blob: 61dfc2da1b76a4b4bdbf02927b804ad551b363b4 [file] [log] [blame]
//===--- Sema.h - Semantic Analysis & AST Building --------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the Sema class, which performs semantic analysis and
// builds ASTs.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_SEMA_SEMA_H
#define LLVM_CLANG_SEMA_SEMA_H
#include "clang/AST/Attr.h"
#include "clang/AST/Availability.h"
#include "clang/AST/DeclarationName.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/AST/Expr.h"
#include "clang/AST/ExprObjC.h"
#include "clang/AST/ExternalASTSource.h"
#include "clang/AST/LocInfoType.h"
#include "clang/AST/MangleNumberingContext.h"
#include "clang/AST/NSAPI.h"
#include "clang/AST/PrettyPrinter.h"
#include "clang/AST/TypeLoc.h"
#include "clang/APINotes/APINotesManager.h"
#include "clang/Basic/ExpressionTraits.h"
#include "clang/Basic/LangOptions.h"
#include "clang/Basic/Module.h"
#include "clang/Basic/OpenMPKinds.h"
#include "clang/Basic/PragmaKinds.h"
#include "clang/Basic/Specifiers.h"
#include "clang/Basic/TemplateKinds.h"
#include "clang/Basic/TypeTraits.h"
#include "clang/Sema/AnalysisBasedWarnings.h"
#include "clang/Sema/CleanupInfo.h"
#include "clang/Sema/DeclSpec.h"
#include "clang/Sema/ExternalSemaSource.h"
#include "clang/Sema/IdentifierResolver.h"
#include "clang/Sema/ObjCMethodList.h"
#include "clang/Sema/Ownership.h"
#include "clang/Sema/Scope.h"
#include "clang/Sema/ScopeInfo.h"
#include "clang/Sema/TypoCorrection.h"
#include "clang/Sema/Weak.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/TinyPtrVector.h"
#include <deque>
#include <functional>
#include <memory>
#include <string>
#include <vector>
namespace llvm {
class APSInt;
template <typename ValueT> struct DenseMapInfo;
template <typename ValueT, typename ValueInfoT> class DenseSet;
class SmallBitVector;
class InlineAsmIdentifierInfo;
}
namespace clang {
class ADLResult;
class ASTConsumer;
class ASTContext;
class ASTMutationListener;
class ASTReader;
class ASTWriter;
class ArrayType;
class AttributeList;
class BindingDecl;
class BlockDecl;
class CapturedDecl;
class CXXBasePath;
class CXXBasePaths;
class CXXBindTemporaryExpr;
typedef SmallVector<CXXBaseSpecifier*, 4> CXXCastPath;
class CXXConstructorDecl;
class CXXConversionDecl;
class CXXDeleteExpr;
class CXXDestructorDecl;
class CXXFieldCollector;
class CXXMemberCallExpr;
class CXXMethodDecl;
class CXXScopeSpec;
class CXXTemporary;
class CXXTryStmt;
class CallExpr;
class ClassTemplateDecl;
class ClassTemplatePartialSpecializationDecl;
class ClassTemplateSpecializationDecl;
class VarTemplatePartialSpecializationDecl;
class CodeCompleteConsumer;
class CodeCompletionAllocator;
class CodeCompletionTUInfo;
class CodeCompletionResult;
class Decl;
class DeclAccessPair;
class DeclContext;
class DeclRefExpr;
class DeclaratorDecl;
class DeducedTemplateArgument;
class DependentDiagnostic;
class DesignatedInitExpr;
class Designation;
class EnableIfAttr;
class EnumConstantDecl;
class Expr;
class ExtVectorType;
class FormatAttr;
class FriendDecl;
class FunctionDecl;
class FunctionProtoType;
class FunctionTemplateDecl;
class ImplicitConversionSequence;
class InitListExpr;
class InitializationKind;
class InitializationSequence;
class InitializedEntity;
class IntegerLiteral;
class LabelStmt;
class LambdaExpr;
class LangOptions;
class LocalInstantiationScope;
class LookupResult;
class MacroInfo;
typedef ArrayRef<std::pair<IdentifierInfo *, SourceLocation>> ModuleIdPath;
class ModuleLoader;
class MultiLevelTemplateArgumentList;
class NamedDecl;
class ObjCCategoryDecl;
class ObjCCategoryImplDecl;
class ObjCCompatibleAliasDecl;
class ObjCContainerDecl;
class ObjCImplDecl;
class ObjCImplementationDecl;
class ObjCInterfaceDecl;
class ObjCIvarDecl;
template <class T> class ObjCList;
class ObjCMessageExpr;
class ObjCMethodDecl;
class ObjCPropertyDecl;
class ObjCProtocolDecl;
class OMPThreadPrivateDecl;
class OMPDeclareReductionDecl;
class OMPDeclareSimdDecl;
class OMPClause;
struct OverloadCandidate;
class OverloadCandidateSet;
class OverloadExpr;
class ParenListExpr;
class ParmVarDecl;
class Preprocessor;
class PseudoDestructorTypeStorage;
class PseudoObjectExpr;
class QualType;
class StandardConversionSequence;
class Stmt;
class StringLiteral;
class SwitchStmt;
class TemplateArgument;
class TemplateArgumentList;
class TemplateArgumentLoc;
class TemplateDecl;
class TemplateParameterList;
class TemplatePartialOrderingContext;
class TemplateTemplateParmDecl;
class Token;
class TypeAliasDecl;
class TypedefDecl;
class TypedefNameDecl;
class TypeLoc;
class TypoCorrectionConsumer;
class UnqualifiedId;
class UnresolvedLookupExpr;
class UnresolvedMemberExpr;
class UnresolvedSetImpl;
class UnresolvedSetIterator;
class UsingDecl;
class UsingShadowDecl;
class ValueDecl;
class VarDecl;
class VarTemplateSpecializationDecl;
class VisibilityAttr;
class VisibleDeclConsumer;
class IndirectFieldDecl;
struct DeductionFailureInfo;
class TemplateSpecCandidateSet;
namespace sema {
class AccessedEntity;
class BlockScopeInfo;
class CapturedRegionScopeInfo;
class CapturingScopeInfo;
class CompoundScopeInfo;
class DelayedDiagnostic;
class DelayedDiagnosticPool;
class FunctionScopeInfo;
class LambdaScopeInfo;
class PossiblyUnreachableDiag;
class TemplateDeductionInfo;
}
namespace threadSafety {
class BeforeSet;
void threadSafetyCleanup(BeforeSet* Cache);
}
// FIXME: No way to easily map from TemplateTypeParmTypes to
// TemplateTypeParmDecls, so we have this horrible PointerUnion.
typedef std::pair<llvm::PointerUnion<const TemplateTypeParmType*, NamedDecl*>,
SourceLocation> UnexpandedParameterPack;
/// Describes whether we've seen any nullability information for the given
/// file.
struct FileNullability {
/// The first pointer declarator (of any pointer kind) in the file that does
/// not have a corresponding nullability annotation.
