBoxingMethod() const {
return BoxingMethod;
}
SourceLocation getAtLoc() const { return Range.getBegin(); }
SourceLocation getLocStart() const LLVM_READONLY { return Range.getBegin(); }
SourceLocation getLocEnd() const LLVM_READONLY { return Range.getEnd(); }
SourceRange getSourceRange() const LLVM_READONLY {
return Range;
}
static bool classof(const Stmt *T) {
return T->getStmtClass() == ObjCBoxedExprClass;
}
// Iterators
child_range children() { return child_range(&SubExpr, &SubExpr+1); }
typedef ConstExprIterator const_arg_iterator;
const_arg_iterator arg_begin() const {
return reinterpret_cast<Stmt const * const*>(&SubExpr);
}
const_arg_iterator arg_end() const {
return reinterpret_cast<Stmt const * const*>(&SubExpr + 1);
}
friend class ASTStmtReader;
};
/// ObjCArrayLiteral - used for objective-c array containers; as in:
/// @[@"Hello", NSApp, [NSNumber numberWithInt:42]];
class ObjCArrayLiteral final
: public Expr,
private llvm::TrailingObjects<ObjCArrayLiteral, Expr *> {
unsigned NumElements;
SourceRange Range;
ObjCMethodDecl *ArrayWithObjectsMethod;
ObjCArrayLiteral(ArrayRef<Expr *> Elements,
QualType T, ObjCMethodDecl * Method,
SourceRange SR);
explicit ObjCArrayLiteral(EmptyShell Empty, unsigned NumElements)
: Expr(ObjCArrayLiteralClass, Empty), NumElements(NumElements) {}
public:
static ObjCArrayLiteral *Create(const ASTContext &C,
ArrayRef<Expr *> Elements,
QualType T, ObjCMethodDecl * Method,
SourceRange SR);
static ObjCArrayLiteral *CreateEmpty(const ASTContext &C,
unsigned NumElements);
SourceLocation getLocStart() const LLVM_READONLY { return Range.getBegin(); }
SourceLocation getLocEnd() const LLVM_READONLY { return Range.getEnd(); }
SourceRange getSourceRange() const LLVM_READONLY { return Range; }
static bool classof(const Stmt *T) {
return T->getStmtClass() == ObjCArrayLiteralClass;
}
/// \brief Retrieve elements of array of literals.
Expr **getElements() { return getTrailingObjects<Expr *>(); }
/// \brief Retrieve elements of array of literals.
const Expr * const *getElements() const {
return getTrailingObjects<Expr *>();
}
/// getNumElements - Return number of elements of objective-c array literal.
unsigned getNumElements() const { return NumElements; }
/// getExpr - Return the Expr at the specified index.
Expr *getElement(unsigned Index) {
assert((Index < NumElements) && "Arg access out of range!");
return cast<Expr>(getElements()[Index]);
}
const Expr *getElement(unsigned Index) const {
assert((Index < NumElements) && "Arg access out of range!");
return cast<Expr>(getElements()[Index]);
}
ObjCMethodDecl *getArrayWithObjectsMethod() const {
return ArrayWithObjectsMethod;
}
// Iterators
child_range children() {
return child_range(reinterpret_cast<Stmt **>(getElements()),
reinterpret_cast<Stmt **>(getElements()) + NumElements);
}
friend TrailingObjects;
friend class ASTStmtReader;
};
/// \brief An element in an Objective-C dictionary literal.
///
struct ObjCDictionaryElement {
/// \brief The key for the dictionary element.
Expr *Key;
/// \brief The value of the dictionary element.
Expr *Value;
/// \brief The location of the ellipsis, if this is a pack expansion.
SourceLocation EllipsisLoc;
/// \brief The number of elements this pack expansion will expand to, if
/// this is a pack expansion and is known.
Optional<unsigned> NumExpansions;
/// \brief Determines whether this dictionary element is a pack expansion.
bool isPackExpansion() const { return EllipsisLoc.isValid(); }
};
} // end namespace clang
namespace llvm {
template <> struct isPodLike<clang::ObjCDictionaryElement> : std::true_type {};
}
namespace clang {
/// \brief Internal struct for storing Key/value pair.
struct ObjCDictionaryLiteral_KeyValuePair {
Expr *Key;
Expr *Value;
};
/// \brief Internal struct to describes an element that is a pack
/// expansion, used if any of the elements in the dictionary literal
/// are pack expansions.
struct ObjCDictionaryLiteral_ExpansionData {
/// \brief The location of the ellipsis, if this element is a pack
/// expansion.
SourceLocation EllipsisLoc;
/// \brief If non-zero, the number of elements that this pack
/// expansion will expand to (+1).
unsigned NumExpansionsPlusOne;
};
/// ObjCDictionaryLiteral - AST node to represent objective-c dictionary
/// literals; as in: @{@"name" : NSUserName(), @"date" : [NSDate date] };
class ObjCDictionaryLiteral final
: public Expr,
private llvm::TrailingObjects<ObjCDictionaryLiteral,
ObjCDictionaryLiteral_KeyValuePair,
ObjCDictionaryLiteral_ExpansionData> {
/// \brief The number of elements in this dictionary literal.
unsigned NumElements : 31;
/// \brief Determine whether this dictionary literal has any pack expansions.
///
/// If the dictionary literal has pack expansions, then there will
/// be an array of pack expansion data following the array of
/// key/value pairs, which provide the locations of the ellipses (if
/// any) and number of elements in the expansion (if known). If
/// there are no pack expansions, we optimize away this storage.
unsigned HasPackExpansions : 1;
SourceRange Range;
ObjCMethodDecl *DictWithObjectsMethod;
typedef ObjCDictionaryLiteral_KeyValuePair KeyValuePair;
typedef ObjCDictionaryLiteral_ExpansionData ExpansionData;
size_t numTrailingObjects(OverloadToken<KeyValuePair>) const {
return NumElements;
}
ObjCDictionaryLiteral(ArrayRef<ObjCDictionaryElement> VK,
bool HasPackExpansions,
QualType T, ObjCMethodDecl *method,
SourceRange SR);
explicit ObjCDictionaryLiteral(EmptyShell Empty, unsigned NumElements,
bool HasPackExpansions)
: Expr(ObjCDictionaryLiteralClass, Empty), NumElements(NumElements),
HasPackExpansions(HasPackExpansions) {}
public:
static ObjCDictionaryLiteral *Create(const ASTContext &C,
ArrayRef<ObjCDictionaryElement> VK,
bool HasPackExpansions,
QualType T, ObjCMethodDecl *method,
SourceRange SR);
static ObjCDictionaryLiteral *CreateEmpty(const ASTContext &C,
unsigned NumElements,
bool HasPackExpansions);
/// getNumElements - Return number of elements of objective-c dictionary
/// literal.