SourceLocation PointerLoc;
/// Which kind of pointer declarator we saw.
uint8_t PointerKind;
/// Whether we saw any type nullability annotations in the given file.
bool SawTypeNullability = false;
};
/// A mapping from file IDs to a record of whether we've seen nullability
/// information in that file.
class FileNullabilityMap {
/// A mapping from file IDs to the nullability information for each file ID.
llvm::DenseMap<FileID, FileNullability> Map;
/// A single-element cache based on the file ID.
struct {
FileID File;
FileNullability Nullability;
} Cache;
public:
FileNullability &operator[](FileID file) {
// Check the single-element cache.
if (file == Cache.File)
return Cache.Nullability;
// It's not in the single-element cache; flush the cache if we have one.
if (!Cache.File.isInvalid()) {
Map[Cache.File] = Cache.Nullability;
}
// Pull this entry into the cache.
Cache.File = file;
Cache.Nullability = Map[file];
return Cache.Nullability;
}
};
/// Sema - This implements semantic analysis and AST building for C.
class Sema {
Sema(const Sema &) = delete;
void operator=(const Sema &) = delete;
///\brief Source of additional semantic information.
ExternalSemaSource *ExternalSource;
///\brief Whether Sema has generated a multiplexer and has to delete it.
bool isMultiplexExternalSource;
static bool mightHaveNonExternalLinkage(const DeclaratorDecl *FD);
bool isVisibleSlow(const NamedDecl *D);
bool shouldLinkPossiblyHiddenDecl(const NamedDecl *Old,
const NamedDecl *New) {
// We are about to link these. It is now safe to compute the linkage of
// the new decl. If the new decl has external linkage, we will
// link it with the hidden decl (which also has external linkage) and
// it will keep having external linkage. If it has internal linkage, we
// will not link it. Since it has no previous decls, it will remain
// with internal linkage.
return isVisible(Old) || New->isExternallyVisible();
}
bool shouldLinkPossiblyHiddenDecl(LookupResult &Old, const NamedDecl *New);
public:
typedef OpaquePtr<DeclGroupRef> DeclGroupPtrTy;
typedef OpaquePtr<TemplateName> TemplateTy;
typedef OpaquePtr<QualType> TypeTy;
OpenCLOptions OpenCLFeatures;
FPOptions FPFeatures;
const LangOptions &LangOpts;
Preprocessor &PP;
ASTContext &Context;
ASTConsumer &Consumer;
DiagnosticsEngine &Diags;
SourceManager &SourceMgr;
api_notes::APINotesManager APINotes;
/// \brief Flag indicating whether or not to collect detailed statistics.
bool CollectStats;
/// \brief Code-completion consumer.
CodeCompleteConsumer *CodeCompleter;
/// CurContext - This is the current declaration context of parsing.
DeclContext *CurContext;
/// \brief Generally null except when we temporarily switch decl contexts,
/// like in \see ActOnObjCTemporaryExitContainerContext.
DeclContext *OriginalLexicalContext;
/// VAListTagName - The declaration name corresponding to __va_list_tag.
/// This is used as part of a hack to omit that class from ADL results.
DeclarationName VAListTagName;
bool MSStructPragmaOn; // True when \#pragma ms_struct on
/// \brief Controls member pointer representation format under the MS ABI.
LangOptions::PragmaMSPointersToMembersKind
MSPointerToMemberRepresentationMethod;
/// Stack of active SEH __finally scopes. Can be empty.
SmallVector<Scope*, 2> CurrentSEHFinally;
/// \brief Source location for newly created implicit MSInheritanceAttrs
SourceLocation ImplicitMSInheritanceAttrLoc;
enum PragmaMsStackAction {
PSK_Reset = 0x0, // #pragma ()
PSK_Set = 0x1, // #pragma (value)
PSK_Push = 0x2, // #pragma (push[, id])
PSK_Pop = 0x4, // #pragma (pop[, id])
PSK_Show = 0x8, // #pragma (show) -- only for "pack"!
PSK_Push_Set = PSK_Push | PSK_Set, // #pragma (push[, id], value)
PSK_Pop_Set = PSK_Pop | PSK_Set, // #pragma (pop[, id], value)
};
template<typename ValueType>
struct PragmaStack {
struct Slot {
llvm::StringRef StackSlotLabel;
ValueType Value;
SourceLocation PragmaLocation;
Slot(llvm::StringRef StackSlotLabel,
ValueType Value,
SourceLocation PragmaLocation)
: StackSlotLabel(StackSlotLabel), Value(Value),
PragmaLocation(PragmaLocation) {}
};
void Act(SourceLocation PragmaLocation,
PragmaMsStackAction Action,
llvm::StringRef StackSlotLabel,
ValueType Value);
// MSVC seems to add artificial slots to #pragma stacks on entering a C++
// method body to restore the stacks on exit, so it works like this:
//
// struct S {
// #pragma <name>(push, InternalPragmaSlot, <current_pragma_value>)
// void Method {}
// #pragma <name>(pop, InternalPragmaSlot)
// };
//
// It works even with #pragma vtordisp, although MSVC doesn't support
// #pragma vtordisp(push [, id], n)
// syntax.
//
// Push / pop a named sentinel slot.
void SentinelAction(PragmaMsStackAction Action, StringRef Label) {
assert((Action == PSK_Push || Action == PSK_Pop) &&
"Can only push / pop #pragma stack sentinels!");
Act(CurrentPragmaLocation, Action, Label, CurrentValue);
}
// Constructors.
explicit PragmaStack(const ValueType &Default)
: DefaultValue(Default), CurrentValue(Default) {}
SmallVector<Slot, 2> Stack;
ValueType DefaultValue; // Value used for PSK_Reset action.