unsigned getNumElements() const { return NumElements; }
ObjCDictionaryElement getKeyValueElement(unsigned Index) const {
assert((Index < NumElements) && "Arg access out of range!");
const KeyValuePair &KV = getTrailingObjects<KeyValuePair>()[Index];
ObjCDictionaryElement Result = { KV.Key, KV.Value, SourceLocation(), None };
if (HasPackExpansions) {
const ExpansionData &Expansion =
getTrailingObjects<ExpansionData>()[Index];
Result.EllipsisLoc = Expansion.EllipsisLoc;
if (Expansion.NumExpansionsPlusOne > 0)
Result.NumExpansions = Expansion.NumExpansionsPlusOne - 1;
}
return Result;
}
ObjCMethodDecl *getDictWithObjectsMethod() const
{ return DictWithObjectsMethod; }
SourceLocation getLocStart() const LLVM_READONLY { return Range.getBegin(); }
SourceLocation getLocEnd() const LLVM_READONLY { return Range.getEnd(); }
SourceRange getSourceRange() const LLVM_READONLY { return Range; }
static bool classof(const Stmt *T) {
return T->getStmtClass() == ObjCDictionaryLiteralClass;
}
// Iterators
child_range children() {
// Note: we're taking advantage of the layout of the KeyValuePair struct
// here. If that struct changes, this code will need to change as well.
static_assert(sizeof(KeyValuePair) == sizeof(Stmt *) * 2,
"KeyValuePair is expected size");
return child_range(
reinterpret_cast<Stmt **>(getTrailingObjects<KeyValuePair>()),
reinterpret_cast<Stmt **>(getTrailingObjects<KeyValuePair>()) +
NumElements * 2);
}
friend class ASTStmtReader;
friend class ASTStmtWriter;
friend TrailingObjects;
};
/// ObjCEncodeExpr, used for \@encode in Objective-C. \@encode has the same
/// type and behavior as StringLiteral except that the string initializer is
/// obtained from ASTContext with the encoding type as an argument.
class ObjCEncodeExpr : public Expr {
TypeSourceInfo *EncodedType;
SourceLocation AtLoc, RParenLoc;
public:
ObjCEncodeExpr(QualType T, TypeSourceInfo *EncodedType,
SourceLocation at, SourceLocation rp)
: Expr(ObjCEncodeExprClass, T, VK_LValue, OK_Ordinary,
EncodedType->getType()->isDependentType(),
EncodedType->getType()->isDependentType(),
EncodedType->getType()->isInstantiationDependentType(),
EncodedType->getType()->containsUnexpandedParameterPack()),
EncodedType(EncodedType), AtLoc(at), RParenLoc(rp) {}
explicit ObjCEncodeExpr(EmptyShell Empty) : Expr(ObjCEncodeExprClass, Empty){}
SourceLocation getAtLoc() const { return AtLoc; }
void setAtLoc(SourceLocation L) { AtLoc = L; }
SourceLocation getRParenLoc() const { return RParenLoc; }
void setRParenLoc(SourceLocation L) { RParenLoc = L; }
QualType getEncodedType() const { return EncodedType->getType(); }
TypeSourceInfo *getEncodedTypeSourceInfo() const { return EncodedType; }
void setEncodedTypeSourceInfo(TypeSourceInfo *EncType) {
EncodedType = EncType;
}
SourceLocation getLocStart() const LLVM_READONLY { return AtLoc; }
SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
static bool classof(const Stmt *T) {
return T->getStmtClass() == ObjCEncodeExprClass;
}
// Iterators
child_range children() {
return child_range(child_iterator(), child_iterator());
}
};
/// ObjCSelectorExpr used for \@selector in Objective-C.
class ObjCSelectorExpr : public Expr {
Selector SelName;
SourceLocation AtLoc, RParenLoc;
public:
ObjCSelectorExpr(QualType T, Selector selInfo,
SourceLocation at, SourceLocation rp)
: Expr(ObjCSelectorExprClass, T, VK_RValue, OK_Ordinary, false, false,
false, false),
SelName(selInfo), AtLoc(at), RParenLoc(rp){}
explicit ObjCSelectorExpr(EmptyShell Empty)
: Expr(ObjCSelectorExprClass, Empty) {}
Selector getSelector() const { return SelName; }
void setSelector(Selector S) { SelName = S; }
SourceLocation getAtLoc() const { return AtLoc; }
SourceLocation getRParenLoc() const { return RParenLoc; }
void setAtLoc(SourceLocation L) { AtLoc = L; }
void setRParenLoc(SourceLocation L) { RParenLoc = L; }
SourceLocation getLocStart() const LLVM_READONLY { return AtLoc; }
SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
/// getNumArgs - Return the number of actual arguments to this call.
unsigned getNumArgs() const { return SelName.getNumArgs(); }
static bool classof(const Stmt *T) {
return T->getStmtClass() == ObjCSelectorExprClass;
}
// Iterators
child_range children() {
return child_range(child_iterator(), child_iterator());
}
};
/// ObjCProtocolExpr used for protocol expression in Objective-C.
///
/// This is used as: \@protocol(foo), as in:
/// \code
/// [obj conformsToProtocol:@protocol(foo)]
/// \endcode
///
/// The return type is "Protocol*".
class ObjCProtocolExpr : public Expr {
ObjCProtocolDecl *TheProtocol;
SourceLocation AtLoc, ProtoLoc, RParenLoc;
public:
ObjCProtocolExpr(QualType T, ObjCProtocolDecl *protocol,
SourceLocation at, SourceLocation protoLoc, SourceLocation rp)
: Expr(ObjCProtocolExprClass, T, VK_RValue, OK_Ordinary, false, false,
false, false),
TheProtocol(protocol), AtLoc(at), ProtoLoc(protoLoc), RParenLoc(rp) {}
explicit ObjCProtocolExpr(EmptyShell Empty)
: Expr(ObjCProtocolExprClass, Empty) {}
ObjCProtocolDecl *getProtocol() const { return TheProtocol; }
void setProtocol(ObjCProtocolDecl *P) { TheProtocol = P; }
SourceLocation getProtocolIdLoc() const { return ProtoLoc; }
SourceLocation getAtLoc() const { return AtLoc; }
SourceLocation getRParenLoc() const { return RParenLoc; }
void setAtLoc(SourceLocation L) { AtLoc = L; }
void setRParenLoc(SourceLocation L) { RParenLoc = L; }
SourceLocation getLocStart() const LLVM_READONLY { return AtLoc; }
SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
static bool classof(const Stmt *T) {
return T->getStmtClass() == ObjCProtocolExprClass;
}
// Iterators
child_range children() {
return child_range(child_iterator(), child_iterator());
}
friend class ASTStmtReader;
friend class ASTStmtWriter;
};
/// ObjCIvarRefExpr - A reference to an ObjC instance variable.
class ObjCIvarRefExpr : public Expr {
ObjCIvarDecl *D;
Stmt *Base;
SourceLocation Loc;
/// OpLoc - This is the location of '.' or '->'
SourceLocation OpLoc;
bool IsArrow:1; // True if this is "X->F", false if this is "X.F".