ValueType CurrentValue;
SourceLocation CurrentPragmaLocation;
};
// FIXME: We should serialize / deserialize these if they occur in a PCH (but
// we shouldn't do so if they're in a module).
/// \brief Whether to insert vtordisps prior to virtual bases in the Microsoft
/// C++ ABI. Possible values are 0, 1, and 2, which mean:
///
/// 0: Suppress all vtordisps
/// 1: Insert vtordisps in the presence of vbase overrides and non-trivial
/// structors
/// 2: Always insert vtordisps to support RTTI on partially constructed
/// objects
PragmaStack<MSVtorDispAttr::Mode> VtorDispStack;
// #pragma pack.
// Sentinel to represent when the stack is set to mac68k alignment.
static const unsigned kMac68kAlignmentSentinel = ~0U;
PragmaStack<unsigned> PackStack;
// Segment #pragmas.
PragmaStack<StringLiteral *> DataSegStack;
PragmaStack<StringLiteral *> BSSSegStack;
PragmaStack<StringLiteral *> ConstSegStack;
PragmaStack<StringLiteral *> CodeSegStack;
// RAII object to push / pop sentinel slots for all MS #pragma stacks.
// Actions should be performed only if we enter / exit a C++ method body.
class PragmaStackSentinelRAII {
public:
PragmaStackSentinelRAII(Sema &S, StringRef SlotLabel, bool ShouldAct);
~PragmaStackSentinelRAII();
private:
Sema &S;
StringRef SlotLabel;
bool ShouldAct;
};
/// A mapping that describes the nullability we've seen in each header file.
FileNullabilityMap NullabilityMap;
/// Last section used with #pragma init_seg.
StringLiteral *CurInitSeg;
SourceLocation CurInitSegLoc;
/// VisContext - Manages the stack for \#pragma GCC visibility.
void *VisContext; // Really a "PragmaVisStack*"
/// \brief This represents the last location of a "#pragma clang optimize off"
/// directive if such a directive has not been closed by an "on" yet. If
/// optimizations are currently "on", this is set to an invalid location.
SourceLocation OptimizeOffPragmaLocation;
/// \brief Flag indicating if Sema is building a recovery call expression.
///
/// This flag is used to avoid building recovery call expressions
/// if Sema is already doing so, which would cause infinite recursions.
bool IsBuildingRecoveryCallExpr;
/// Used to control the generation of ExprWithCleanups.
CleanupInfo Cleanup;
/// ExprCleanupObjects - This is the stack of objects requiring
/// cleanup that are created by the current full expression. The
/// element type here is ExprWithCleanups::Object.
SmallVector<BlockDecl*, 8> ExprCleanupObjects;
/// \brief Store a list of either DeclRefExprs or MemberExprs
/// that contain a reference to a variable (constant) that may or may not
/// be odr-used in this Expr, and we won't know until all lvalue-to-rvalue
/// and discarded value conversions have been applied to all subexpressions
/// of the enclosing full expression. This is cleared at the end of each
/// full expression.
llvm::SmallPtrSet<Expr*, 2> MaybeODRUseExprs;
/// \brief Stack containing information about each of the nested
/// function, block, and method scopes that are currently active.
///
/// This array is never empty. Clients should ignore the first
/// element, which is used to cache a single FunctionScopeInfo
/// that's used to parse every top-level function.
SmallVector<sema::FunctionScopeInfo *, 4> FunctionScopes;
typedef LazyVector<TypedefNameDecl *, ExternalSemaSource,
&ExternalSemaSource::ReadExtVectorDecls, 2, 2>
ExtVectorDeclsType;
/// ExtVectorDecls - This is a list all the extended vector types. This allows
/// us to associate a raw vector type with one of the ext_vector type names.
/// This is only necessary for issuing pretty diagnostics.
ExtVectorDeclsType ExtVectorDecls;
/// FieldCollector - Collects CXXFieldDecls during parsing of C++ classes.
std::unique_ptr<CXXFieldCollector> FieldCollector;
typedef llvm::SmallSetVector<const NamedDecl*, 16> NamedDeclSetType;
/// \brief Set containing all declared private fields that are not used.
NamedDeclSetType UnusedPrivateFields;
/// \brief Set containing all typedefs that are likely unused.
llvm::SmallSetVector<const TypedefNameDecl *, 4>
UnusedLocalTypedefNameCandidates;
/// \brief Delete-expressions to be analyzed at the end of translation unit
///
/// This list contains class members, and locations of delete-expressions
/// that could not be proven as to whether they mismatch with new-expression
/// used in initializer of the field.
typedef std::pair<SourceLocation, bool> DeleteExprLoc;
typedef llvm::SmallVector<DeleteExprLoc, 4> DeleteLocs;
llvm::MapVector<FieldDecl *, DeleteLocs> DeleteExprs;
typedef llvm::SmallPtrSet<const CXXRecordDecl*, 8> RecordDeclSetTy;
/// PureVirtualClassDiagSet - a set of class declarations which we have
/// emitted a list of pure virtual functions. Used to prevent emitting the
/// same list more than once.
std::unique_ptr<RecordDeclSetTy> PureVirtualClassDiagSet;
/// ParsingInitForAutoVars - a set of declarations with auto types for which
/// we are currently parsing the initializer.
llvm::SmallPtrSet<const Decl*, 4> ParsingInitForAutoVars;
/// \brief Look for a locally scoped extern "C" declaration by the given name.
NamedDecl *findLocallyScopedExternCDecl(DeclarationName Name);
typedef LazyVector<VarDecl *, ExternalSemaSource,
&ExternalSemaSource::ReadTentativeDefinitions, 2, 2>
TentativeDefinitionsType;
/// \brief All the tentative definitions encountered in the TU.
TentativeDefinitionsType TentativeDefinitions;
typedef LazyVector<const DeclaratorDecl *, ExternalSemaSource,
&ExternalSemaSource::ReadUnusedFileScopedDecls, 2, 2>
UnusedFileScopedDeclsType;
/// \brief The set of file scoped decls seen so far that have not been used
/// and must warn if not used. Only contains the first declaration.