bool IsFreeIvar:1; // True if ivar reference has no base (self assumed).
public:
ObjCIvarRefExpr(ObjCIvarDecl *d, QualType t,
SourceLocation l, SourceLocation oploc,
Expr *base,
bool arrow = false, bool freeIvar = false) :
Expr(ObjCIvarRefExprClass, t, VK_LValue,
d->isBitField() ? OK_BitField : OK_Ordinary,
/*TypeDependent=*/false, base->isValueDependent(),
base->isInstantiationDependent(),
base->containsUnexpandedParameterPack()),
D(d), Base(base), Loc(l), OpLoc(oploc),
IsArrow(arrow), IsFreeIvar(freeIvar) {}
explicit ObjCIvarRefExpr(EmptyShell Empty)
: Expr(ObjCIvarRefExprClass, Empty) {}
ObjCIvarDecl *getDecl() { return D; }
const ObjCIvarDecl *getDecl() const { return D; }
void setDecl(ObjCIvarDecl *d) { D = d; }
const Expr *getBase() const { return cast<Expr>(Base); }
Expr *getBase() { return cast<Expr>(Base); }
void setBase(Expr * base) { Base = base; }
bool isArrow() const { return IsArrow; }
bool isFreeIvar() const { return IsFreeIvar; }
void setIsArrow(bool A) { IsArrow = A; }
void setIsFreeIvar(bool A) { IsFreeIvar = A; }
SourceLocation getLocation() const { return Loc; }
void setLocation(SourceLocation L) { Loc = L; }
SourceLocation getLocStart() const LLVM_READONLY {
return isFreeIvar() ? Loc : getBase()->getLocStart();
}
SourceLocation getLocEnd() const LLVM_READONLY { return Loc; }
SourceLocation getOpLoc() const { return OpLoc; }
void setOpLoc(SourceLocation L) { OpLoc = L; }
static bool classof(const Stmt *T) {
return T->getStmtClass() == ObjCIvarRefExprClass;
}
// Iterators
child_range children() { return child_range(&Base, &Base+1); }
};
/// ObjCPropertyRefExpr - A dot-syntax expression to access an ObjC
/// property.
class ObjCPropertyRefExpr : public Expr {
private:
/// If the bool is true, this is an implicit property reference; the
/// pointer is an (optional) ObjCMethodDecl and Setter may be set.
/// if the bool is false, this is an explicit property reference;
/// the pointer is an ObjCPropertyDecl and Setter is always null.
llvm::PointerIntPair<NamedDecl*, 1, bool> PropertyOrGetter;
/// \brief Indicates whether the property reference will result in a message
/// to the getter, the setter, or both.
/// This applies to both implicit and explicit property references.
enum MethodRefFlags {
MethodRef_None = 0,
MethodRef_Getter = 0x1,
MethodRef_Setter = 0x2
};
/// \brief Contains the Setter method pointer and MethodRefFlags bit flags.
llvm::PointerIntPair<ObjCMethodDecl *, 2, unsigned> SetterAndMethodRefFlags;
// FIXME: Maybe we should store the property identifier here,
// because it's not rederivable from the other data when there's an
// implicit property with no getter (because the 'foo' -> 'setFoo:'
// transformation is lossy on the first character).
SourceLocation IdLoc;
/// \brief When the receiver in property access is 'super', this is
/// the location of the 'super' keyword. When it's an interface,
/// this is that interface.
SourceLocation ReceiverLoc;
llvm::PointerUnion3<Stmt*, const Type*, ObjCInterfaceDecl*> Receiver;
public:
ObjCPropertyRefExpr(ObjCPropertyDecl *PD, QualType t,
ExprValueKind VK, ExprObjectKind OK,
SourceLocation l, Expr *base)
: Expr(ObjCPropertyRefExprClass, t, VK, OK,
/*TypeDependent=*/false, base->isValueDependent(),
base->isInstantiationDependent(),
base->containsUnexpandedParameterPack()),
PropertyOrGetter(PD, false), SetterAndMethodRefFlags(),
IdLoc(l), ReceiverLoc(), Receiver(base) {
assert(t->isSpecificPlaceholderType(BuiltinType::PseudoObject));
}
ObjCPropertyRefExpr(ObjCPropertyDecl *PD, QualType t,
ExprValueKind VK, ExprObjectKind OK,
SourceLocation l, SourceLocation sl, QualType st)
: Expr(ObjCPropertyRefExprClass, t, VK, OK,
/*TypeDependent=*/false, false, st->isInstantiationDependentType(),
st->containsUnexpandedParameterPack()),
PropertyOrGetter(PD, false), SetterAndMethodRefFlags(),
IdLoc(l), ReceiverLoc(sl), Receiver(st.getTypePtr()) {
assert(t->isSpecificPlaceholderType(BuiltinType::PseudoObject));
}
ObjCPropertyRefExpr(ObjCMethodDecl *Getter, ObjCMethodDecl *Setter,
QualType T, ExprValueKind VK, ExprObjectKind OK,
SourceLocation IdLoc, Expr *Base)
: Expr(ObjCPropertyRefExprClass, T, VK, OK, false,
Base->isValueDependent(), Base->isInstantiationDependent(),
Base->containsUnexpandedParameterPack()),
PropertyOrGetter(Getter, true), SetterAndMethodRefFlags(Setter, 0),
IdLoc(IdLoc), ReceiverLoc(), Receiver(Base) {
assert(T->isSpecificPlaceholderType(BuiltinType::PseudoObject));
}
ObjCPropertyRefExpr(ObjCMethodDecl *Getter, ObjCMethodDecl *Setter,
QualType T, ExprValueKind VK, ExprObjectKind OK,
SourceLocation IdLoc,
SourceLocation SuperLoc, QualType SuperTy)
: Expr(ObjCPropertyRefExprClass, T, VK, OK, false, false, false, false),
PropertyOrGetter(Getter, true), SetterAndMethodRefFlags(Setter, 0),
IdLoc(IdLoc), ReceiverLoc(SuperLoc), Receiver(SuperTy.getTypePtr()) {
assert(T->isSpecificPlaceholderType(BuiltinType::PseudoObject));
}
ObjCPropertyRefExpr(ObjCMethodDecl *Getter, ObjCMethodDecl *Setter,
QualType T, ExprValueKind VK, ExprObjectKind OK,
SourceLocation IdLoc,
SourceLocation ReceiverLoc, ObjCInterfaceDecl *Receiver)
: Expr(ObjCPropertyRefExprClass, T, VK, OK, false, false, false, false),
PropertyOrGetter(Getter, true), SetterAndMethodRefFlags(Setter, 0),
IdLoc(IdLoc), ReceiverLoc(ReceiverLoc), Receiver(Receiver) {
assert(T->isSpecificPlaceholderType(BuiltinType::PseudoObject));
}
explicit ObjCPropertyRefExpr(EmptyShell Empty)
: Expr(ObjCPropertyRefExprClass, Empty) {}
bool isImplicitProperty() const { return PropertyOrGetter.getInt(); }
bool isExplicitProperty() const { return !PropertyOrGetter.getInt(); }
ObjCPropertyDecl *getExplicitProperty() const {
assert(!isImplicitProperty());
return cast<ObjCPropertyDecl>(PropertyOrGetter.getPointer());
}
ObjCMethodDecl *getImplicitPropertyGetter() const {
assert(isImplicitProperty());
return cast_or_null<ObjCMethodDecl>(PropertyOrGetter.getPointer());
}
ObjCMethodDecl *getImplicitPropertySetter() const {
assert(isImplicitProperty());
return SetterAndMethodRefFlags.getPointer();
}
Selector getGetterSelector() const {
if (isImplicitProperty())
return getImplicitPropertyGetter()->getSelector();
return getExplicitProperty()->getGetterName();
}
Selector getSetterSelector() const {
if (isImplicitProperty())
return getImplicitPropertySetter()->getSelector();
return getExplicitProperty()->getSetterName();
}
/// \brief True if the property reference will result in a message to the
/// getter.
/// This applies to both implicit and explicit property references.
bool isMessagingGetter() const {
return SetterAndMethodRefFlags.getInt() & MethodRef_Getter;
}
/// \brief True if the property reference will result in a message to the
/// setter.
/// This applies to both implicit and explicit property references.
bool isMessagingSetter() const {
return SetterAndMethodRefFlags.getInt() & MethodRef_Setter;
}
void setIsMessagingGetter(bool val = true) {
setMethodRefFlag(MethodRef_Getter, val);
}
void setIsMessagingSetter(bool val = true) {
setMethodRefFlag(MethodRef_Setter, val);
}
const Expr *getBase() const {
return cast<Expr>(Receiver.get<Stmt*>());
}
Expr *getBase() {
return cast<Expr>(Receiver.get<Stmt*>());
}
SourceLocation getLocation() const { return IdLoc; }
SourceLocation getReceiverLocation() const { return ReceiverLoc; }
QualType getSuperReceiverType() const {
return QualType(Receiver.get<const Type*>(), 0);
}
ObjCInterfaceDecl *getClassReceiver() const {
return Receiver.get<ObjCInterfaceDecl*>();
}
bool isObjectReceiver() const { return Receiver.is<Stmt*>(); }
bool isSuperReceiver() const { return Receiver.is<const Type*>(); }
bool isClassReceiver() const { return Receiver.is<ObjCInterfaceDecl*>(); }
/// Determine the type of the base, regardless of the kind of receiver.
QualType getReceiverType(const ASTContext &ctx) const;
SourceLocation getLocStart() const LLVM_READONLY {
return isObjectReceiver() ? getBase()->getLocStart() :getReceiverLocation();
}
SourceLocation getLocEnd() const LLVM_READONLY { return IdLoc; }
static bool classof(const Stmt *T) {
return T->getStmtClass() == ObjCPropertyRefExprClass;
}
// Iterators
child_range children() {
if (Receiver.is<Stmt*>()) {
Stmt **begin = reinterpret_cast<Stmt**>(&Receiver); // hack!
return child_range(begin, begin+1);
}
return child_range(child_iterator(), child_iterator());
}
private:
friend class ASTStmtReader;
friend class ASTStmtWriter;
void setExplicitProperty(ObjCPropertyDecl *D, unsigned methRefFlags) {
PropertyOrGetter.setPointer(D);
PropertyOrGetter.setInt(false);
SetterAndMethodRefFlags.setPointer(nullptr);
SetterAndMethodRefFlags.setInt(methRefFlags);
}
void setImplicitProperty(ObjCMethodDecl *Getter, ObjCMethodDecl *Setter,
unsigned methRefFlags) {
PropertyOrGetter.setPointer(Getter);
PropertyOrGetter.setInt(true);
SetterAndMethodRefFlags.setPointer(Setter);
SetterAndMethodRefFlags.setInt(methRefFlags);
}
void setBase(Expr *Base) { Receiver = Base; }
void setSuperReceiver(QualType T) { Receiver = T.getTypePtr(); }
void setClassReceiver(ObjCInterfaceDecl *D) { Receiver = D; }
void setLocation(SourceLocation L) { IdLoc = L; }
void setReceiverLocation(SourceLocation Loc) { ReceiverLoc = Loc; }
void setMethodRefFlag(MethodRefFlags flag, bool val) {
unsigned f = SetterAndMethodRefFlags.getInt();
if (val)
f |= flag;
else
f &= ~flag;
SetterAndMethodRefFlags.setInt(f);
}
};
/// ObjCSubscriptRefExpr - used for array and dictionary subscripting.
/// array[4] = array[3]; dictionary[key] = dictionary[alt_key];
///
class ObjCSubscriptRefExpr : public Expr {
// Location of ']' in an indexing expression.
SourceLocation RBracket;
// array/dictionary base expression.
// for arrays, this is a numeric expression. For dictionaries, this is
// an objective-c object pointer expression.
enum { BASE, KEY, END_EXPR };
Stmt* SubExprs[END_EXPR];
ObjCMethodDecl *GetAtIndexMethodDecl;
// For immutable objects this is null. When ObjCSubscriptRefExpr is to read
// an indexed object this is null too.
ObjCMethodDecl *SetAtIndexMethodDecl;
public:
ObjCSubscriptRefExpr(Expr *base, Expr *key, QualType T,
ExprValueKind VK, ExprObjectKind OK,
ObjCMethodDecl *getMethod,
ObjCMethodDecl *setMethod, SourceLocation RB)
: Expr(ObjCSubscriptRefExprClass, T, VK, OK,
base->isTypeDependent() || key->isTypeDependent(),
base->isValueDependent() || key->isValueDependent(),
base->isInstantiationDependent() || key->isInstantiationDependent(),
(base->containsUnexpandedParameterPack() ||
key->containsUnexpandedParameterPack())),
RBracket(RB),
GetAtIndexMethodDecl(getMethod),
SetAtIndexMethodDecl(setMethod)
{SubExprs[BASE] = base; SubExprs[KEY] = key;}
explicit ObjCSubscriptRefExpr(EmptyShell Empty)
: Expr(ObjCSubscriptRefExprClass, Empty) {}
SourceLocation getRBracket() const { return RBracket; }
void setRBracket(SourceLocation RB) { RBracket = RB; }
SourceLocation getLocStart() const LLVM_READONLY {
return SubExprs[BASE]->getLocStart();
}
SourceLocation getLocEnd() const LLVM_READONLY { return RBracket; }
static bool classof(const Stmt *T) {
return T->getStmtClass() == ObjCSubscriptRefExprClass;
}
Expr *getBaseExpr() const { return cast<Expr>(SubExprs[BASE]); }
void setBaseExpr(Stmt *S) { SubExprs[BASE] = S; }
Expr *getKeyExpr() const { return cast<Expr>(SubExprs[KEY]); }
void setKeyExpr(Stmt *S) { SubExprs[KEY] = S; }
ObjCMethodDecl *getAtIndexMethodDecl() const {
return GetAtIndexMethodDecl;
}
ObjCMethodDecl *setAtIndexMethodDecl() const {
return SetAtIndexMethodDecl;
}
bool isArraySubscriptRefExpr() const {
return getKeyExpr()->getType()->isIntegralOrEnumerationType();
}
child_range children() {
return child_range(SubExprs, SubExprs+END_EXPR);
}
private:
friend class ASTStmtReader;
};
/// \brief An expression that sends a message to the given Objective-C
/// object or class.