UnusedFileScopedDeclsType UnusedFileScopedDecls;
typedef LazyVector<CXXConstructorDecl *, ExternalSemaSource,
&ExternalSemaSource::ReadDelegatingConstructors, 2, 2>
DelegatingCtorDeclsType;
/// \brief All the delegating constructors seen so far in the file, used for
/// cycle detection at the end of the TU.
DelegatingCtorDeclsType DelegatingCtorDecls;
/// \brief All the overriding functions seen during a class definition
/// that had their exception spec checks delayed, plus the overridden
/// function.
SmallVector<std::pair<const CXXMethodDecl*, const CXXMethodDecl*>, 2>
DelayedExceptionSpecChecks;
/// \brief All the members seen during a class definition which were both
/// explicitly defaulted and had explicitly-specified exception
/// specifications, along with the function type containing their
/// user-specified exception specification. Those exception specifications
/// were overridden with the default specifications, but we still need to
/// check whether they are compatible with the default specification, and
/// we can't do that until the nesting set of class definitions is complete.
SmallVector<std::pair<CXXMethodDecl*, const FunctionProtoType*>, 2>
DelayedDefaultedMemberExceptionSpecs;
typedef llvm::MapVector<const FunctionDecl *, LateParsedTemplate *>
LateParsedTemplateMapT;
LateParsedTemplateMapT LateParsedTemplateMap;
/// \brief Callback to the parser to parse templated functions when needed.
typedef void LateTemplateParserCB(void *P, LateParsedTemplate &LPT);
typedef void LateTemplateParserCleanupCB(void *P);
LateTemplateParserCB *LateTemplateParser;
LateTemplateParserCleanupCB *LateTemplateParserCleanup;
void *OpaqueParser;
void SetLateTemplateParser(LateTemplateParserCB *LTP,
LateTemplateParserCleanupCB *LTPCleanup,
void *P) {
LateTemplateParser = LTP;
LateTemplateParserCleanup = LTPCleanup;
OpaqueParser = P;
}
/// \brief Callback to the parser to parse a type expressed as a string.
std::function<TypeResult(StringRef, StringRef, SourceLocation)>
ParseTypeFromStringCallback;
class DelayedDiagnostics;
class DelayedDiagnosticsState {
sema::DelayedDiagnosticPool *SavedPool;
friend class Sema::DelayedDiagnostics;
};
typedef DelayedDiagnosticsState ParsingDeclState;
typedef DelayedDiagnosticsState ProcessingContextState;
/// A class which encapsulates the logic for delaying diagnostics
/// during parsing and other processing.
class DelayedDiagnostics {
/// \brief The current pool of diagnostics into which delayed
/// diagnostics should go.
sema::DelayedDiagnosticPool *CurPool;
public:
DelayedDiagnostics() : CurPool(nullptr) {}
/// Adds a delayed diagnostic.
void add(const sema::DelayedDiagnostic &diag); // in DelayedDiagnostic.h
/// Determines whether diagnostics should be delayed.
bool shouldDelayDiagnostics() { return CurPool != nullptr; }
/// Returns the current delayed-diagnostics pool.
sema::DelayedDiagnosticPool *getCurrentPool() const {
return CurPool;
}
/// Enter a new scope. Access and deprecation diagnostics will be
/// collected in this pool.
DelayedDiagnosticsState push(sema::DelayedDiagnosticPool &pool) {
DelayedDiagnosticsState state;
state.SavedPool = CurPool;
CurPool = &pool;
return state;
}
/// Leave a delayed-diagnostic state that was previously pushed.
/// Do not emit any of the diagnostics. This is performed as part
/// of the bookkeeping of popping a pool "properly".
void popWithoutEmitting(DelayedDiagnosticsState state) {
CurPool = state.SavedPool;
}
/// Enter a new scope where access and deprecation diagnostics are
/// not delayed.
DelayedDiagnosticsState pushUndelayed() {
DelayedDiagnosticsState state;
state.SavedPool = CurPool;
CurPool = nullptr;
return state;
}
/// Undo a previous pushUndelayed().
void popUndelayed(DelayedDiagnosticsState state) {
assert(CurPool == nullptr);
CurPool = state.SavedPool;
}
} DelayedDiagnostics;
/// A RAII object to temporarily push a declaration context.
class ContextRAII {
private:
Sema &S;
DeclContext *SavedContext;
ProcessingContextState SavedContextState;
QualType SavedCXXThisTypeOverride;
public:
ContextRAII(Sema &S, DeclContext *ContextToPush, bool NewThisContext = true)
: S(S), SavedContext(S.CurContext),
SavedContextState(S.DelayedDiagnostics.pushUndelayed()),
SavedCXXThisTypeOverride(S.CXXThisTypeOverride)
{
assert(ContextToPush && "pushing null context");
S.CurContext = ContextToPush;
if (NewThisContext)
S.CXXThisTypeOverride = QualType();
}
void pop() {
if (!SavedContext) return;
S.CurContext = SavedContext;
S.DelayedDiagnostics.popUndelayed(SavedContextState);
S.CXXThisTypeOverride = SavedCXXThisTypeOverride;
SavedContext = nullptr;
}
~ContextRAII() {
pop();
}
};
/// \brief RAII object to handle the state changes required to synthesize
/// a function body.
class SynthesizedFunctionScope {
Sema &S;
Sema::ContextRAII SavedContext;
public:
SynthesizedFunctionScope(Sema &S, DeclContext *DC)
: S(S), SavedContext(S, DC)
{
S.PushFunctionScope();
S.PushExpressionEvaluationContext(Sema::PotentiallyEvaluated);
}
~SynthesizedFunctionScope() {
S.PopExpressionEvaluationContext();
S.PopFunctionScopeInfo();
}
};
/// WeakUndeclaredIdentifiers - Identifiers contained in
/// \#pragma weak before declared. rare. may alias another
/// identifier, declared or undeclared
llvm::MapVector<IdentifierInfo *, WeakInfo> WeakUndeclaredIdentifiers;
/// ExtnameUndeclaredIdentifiers - Identifiers contained in
/// \#pragma redefine_extname before declared. Used in Solaris system headers
/// to define functions that occur in multiple standards to call the version
/// in the currently selected standard.
llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*> ExtnameUndeclaredIdentifiers;
/// \brief Load weak undeclared identifiers from the external source.
void LoadExternalWeakUndeclaredIdentifiers();
/// WeakTopLevelDecl - Translation-unit scoped declarations generated by
/// \#pragma weak during processing of other Decls.
/// I couldn't figure out a clean way to generate these in-line, so
/// we store them here and handle separately -- which is a hack.
/// It would be best to refactor this.
SmallVector<Decl*,2> WeakTopLevelDecl;
IdentifierResolver IdResolver;
/// Translation Unit Scope - useful to Objective-C actions that need
/// to lookup file scope declarations in the "ordinary" C decl namespace.
/// For example, user-defined classes, built-in "id" type, etc.
Scope *TUScope;
/// \brief The C++ "std" namespace, where the standard library resides.
LazyDeclPtr StdNamespace;
/// \brief The C++ "std::bad_alloc" class, which is defined by the C++
/// standard library.
LazyDeclPtr StdBadAlloc;
/// \brief The C++ "std::initializer_list" template, which is defined in
/// \<initializer_list>.
ClassTemplateDecl *StdInitializerList;
/// \brief The C++ "type_info" declaration, which is defined in \<typeinfo>.
RecordDecl *CXXTypeInfoDecl;
/// \brief The MSVC "_GUID" struct, which is defined in MSVC header files.
RecordDecl *MSVCGuidDecl;
/// \brief Caches identifiers/selectors for NSFoundation APIs.
std::unique_ptr<NSAPI> NSAPIObj;
/// \brief The declaration of the Objective-C NSNumber class.
ObjCInterfaceDecl *NSNumberDecl;
/// \brief The declaration of the Objective-C NSValue class.
ObjCInterfaceDecl *NSValueDecl;
/// \brief Pointer to NSNumber type (NSNumber *).
QualType NSNumberPointer;
/// \brief Pointer to NSValue type (NSValue *).
QualType NSValuePointer;
/// \brief The Objective-C NSNumber methods used to create NSNumber literals.
ObjCMethodDecl *NSNumberLiteralMethods[NSAPI::NumNSNumberLiteralMethods];
/// \brief The declaration of the Objective-C NSString class.
ObjCInterfaceDecl *NSStringDecl;
/// \brief Pointer to NSString type (NSString *).
QualType NSStringPointer;
/// \brief The declaration of the stringWithUTF8String: method.
ObjCMethodDecl *StringWithUTF8StringMethod;
/// \brief The declaration of the valueWithBytes:objCType: method.
ObjCMethodDecl *ValueWithBytesObjCTypeMethod;
/// \brief The declaration of the Objective-C NSArray class.
ObjCInterfaceDecl *NSArrayDecl;
/// \brief The declaration of the arrayWithObjects:count: method.
ObjCMethodDecl *ArrayWithObjectsMethod;
/// \brief The declaration of the Objective-C NSDictionary class.
ObjCInterfaceDecl *NSDictionaryDecl;
/// \brief The declaration of the dictionaryWithObjects:forKeys:count: method.
ObjCMethodDecl *DictionaryWithObjectsMethod;
/// \brief id<NSCopying> type.
QualType QIDNSCopying;
/// \brief will hold 'respondsToSelector:'
Selector RespondsToSelectorSel;
/// \brief counter for internal MS Asm label names.
unsigned MSAsmLabelNameCounter;
/// A flag to remember whether the implicit forms of operator new and delete
/// have been declared.
bool GlobalNewDeleteDeclared;
/// A flag to indicate that we're in a context that permits abstract
/// references to fields. This is really a
bool AllowAbstractFieldReference;
/// \brief Describes how the expressions currently being parsed are
/// evaluated at run-time, if at all.
enum ExpressionEvaluationContext {
/// \brief The current expression and its subexpressions occur within an
/// unevaluated operand (C++11 [expr]p7), such as the subexpression of
/// \c sizeof, where the type of the expression may be significant but
/// no code will be generated to evaluate the value of the expression at
/// run time.
Unevaluated,
/// \brief The current expression occurs within a discarded statement.
/// This behaves largely similarly to an unevaluated operand in preventing
/// definitions from being required, but not in other ways.
DiscardedStatement,
/// \brief The current expression occurs within an unevaluated
/// operand that unconditionally permits abstract references to
/// fields, such as a SIZE operator in MS-style inline assembly.
UnevaluatedAbstract,
/// \brief The current context is "potentially evaluated" in C++11 terms,
/// but the expression is evaluated at compile-time (like the values of
/// cases in a switch statement).
ConstantEvaluated,
/// \brief The current expression is potentially evaluated at run time,
/// which means that code may be generated to evaluate the value of the
/// expression at run time.
PotentiallyEvaluated,
/// \brief The current expression is potentially evaluated, but any
/// declarations referenced inside that expression are only used if
/// in fact the current expression is used.
///
/// This value is used when parsing default function arguments, for which
/// we would like to provide diagnostics (e.g., passing non-POD arguments
/// through varargs) but do not want to mark declarations as "referenced"
/// until the default argument is used.
PotentiallyEvaluatedIfUsed
};
/// \brief Data structure used to record current or nested
/// expression evaluation contexts.
struct ExpressionEvaluationContextRecord {
/// \brief The expression evaluation context.
ExpressionEvaluationContext Context;
/// \brief Whether the enclosing context needed a cleanup.
CleanupInfo ParentCleanup;
/// \brief Whether we are in a decltype expression.
bool IsDecltype;
/// \brief The number of active cleanup objects when we entered
/// this expression evaluation context.
unsigned NumCleanupObjects;
/// \brief The number of typos encountered during this expression evaluation
/// context (i.e. the number of TypoExprs created).
unsigned NumTypos;
llvm::SmallPtrSet<Expr*, 2> SavedMaybeODRUseExprs;
/// \brief The lambdas that are present within this context, if it
/// is indeed an unevaluated context.
SmallVector<LambdaExpr *, 2> Lambdas;
/// \brief The declaration that provides context for lambda expressions
/// and block literals if the normal declaration context does not
/// suffice, e.g., in a default function argument.
Decl *ManglingContextDecl;
/// \brief The context information used to mangle lambda expressions
/// and block literals within this context.