///
/// The following contains two message send expressions:
///
/// \code
/// [[NSString alloc] initWithString:@"Hello"]
/// \endcode
///
/// The innermost message send invokes the "alloc" class method on the
/// NSString class, while the outermost message send invokes the
/// "initWithString" instance method on the object returned from
/// NSString's "alloc". In all, an Objective-C message send can take
/// on four different (although related) forms:
///
/// 1. Send to an object instance.
/// 2. Send to a class.
/// 3. Send to the superclass instance of the current class.
/// 4. Send to the superclass of the current class.
///
/// All four kinds of message sends are modeled by the ObjCMessageExpr
/// class, and can be distinguished via \c getReceiverKind(). Example:
///
/// The "void *" trailing objects are actually ONE void * (the
/// receiver pointer), and NumArgs Expr *. But due to the
/// implementation of children(), these must be together contiguously.
class ObjCMessageExpr final
: public Expr,
private llvm::TrailingObjects<ObjCMessageExpr, void *, SourceLocation> {
/// \brief Stores either the selector that this message is sending
/// to (when \c HasMethod is zero) or an \c ObjCMethodDecl pointer
/// referring to the method that we type-checked against.
uintptr_t SelectorOrMethod;
enum { NumArgsBitWidth = 16 };
/// \brief The number of arguments in the message send, not
/// including the receiver.
unsigned NumArgs : NumArgsBitWidth;
/// \brief The kind of message send this is, which is one of the
/// ReceiverKind values.
///
/// We pad this out to a byte to avoid excessive masking and shifting.
unsigned Kind : 8;
/// \brief Whether we have an actual method prototype in \c
/// SelectorOrMethod.
///
/// When non-zero, we have a method declaration; otherwise, we just
/// have a selector.
unsigned HasMethod : 1;
/// \brief Whether this message send is a "delegate init call",
/// i.e. a call of an init method on self from within an init method.
unsigned IsDelegateInitCall : 1;
/// \brief Whether this message send was implicitly generated by
/// the implementation rather than explicitly written by the user.
unsigned IsImplicit : 1;
/// \brief Whether the locations of the selector identifiers are in a
/// "standard" position, a enum SelectorLocationsKind.
unsigned SelLocsKind : 2;
/// \brief When the message expression is a send to 'super', this is
/// the location of the 'super' keyword.
SourceLocation SuperLoc;
/// \brief The source locations of the open and close square
/// brackets ('[' and ']', respectively).
SourceLocation LBracLoc, RBracLoc;
size_t numTrailingObjects(OverloadToken<void *>) const { return NumArgs + 1; }
void setNumArgs(unsigned Num) {
assert((Num >> NumArgsBitWidth) == 0 && "Num of args is out of range!");
NumArgs = Num;
}
ObjCMessageExpr(EmptyShell Empty, unsigned NumArgs)
: Expr(ObjCMessageExprClass, Empty), SelectorOrMethod(0), Kind(0),
HasMethod(0), IsDelegateInitCall(0), IsImplicit(0), SelLocsKind(0) {
setNumArgs(NumArgs);
}
ObjCMessageExpr(QualType T, ExprValueKind VK,
SourceLocation LBracLoc,
SourceLocation SuperLoc,
bool IsInstanceSuper,
QualType SuperType,
Selector Sel,
ArrayRef<SourceLocation> SelLocs,
SelectorLocationsKind SelLocsK,
ObjCMethodDecl *Method,
ArrayRef<Expr *> Args,
SourceLocation RBracLoc,
bool isImplicit);
ObjCMessageExpr(QualType T, ExprValueKind VK,
SourceLocation LBracLoc,
TypeSourceInfo *Receiver,
Selector Sel,
ArrayRef<SourceLocation> SelLocs,
SelectorLocationsKind SelLocsK,
ObjCMethodDecl *Method,
ArrayRef<Expr *> Args,
SourceLocation RBracLoc,
bool isImplicit);
ObjCMessageExpr(QualType T, ExprValueKind VK,
SourceLocation LBracLoc,
Expr *Receiver,
Selector Sel,
ArrayRef<SourceLocation> SelLocs,
SelectorLocationsKind SelLocsK,
ObjCMethodDecl *Method,
ArrayRef<Expr *> Args,
SourceLocation RBracLoc,
bool isImplicit);
void initArgsAndSelLocs(ArrayRef<Expr *> Args,
ArrayRef<SourceLocation> SelLocs,
SelectorLocationsKind SelLocsK);
/// \brief Retrieve the pointer value of the message receiver.
void *getReceiverPointer() const { return *getTrailingObjects<void *>(); }
/// \brief Set the pointer value of the message receiver.
void setReceiverPointer(void *Value) {
*getTrailingObjects<void *>() = Value;
}
SelectorLocationsKind getSelLocsKind() const {
return (SelectorLocationsKind)SelLocsKind;
}
bool hasStandardSelLocs() const {
return getSelLocsKind() != SelLoc_NonStandard;
}
/// \brief Get a pointer to the stored selector identifiers locations array.
/// No locations will be stored if HasStandardSelLocs is true.
SourceLocation *getStoredSelLocs() {
return getTrailingObjects<SourceLocation>();
}
const SourceLocation *getStoredSelLocs() const {
return getTrailingObjects<SourceLocation>();
}
/// \brief Get the number of stored selector identifiers locations.
/// No locations will be stored if HasStandardSelLocs is true.
unsigned getNumStoredSelLocs() const {
if (hasStandardSelLocs())
return 0;
return getNumSelectorLocs();
}
static ObjCMessageExpr *alloc(const ASTContext &C,
ArrayRef<Expr *> Args,
SourceLocation RBraceLoc,
ArrayRef<SourceLocation> SelLocs,
Selector Sel,
SelectorLocationsKind &SelLocsK);
static ObjCMessageExpr *alloc(const ASTContext &C,
unsigned NumArgs,
unsigned NumStoredSelLocs);
public:
/// \brief The kind of receiver this message is sending to.
enum ReceiverKind {
/// \brief The receiver is a class.
Class = 0,
/// \brief The receiver is an object instance.
Instance,
/// \brief The receiver is a superclass.
SuperClass,
/// \brief The receiver is the instance of the superclass object.
SuperInstance
};
/// \brief Create a message send to super.
///
/// \param Context The ASTContext in which this expression will be created.
///
/// \param T The result type of this message.
///
/// \param VK The value kind of this message. A message returning
/// a l-value or r-value reference will be an l-value or x-value,
/// respectively.