///
/// This mangling information is allocated lazily, since most contexts
/// do not have lambda expressions or block literals.
IntrusiveRefCntPtr<MangleNumberingContext> MangleNumbering;
/// \brief If we are processing a decltype type, a set of call expressions
/// for which we have deferred checking the completeness of the return type.
SmallVector<CallExpr *, 8> DelayedDecltypeCalls;
/// \brief If we are processing a decltype type, a set of temporary binding
/// expressions for which we have deferred checking the destructor.
SmallVector<CXXBindTemporaryExpr *, 8> DelayedDecltypeBinds;
ExpressionEvaluationContextRecord(ExpressionEvaluationContext Context,
unsigned NumCleanupObjects,
CleanupInfo ParentCleanup,
Decl *ManglingContextDecl,
bool IsDecltype)
: Context(Context), ParentCleanup(ParentCleanup),
IsDecltype(IsDecltype), NumCleanupObjects(NumCleanupObjects),
NumTypos(0),
ManglingContextDecl(ManglingContextDecl), MangleNumbering() { }
/// \brief Retrieve the mangling numbering context, used to consistently
/// number constructs like lambdas for mangling.
MangleNumberingContext &getMangleNumberingContext(ASTContext &Ctx);
bool isUnevaluated() const {
return Context == Unevaluated || Context == UnevaluatedAbstract;
}
};
/// A stack of expression evaluation contexts.
SmallVector<ExpressionEvaluationContextRecord, 8> ExprEvalContexts;
/// \brief Compute the mangling number context for a lambda expression or
/// block literal.
///
/// \param DC - The DeclContext containing the lambda expression or
/// block literal.
/// \param[out] ManglingContextDecl - Returns the ManglingContextDecl
/// associated with the context, if relevant.
MangleNumberingContext *getCurrentMangleNumberContext(
const DeclContext *DC,
Decl *&ManglingContextDecl);
/// SpecialMemberOverloadResult - The overloading result for a special member
/// function.
///
/// This is basically a wrapper around PointerIntPair. The lowest bits of the
/// integer are used to determine whether overload resolution succeeded.
class SpecialMemberOverloadResult : public llvm::FastFoldingSetNode {
public:
enum Kind {
NoMemberOrDeleted,
Ambiguous,
Success
};
private:
llvm::PointerIntPair<CXXMethodDecl*, 2> Pair;
public:
SpecialMemberOverloadResult(const llvm::FoldingSetNodeID &ID)
: FastFoldingSetNode(ID)
{}
CXXMethodDecl *getMethod() const { return Pair.getPointer(); }
void setMethod(CXXMethodDecl *MD) { Pair.setPointer(MD); }
Kind getKind() const { return static_cast<Kind>(Pair.getInt()); }
void setKind(Kind K) { Pair.setInt(K); }
};
/// \brief A cache of special member function overload resolution results
/// for C++ records.
llvm::FoldingSet<SpecialMemberOverloadResult> SpecialMemberCache;
/// \brief A cache of the flags available in enumerations with the flag_bits
/// attribute.
mutable llvm::DenseMap<const EnumDecl*, llvm::APInt> FlagBitsCache;
/// \brief The kind of translation unit we are processing.
///
/// When we're processing a complete translation unit, Sema will perform
/// end-of-translation-unit semantic tasks (such as creating
/// initializers for tentative definitions in C) once parsing has
/// completed. Modules and precompiled headers perform different kinds of
/// checks.
TranslationUnitKind TUKind;
llvm::BumpPtrAllocator BumpAlloc;
/// \brief The number of SFINAE diagnostics that have been trapped.
unsigned NumSFINAEErrors;
typedef llvm::DenseMap<ParmVarDecl *, llvm::TinyPtrVector<ParmVarDecl *>>
UnparsedDefaultArgInstantiationsMap;
/// \brief A mapping from parameters with unparsed default arguments to the
/// set of instantiations of each parameter.
///
/// This mapping is a temporary data structure used when parsing
/// nested class templates or nested classes of class templates,
/// where we might end up instantiating an inner class before the
/// default arguments of its methods have been parsed.
UnparsedDefaultArgInstantiationsMap UnparsedDefaultArgInstantiations;
// Contains the locations of the beginning of unparsed default
// argument locations.
llvm::DenseMap<ParmVarDecl *, SourceLocation> UnparsedDefaultArgLocs;
/// UndefinedInternals - all the used, undefined objects which require a
/// definition in this translation unit.
llvm::MapVector<NamedDecl *, SourceLocation> UndefinedButUsed;
/// Obtain a sorted list of functions that are undefined but ODR-used.
void getUndefinedButUsed(
SmallVectorImpl<std::pair<NamedDecl *, SourceLocation> > &Undefined);
/// Retrieves list of suspicious delete-expressions that will be checked at
/// the end of translation unit.
const llvm::MapVector<FieldDecl *, DeleteLocs> &
getMismatchingDeleteExpressions() const;
typedef std::pair<ObjCMethodList, ObjCMethodList> GlobalMethods;
typedef llvm::DenseMap<Selector, GlobalMethods> GlobalMethodPool;
/// Method Pool - allows efficient lookup when typechecking messages to "id".
/// We need to maintain a list, since selectors can have differing signatures
/// across classes. In Cocoa, this happens to be extremely uncommon (only 1%
/// of selectors are "overloaded").
/// At the head of the list it is recorded whether there were 0, 1, or >= 2
/// methods inside categories with a particular selector.
GlobalMethodPool MethodPool;
/// Method selectors used in a \@selector expression. Used for implementation
/// of -Wselector.
llvm::MapVector<Selector, SourceLocation> ReferencedSelectors;
/// Kinds of C++ special members.
enum CXXSpecialMember {
CXXDefaultConstructor,
CXXCopyConstructor,
CXXMoveConstructor,
CXXCopyAssignment,
CXXMoveAssignment,
CXXDestructor,
CXXInvalid
};
typedef std::pair<CXXRecordDecl*, CXXSpecialMember> SpecialMemberDecl;
/// The C++ special members which we are currently in the process of
/// declaring. If this process recursively triggers the declaration of the
/// same special member, we should act as if it is not yet declared.
llvm::SmallSet<SpecialMemberDecl, 4> SpecialMembersBeingDeclared;
void ReadMethodPool(Selector Sel);
void updateOutOfDateSelector(Selector Sel);
/// Private Helper predicate to check for 'self'.
bool isSelfExpr(Expr *RExpr);
bool isSelfExpr(Expr *RExpr, const ObjCMethodDecl *Method);
/// \brief Cause the active diagnostic on the DiagosticsEngine to be
/// emitted. This is closely coupled to the SemaDiagnosticBuilder class and
/// should not be used elsewhere.
void EmitCurrentDiagnostic(unsigned DiagID);
/// Records and restores the FP_CONTRACT state on entry/exit of compound
/// statements.
class FPContractStateRAII {
public:
FPContractStateRAII(Sema& S)
: S(S), OldFPContractState(S.FPFeatures.fp_contract) {}
~FPContractStateRAII() {
S.FPFeatures.fp_contract = OldFPContractState;
}
private:
Sema& S;
bool OldFPContractState : 1;
};
void addImplicitTypedef(StringRef Name, QualType T);
public:
Sema(Preprocessor &pp, ASTContext &ctxt, ASTConsumer &consumer,
TranslationUnitKind TUKind = TU_Complete,
CodeCompleteConsumer *CompletionConsumer = nullptr);
~Sema();
/// \brief Perform initialization that occurs after the parser has been
/// initialized but before it parses anything.
void Initialize();
const LangOptions &getLangOpts() const { return LangOpts; }
OpenCLOptions &getOpenCLOptions() { return OpenCLFeatures; }
FPOptions &getFPOptions() { return FPFeatures; }
DiagnosticsEngine &getDiagnostics() const { return Diags; }
SourceManager &getSourceManager() const { return SourceMgr; }
Preprocessor &getPreprocessor() const { return PP; }
ASTContext &getASTContext() const { return Context; }
ASTConsumer &getASTConsumer() const { return Consumer; }
ASTMutationListener *getASTMutationListener() const;
ExternalSemaSource* getExternalSource() const { return ExternalSource; }
///\brief Registers an external source. If an external source already exists,
/// creates a multiplex external source and appends to it.
///
///\param[in] E - A non-null external sema source.
///
void addExternalSource(ExternalSemaSource *E);
void PrintStats() const;
/// \brief Helper class that creates diagnostics with optional
/// template instantiation stacks.
///
/// This class provides a wrapper around the basic DiagnosticBuilder
/// class that emits diagnostics. SemaDiagnosticBuilder is
/// responsible for emitting the diagnostic (as DiagnosticBuilder
/// does) and, if the diagnostic comes from inside a template
/// instantiation, printing the template instantiation stack as
/// well.
class SemaDiagnosticBuilder : public DiagnosticBuilder {
Sema &SemaRef;
unsigned DiagID;
public:
SemaDiagnosticBuilder(DiagnosticBuilder &DB, Sema &SemaRef, unsigned DiagID)
: DiagnosticBuilder(DB), SemaRef(SemaRef), DiagID(DiagID) { }
// This is a cunning lie. DiagnosticBuilder actually performs move
// construction in its copy constructor (but due to varied uses, it's not
// possible to conveniently express this as actual move construction). So
// the default copy ctor here is fine, because the base class disables the
// source anyway, so the user-defined ~SemaDiagnosticBuilder is a safe no-op
// in that case anwyay.
SemaDiagnosticBuilder(const SemaDiagnosticBuilder&) = default;
~SemaDiagnosticBuilder() {
// If we aren't active, there is nothing to do.
if (!isActive()) return;
// Otherwise, we need to emit the diagnostic. First flush the underlying
// DiagnosticBuilder data, and clear the diagnostic builder itself so it
// won't emit the diagnostic in its own destructor.
//
// This seems wasteful, in that as written the DiagnosticBuilder dtor will
// do its own needless checks to see if the diagnostic needs to be
// emitted. However, because we take care to ensure that the builder
// objects never escape, a sufficiently smart compiler will be able to
// eliminate that code.
FlushCounts();
Clear();
// Dispatch to Sema to emit the diagnostic.
SemaRef.EmitCurrentDiagnostic(DiagID);
}
/// Teach operator<< to produce an object of the correct type.
template<typename T>
friend const SemaDiagnosticBuilder &operator<<(
const SemaDiagnosticBuilder &Diag, const T &Value) {
const DiagnosticBuilder &BaseDiag = Diag;
BaseDiag << Value;
return Diag;
}
};
/// \brief Emit a diagnostic.
SemaDiagnosticBuilder Diag(SourceLocation Loc, unsigned DiagID) {
DiagnosticBuilder DB = Diags.Report(Loc, DiagID);
return SemaDiagnosticBuilder(DB, *this, DiagID);
}
/// \brief Emit a partial diagnostic.
SemaDiagnosticBuilder Diag(SourceLocation Loc, const PartialDiagnostic& PD);
/// \brief Build a partial diagnostic.
PartialDiagnostic PDiag(unsigned DiagID = 0); // in SemaInternal.h
bool findMacroSpelling(SourceLocation &loc, StringRef name);
/// \brief Get a string to suggest for zero-initialization of a type.
std::string
getFixItZeroInitializerForType(QualType T, SourceLocation Loc) const;
std::string getFixItZeroLiteralForType(QualType T, SourceLocation Loc) const;
/// \brief Calls \c Lexer::getLocForEndOfToken()
SourceLocation getLocForEndOfToken(SourceLocation Loc, unsigned Offset = 0);
/// \brief Retrieve the module loader associated with the preprocessor.