///
/// \param LBracLoc The location of the open square bracket '['.
///
/// \param SuperLoc The location of the "super" keyword.
///
/// \param IsInstanceSuper Whether this is an instance "super"
/// message (otherwise, it's a class "super" message).
///
/// \param Sel The selector used to determine which method gets called.
///
/// \param Method The Objective-C method against which this message
/// send was type-checked. May be NULL.
///
/// \param Args The message send arguments.
///
/// \param RBracLoc The location of the closing square bracket ']'.
static ObjCMessageExpr *Create(const ASTContext &Context, QualType T,
ExprValueKind VK,
SourceLocation LBracLoc,
SourceLocation SuperLoc,
bool IsInstanceSuper,
QualType SuperType,
Selector Sel,
ArrayRef<SourceLocation> SelLocs,
ObjCMethodDecl *Method,
ArrayRef<Expr *> Args,
SourceLocation RBracLoc,
bool isImplicit);
/// \brief Create a class message send.
///
/// \param Context The ASTContext in which this expression will be created.
///
/// \param T The result type of this message.
///
/// \param VK The value kind of this message. A message returning
/// a l-value or r-value reference will be an l-value or x-value,
/// respectively.
///
/// \param LBracLoc The location of the open square bracket '['.
///
/// \param Receiver The type of the receiver, including
/// source-location information.
///
/// \param Sel The selector used to determine which method gets called.
///
/// \param Method The Objective-C method against which this message
/// send was type-checked. May be NULL.
///
/// \param Args The message send arguments.
///
/// \param RBracLoc The location of the closing square bracket ']'.
static ObjCMessageExpr *Create(const ASTContext &Context, QualType T,
ExprValueKind VK,
SourceLocation LBracLoc,
TypeSourceInfo *Receiver,
Selector Sel,
ArrayRef<SourceLocation> SelLocs,
ObjCMethodDecl *Method,
ArrayRef<Expr *> Args,
SourceLocation RBracLoc,
bool isImplicit);
/// \brief Create an instance message send.
///
/// \param Context The ASTContext in which this expression will be created.
///
/// \param T The result type of this message.
///
/// \param VK The value kind of this message. A message returning
/// a l-value or r-value reference will be an l-value or x-value,
/// respectively.
///
/// \param LBracLoc The location of the open square bracket '['.
///
/// \param Receiver The expression used to produce the object that
/// will receive this message.
///
/// \param Sel The selector used to determine which method gets called.
///
/// \param Method The Objective-C method against which this message
/// send was type-checked. May be NULL.
///
/// \param Args The message send arguments.
///
/// \param RBracLoc The location of the closing square bracket ']'.
static ObjCMessageExpr *Create(const ASTContext &Context, QualType T,
ExprValueKind VK,
SourceLocation LBracLoc,
Expr *Receiver,
Selector Sel,
ArrayRef<SourceLocation> SeLocs,
ObjCMethodDecl *Method,
ArrayRef<Expr *> Args,
SourceLocation RBracLoc,
bool isImplicit);
/// \brief Create an empty Objective-C message expression, to be
/// filled in by subsequent calls.
///
/// \param Context The context in which the message send will be created.
///
/// \param NumArgs The number of message arguments, not including
/// the receiver.
static ObjCMessageExpr *CreateEmpty(const ASTContext &Context,
unsigned NumArgs,
unsigned NumStoredSelLocs);
/// \brief Indicates whether the message send was implicitly
/// generated by the implementation. If false, it was written explicitly
/// in the source code.
bool isImplicit() const { return IsImplicit; }
/// \brief Determine the kind of receiver that this message is being
/// sent to.
ReceiverKind getReceiverKind() const { return (ReceiverKind)Kind; }
/// \brief Source range of the receiver.
SourceRange getReceiverRange() const;
/// \brief Determine whether this is an instance message to either a
/// computed object or to super.
bool isInstanceMessage() const {
return getReceiverKind() == Instance || getReceiverKind() == SuperInstance;
}
/// \brief Determine whether this is an class message to either a
/// specified class or to super.
bool isClassMessage() const {
return getReceiverKind() == Class || getReceiverKind() == SuperClass;
}
/// \brief Returns the object expression (receiver) for an instance message,
/// or null for a message that is not an instance message.
Expr *getInstanceReceiver() {
if (getReceiverKind() == Instance)
return static_cast<Expr *>(getReceiverPointer());
return nullptr;
}
const Expr *getInstanceReceiver() const {
return const_cast<ObjCMessageExpr*>(this)->getInstanceReceiver();
}
/// \brief Turn this message send into an instance message that
/// computes the receiver object with the given expression.
void setInstanceReceiver(Expr *rec) {
Kind = Instance;
setReceiverPointer(rec);
}
/// \brief Returns the type of a class message send, or NULL if the
/// message is not a class message.
QualType getClassReceiver() const {
if (TypeSourceInfo *TSInfo = getClassReceiverTypeInfo())
return TSInfo->getType();
return QualType();
}
/// \brief Returns a type-source information of a class message
/// send, or NULL if the message is not a class message.
TypeSourceInfo *getClassReceiverTypeInfo() const {
if (getReceiverKind() == Class)
return reinterpret_cast<TypeSourceInfo *>(getReceiverPointer());
return nullptr;
}
void setClassReceiver(TypeSourceInfo *TSInfo) {
Kind = Class;
setReceiverPointer(TSInfo);
}
/// \brief Retrieve the location of the 'super' keyword for a class
/// or instance message to 'super', otherwise an invalid source location.
SourceLocation getSuperLoc() const {
if (getReceiverKind() == SuperInstance || getReceiverKind() == SuperClass)
return SuperLoc;
return SourceLocation();
}
/// \brief Retrieve the receiver type to which this message is being directed.
///
/// This routine cross-cuts all of the different kinds of message
/// sends to determine what the underlying (statically known) type
/// of the receiver will be; use \c getReceiverKind() to determine
/// whether the message is a class or an instance method, whether it
/// is a send to super or not, etc.
///
/// \returns The type of the receiver.
QualType getReceiverType() const;
/// \brief Retrieve the Objective-C interface to which this message
/// is being directed, if known.
///
/// This routine cross-cuts all of the different kinds of message
/// sends to determine what the underlying (statically known) type
/// of the receiver will be; use \c getReceiverKind() to determine
/// whether the message is a class or an instance method, whether it
/// is a send to super or not, etc.
///
/// \returns The Objective-C interface if known, otherwise NULL.
ObjCInterfaceDecl *getReceiverInterface() const;
/// \brief Retrieve the type referred to by 'super'.
///
/// The returned type will either be an ObjCInterfaceType (for an
/// class message to super) or an ObjCObjectPointerType that refers
/// to a class (for an instance message to super);
QualType getSuperType() const {
if (getReceiverKind() == SuperInstance || getReceiverKind() == SuperClass)
return QualType::getFromOpaquePtr(getReceiverPointer());
return QualType();
}
void setSuper(SourceLocation Loc, QualType T, bool IsInstanceSuper) {
Kind = IsInstanceSuper? SuperInstance : SuperClass;
SuperLoc = Loc;
setReceiverPointer(T.getAsOpaquePtr());
}
Selector getSelector() const;
void setSelector(Selector S) {
HasMethod = false;
SelectorOrMethod = reinterpret_cast<uintptr_t>(S.getAsOpaquePtr());
}
const ObjCMethodDecl *getMethodDecl() const {
if (HasMethod)
return reinterpret_cast<const ObjCMethodDecl *>(SelectorOrMethod);
return nullptr;
}
ObjCMethodDecl *getMethodDecl() {
if (HasMethod)
return reinterpret_cast<ObjCMethodDecl *>(SelectorOrMethod);
return nullptr;
}
void setMethodDecl(ObjCMethodDecl *MD) {
HasMethod = true;
SelectorOrMethod = reinterpret_cast<uintptr_t>(MD);
}
ObjCMethodFamily getMethodFamily() const {
if (HasMethod) return getMethodDecl()->getMethodFamily();
return getSelector().getMethodFamily();
}
/// \brief Return the number of actual arguments in this message,
/// not counting the receiver.
unsigned getNumArgs() const { return NumArgs; }
/// \brief Retrieve the arguments to this message, not including the
/// receiver.
Expr **getArgs() {
return reinterpret_cast<Expr **>(getTrailingObjects<void *>() + 1);
}
const Expr * const *getArgs() const {
return reinterpret_cast<const Expr *const *>(getTrailingObjects<void *>() +
1);
}
/// getArg - Return the specified argument.
Expr *getArg(unsigned Arg) {
assert(Arg < NumArgs && "Arg access out of range!");
return getArgs()[Arg];
}
const Expr *getArg(unsigned Arg) const {
assert(Arg < NumArgs && "Arg access out of range!");
return getArgs()[Arg];
}
/// setArg - Set the specified argument.
void setArg(unsigned Arg, Expr *ArgExpr) {
assert(Arg < NumArgs && "Arg access out of range!");
getArgs()[Arg] = ArgExpr;
}
/// isDelegateInitCall - Answers whether this message send has been
/// tagged as a "delegate init call", i.e. a call to a method in the
/// -init family on self from within an -init method implementation.
bool isDelegateInitCall() const { return IsDelegateInitCall; }
void setDelegateInitCall(bool isDelegate) { IsDelegateInitCall = isDelegate; }
SourceLocation getLeftLoc() const { return LBracLoc; }
SourceLocation getRightLoc() const { return RBracLoc; }
SourceLocation getSelectorStartLoc() const {
if (isImplicit())
return getLocStart();
return getSelectorLoc(0);
}
SourceLocation getSelectorLoc(unsigned Index) const {
assert(Index < getNumSelectorLocs() && "Index out of range!");
if (hasStandardSelLocs())
return getStandardSelectorLoc(Index, getSelector(),
getSelLocsKind() == SelLoc_StandardWithSpace,
llvm::makeArrayRef(const_cast<Expr**>(getArgs()),
getNumArgs()),
RBracLoc);
return getStoredSelLocs()[Index];
}
void getSelectorLocs(SmallVectorImpl<SourceLocation> &SelLocs) const;
unsigned getNumSelectorLocs() const {
if (isImplicit())
return 0;
Selector Sel = getSelector();
if (Sel.isUnarySelector())
return 1;
return Sel.getNumArgs();
}
void setSourceRange(SourceRange R) {
LBracLoc = R.getBegin();
RBracLoc = R.getEnd();
}
SourceLocation getLocStart() const LLVM_READONLY { return LBracLoc; }
SourceLocation getLocEnd() const LLVM_READONLY { return RBracLoc; }
static bool classof(const Stmt *T) {
return T->getStmtClass() == ObjCMessageExprClass;
}
// Iterators
child_range children();
typedef ExprIterator arg_iterator;
typedef ConstExprIterator const_arg_iterator;
llvm::iterator_range<arg_iterator> arguments() {
return llvm::make_range(arg_begin(), arg_end());
}
llvm::iterator_range<const_arg_iterator> arguments() const {
return llvm::make_range(arg_begin(), arg_end());
}
arg_iterator arg_begin() { return reinterpret_cast<Stmt **>(getArgs()); }
arg_iterator arg_end() {
return reinterpret_cast<Stmt **>(getArgs() + NumArgs);
}
const_arg_iterator arg_begin() const {
return reinterpret_cast<Stmt const * const*>(getArgs());
}
const_arg_iterator arg_end() const {
return reinterpret_cast<Stmt const * const*>(getArgs() + NumArgs);
}
friend TrailingObjects;
friend class ASTStmtReader;
friend class ASTStmtWriter;
};
/// ObjCIsaExpr - Represent X->isa and X.isa when X is an ObjC 'id' type.
/// (similar in spirit to MemberExpr).
class ObjCIsaExpr : public Expr {
/// Base - the expression for the base object pointer.
Stmt *Base;
/// IsaMemberLoc - This is the location of the 'isa'.
SourceLocation IsaMemberLoc;
/// OpLoc - This is the location of '.' or '->'
SourceLocation OpLoc;
/// IsArrow - True if this is "X->F", false if this is "X.F".
bool IsArrow;
public:
ObjCIsaExpr(Expr *base, bool isarrow, SourceLocation l, SourceLocation oploc,
QualType ty)
: Expr(ObjCIsaExprClass, ty, VK_LValue, OK_Ordinary,
/*TypeDependent=*/false, base->isValueDependent(),
base->isInstantiationDependent(),
/*ContainsUnexpandedParameterPack=*/false),
Base(base), IsaMemberLoc(l), OpLoc(oploc), IsArrow(isarrow) {}
/// \brief Build an empty expression.
explicit ObjCIsaExpr(EmptyShell Empty) : Expr(ObjCIsaExprClass, Empty) { }
void setBase(Expr *E) { Base = E; }
Expr *getBase() const { return cast<Expr>(Base); }
bool isArrow() const { return IsArrow; }
void setArrow(bool A) { IsArrow = A; }
/// getMemberLoc - Return the location of the "member", in X->F, it is the
/// location of 'F'.
SourceLocation getIsaMemberLoc() const { return IsaMemberLoc; }
void setIsaMemberLoc(SourceLocation L) { IsaMemberLoc = L; }
SourceLocation getOpLoc() const { return OpLoc; }
void setOpLoc(SourceLocation L) { OpLoc = L; }
SourceLocation getLocStart() const LLVM_READONLY {
return getBase()->getLocStart();
}
SourceLocation getBaseLocEnd() const LLVM_READONLY {
return getBase()->getLocEnd();
}
SourceLocation getLocEnd() const LLVM_READONLY { return IsaMemberLoc; }
SourceLocation getExprLoc() const LLVM_READONLY { return IsaMemberLoc; }
static bool classof(const Stmt *T) {
return T->getStmtClass() == ObjCIsaExprClass;
}
// Iterators
child_range children() { return child_range(&Base, &Base+1); }
};
/// ObjCIndirectCopyRestoreExpr - Represents the passing of a function
/// argument by indirect copy-restore in ARC. This is used to support
/// passing indirect arguments with the wrong lifetime, e.g. when
/// passing the address of a __strong local variable to an 'out'
/// parameter. This expression kind is only valid in an "argument"
/// position to some sort of call expression.
///
/// The parameter must have type 'pointer to T', and the argument must
/// have type 'pointer to U', where T and U agree except possibly in
/// qualification. If the argument value is null, then a null pointer
/// is passed; otherwise it points to an object A, and:
/// 1. A temporary object B of type T is initialized, either by
/// zero-initialization (used when initializing an 'out' parameter)
/// or copy-initialization (used when initializing an 'inout'
/// parameter).
/// 2. The address of the temporary is passed to the function.
/// 3. If the call completes normally, A is move-assigned from B.
/// 4. Finally, A is destroyed immediately.
///
/// Currently 'T' must be a retainable object lifetime and must be
/// __autoreleasing; this qualifier is ignored when initializing
/// the value.
class ObjCIndirectCopyRestoreExpr : public Expr {
Stmt *Operand;
// unsigned ObjCIndirectCopyRestoreBits.ShouldCopy : 1;
friend class ASTReader;
friend class ASTStmtReader;
void setShouldCopy(bool shouldCopy) {
ObjCIndirectCopyRestoreExprBits.ShouldCopy = shouldCopy;
}
explicit ObjCIndirectCopyRestoreExpr(EmptyShell Empty)
: Expr(ObjCIndirectCopyRestoreExprClass, Empty) { }
public:
ObjCIndirectCopyRestoreExpr(Expr *operand, QualType type, bool shouldCopy)
: Expr(ObjCIndirectCopyRestoreExprClass, type, VK_LValue, OK_Ordinary,
operand->isTypeDependent(), operand->isValueDependent(),
operand->isInstantiationDependent(),
operand->containsUnexpandedParameterPack()),
Operand(operand) {
setShouldCopy(shouldCopy);
}
Expr *getSubExpr() { return cast<Expr>(Operand); }
const Expr *getSubExpr() const { return cast<Expr>(Operand); }
/// shouldCopy - True if we should do the 'copy' part of the
/// copy-restore. If false, the temporary will be zero-initialized.
bool shouldCopy() const { return ObjCIndirectCopyRestoreExprBits.ShouldCopy; }
child_range children() { return child_range(&Operand, &Operand+1); }
// Source locations are determined by the subexpression.
SourceLocation getLocStart() const LLVM_READONLY {
return Operand->getLocStart();
}
SourceLocation getLocEnd() const LLVM_READONLY { return Operand->getLocEnd();}
SourceLocation getExprLoc() const LLVM_READONLY {
return getSubExpr()->getExprLoc();
}
static bool classof(const Stmt *s) {
return s->getStmtClass() == ObjCIndirectCopyRestoreExprClass;
}
};
/// \brief An Objective-C "bridged" cast expression, which casts between
/// Objective-C pointers and C pointers, transferring ownership in the process.
///
/// \code
/// NSString *str = (__bridge_transfer NSString *)CFCreateString();
/// \endcode
class ObjCBridgedCastExpr final
: public ExplicitCastExpr,
private llvm::TrailingObjects<ObjCBridgedCastExpr, CXXBaseSpecifier *> {
SourceLocation LParenLoc;
SourceLocation BridgeKeywordLoc;
unsigned Kind : 2;
friend TrailingObjects;
friend class CastExpr;
friend class ASTStmtReader;
friend class ASTStmtWriter;
public:
ObjCBridgedCastExpr(SourceLocation LParenLoc, ObjCBridgeCastKind Kind,
CastKind CK, SourceLocation BridgeKeywordLoc,
TypeSourceInfo *TSInfo, Expr *Operand)
: ExplicitCastExpr(ObjCBridgedCastExprClass, TSInfo->getType(), VK_RValue,
CK, Operand, 0, TSInfo),
LParenLoc(LParenLoc), BridgeKeywordLoc(BridgeKeywordLoc), Kind(Kind) { }
/// \brief Construct an empty Objective-C bridged cast.
explicit ObjCBridgedCastExpr(EmptyShell Shell)
: ExplicitCastExpr(ObjCBridgedCastExprClass, Shell, 0) { }
SourceLocation getLParenLoc() const { return LParenLoc; }
/// \brief Determine which kind of bridge is being performed via this cast.
ObjCBridgeCastKind getBridgeKind() const {
return static_cast<ObjCBridgeCastKind>(Kind);
}
/// \brief Retrieve the kind of bridge being performed as a string.
StringRef getBridgeKindName() const;
/// \brief The location of the bridge keyword.
SourceLocation getBridgeKeywordLoc() const { return BridgeKeywordLoc; }
SourceLocation getLocStart() const LLVM_READONLY { return LParenLoc; }
SourceLocation getLocEnd() const LLVM_READONLY {
return getSubExpr()->getLocEnd();
}
static bool classof(const Stmt *T) {
return T->getStmtClass() == ObjCBridgedCastExprClass;
}
};
/// \brief A runtime availability query.
///
/// There are 2 ways to spell this node:
/// \code
/// @available(macos 10.10, ios 8, *); // Objective-C
/// __builtin_available(macos 10.10, ios 8, *); // C, C++, and Objective-C
/// \endcode
///
/// Note that we only need to keep track of one \c VersionTuple here, which is
/// the one that corresponds to the current deployment target. This is meant to
/// be used in the condition of an \c if, but it is also usable as top level
/// expressions.
///
class ObjCAvailabilityCheckExpr : public Expr {
VersionTuple VersionToCheck;
SourceLocation AtLoc, RParen;
friend class ASTStmtReader;
public:
ObjCAvailabilityCheckExpr(VersionTuple VersionToCheck, SourceLocation AtLoc,
SourceLocation RParen, QualType Ty)
: Expr(ObjCAvailabilityCheckExprClass, Ty, VK_RValue, OK_Ordinary, false,
false, false, false),
VersionToCheck(VersionToCheck), AtLoc(AtLoc), RParen(RParen) {}
explicit ObjCAvailabilityCheckExpr(EmptyShell Shell)
: Expr(ObjCAvailabilityCheckExprClass, Shell) {}
SourceLocation getLocStart() const { return AtLoc; }
SourceLocation getLocEnd() const { return RParen; }
SourceRange getSourceRange() const { return {AtLoc, RParen}; }
/// \brief This may be '*', in which case this should fold to true.
bool hasVersion() const { return !VersionToCheck.empty(); }
VersionTuple getVersion() { return VersionToCheck; }
child_range children() {
return child_range(child_iterator(), child_iterator());
}
static bool classof(const Stmt *T) {
return T->getStmtClass() == ObjCAvailabilityCheckExprClass;
}
};
} // end namespace clang
#endif