ModuleLoader &getModuleLoader() const;
void emitAndClearUnusedLocalTypedefWarnings();
void ActOnEndOfTranslationUnit();
void CheckDelegatingCtorCycles();
Scope *getScopeForContext(DeclContext *Ctx);
void PushFunctionScope();
void PushBlockScope(Scope *BlockScope, BlockDecl *Block);
sema::LambdaScopeInfo *PushLambdaScope();
/// \brief This is used to inform Sema what the current TemplateParameterDepth
/// is during Parsing. Currently it is used to pass on the depth
/// when parsing generic lambda 'auto' parameters.
void RecordParsingTemplateParameterDepth(unsigned Depth);
void PushCapturedRegionScope(Scope *RegionScope, CapturedDecl *CD,
RecordDecl *RD,
CapturedRegionKind K);
void
PopFunctionScopeInfo(const sema::AnalysisBasedWarnings::Policy *WP = nullptr,
const Decl *D = nullptr,
const BlockExpr *blkExpr = nullptr);
sema::FunctionScopeInfo *getCurFunction() const {
return FunctionScopes.back();
}
sema::FunctionScopeInfo *getEnclosingFunction() const {
if (FunctionScopes.empty())
return nullptr;
for (int e = FunctionScopes.size()-1; e >= 0; --e) {
if (isa<sema::BlockScopeInfo>(FunctionScopes[e]))
continue;
return FunctionScopes[e];
}
return nullptr;
}
template <typename ExprT>
void recordUseOfEvaluatedWeak(const ExprT *E, bool IsRead=true) {
if (!isUnevaluatedContext())
getCurFunction()->recordUseOfWeak(E, IsRead);
}
void PushCompoundScope();
void PopCompoundScope();
sema::CompoundScopeInfo &getCurCompoundScope() const;
bool hasAnyUnrecoverableErrorsInThisFunction() const;
/// \brief Retrieve the current block, if any.
sema::BlockScopeInfo *getCurBlock();
/// \brief Retrieve the current lambda scope info, if any.
sema::LambdaScopeInfo *getCurLambda();
/// \brief Retrieve the current generic lambda info, if any.
sema::LambdaScopeInfo *getCurGenericLambda();
/// \brief Retrieve the current captured region, if any.
sema::CapturedRegionScopeInfo *getCurCapturedRegion();
/// WeakTopLevelDeclDecls - access to \#pragma weak-generated Decls
SmallVectorImpl<Decl *> &WeakTopLevelDecls() { return WeakTopLevelDecl; }
void ActOnComment(SourceRange Comment);
//===--------------------------------------------------------------------===//
// Type Analysis / Processing: SemaType.cpp.
//
QualType BuildQualifiedType(QualType T, SourceLocation Loc, Qualifiers Qs,
const DeclSpec *DS = nullptr);
QualType BuildQualifiedType(QualType T, SourceLocation Loc, unsigned CVRA,
const DeclSpec *DS = nullptr);
QualType BuildPointerType(QualType T,
SourceLocation Loc, DeclarationName Entity);
QualType BuildReferenceType(QualType T, bool LValueRef,
SourceLocation Loc, DeclarationName Entity);
QualType BuildArrayType(QualType T, ArrayType::ArraySizeModifier ASM,
Expr *ArraySize, unsigned Quals,
SourceRange Brackets, DeclarationName Entity);
QualType BuildExtVectorType(QualType T, Expr *ArraySize,
SourceLocation AttrLoc);
bool CheckFunctionReturnType(QualType T, SourceLocation Loc);
/// \brief Build a function type.
///
/// This routine checks the function type according to C++ rules and
/// under the assumption that the result type and parameter types have
/// just been instantiated from a template. It therefore duplicates
/// some of the behavior of GetTypeForDeclarator, but in a much
/// simpler form that is only suitable for this narrow use case.
///
/// \param T The return type of the function.
///
/// \param ParamTypes The parameter types of the function. This array
/// will be modified to account for adjustments to the types of the
/// function parameters.
///
/// \param Loc The location of the entity whose type involves this
/// function type or, if there is no such entity, the location of the
/// type that will have function type.
///
/// \param Entity The name of the entity that involves the function
/// type, if known.
///
/// \param EPI Extra information about the function type. Usually this will
/// be taken from an existing function with the same prototype.
///
/// \returns A suitable function type, if there are no errors. The
/// unqualified type will always be a FunctionProtoType.
/// Otherwise, returns a NULL type.
QualType BuildFunctionType(QualType T,
MutableArrayRef<QualType> ParamTypes,
SourceLocation Loc, DeclarationName Entity,
const FunctionProtoType::ExtProtoInfo &EPI);
QualType BuildMemberPointerType(QualType T, QualType Class,
SourceLocation Loc,
DeclarationName Entity);
QualType BuildBlockPointerType(QualType T,
SourceLocation Loc, DeclarationName Entity);
QualType BuildParenType(QualType T);
QualType BuildAtomicType(QualType T, SourceLocation Loc);
QualType BuildPipeType(QualType T,
SourceLocation Loc);
TypeSourceInfo *GetTypeForDeclarator(Declarator &D, Scope *S);
TypeSourceInfo *GetTypeForDeclaratorCast(Declarator &D, QualType FromTy);
TypeSourceInfo *GetTypeSourceInfoForDeclarator(Declarator &D, QualType T,
TypeSourceInfo *ReturnTypeInfo);
/// \brief Package the given type and TSI into a ParsedType.
ParsedType CreateParsedType(QualType T, TypeSourceInfo *TInfo);
DeclarationNameInfo GetNameForDeclarator(Declarator &D);
DeclarationNameInfo GetNameFromUnqualifiedId(const UnqualifiedId &Name);
static QualType GetTypeFromParser(ParsedType Ty,
TypeSourceInfo **TInfo = nullptr);
CanThrowResult canThrow(const Expr *E);
const FunctionProtoType *ResolveExceptionSpec(SourceLocation Loc,
const FunctionProtoType *FPT);
void UpdateExceptionSpec(FunctionDecl *FD,
const FunctionProtoType::ExceptionSpecInfo &ESI);
bool CheckSpecifiedExceptionType(QualType &T, SourceRange Range);
bool CheckDistantExceptionSpec(QualType T);
bool CheckEquivalentExceptionSpec(FunctionDecl *Old, FunctionDecl *New);
bool CheckEquivalentExceptionSpec(
const FunctionProtoType *Old, SourceLocation OldLoc,
const FunctionProtoType *New, SourceLocation NewLoc);
bool CheckEquivalentExceptionSpec(
const PartialDiagnostic &DiagID, const PartialDiagnostic & NoteID,
const FunctionProtoType *Old, SourceLocation OldLoc,
const FunctionProtoType *New, SourceLocation NewLoc,
bool *MissingExceptionSpecification = nullptr,
bool *MissingEmptyExceptionSpecification = nullptr,
bool AllowNoexceptAllMatchWithNoSpec = false,
bool IsOperatorNew = false);
bool CheckExceptionSpecSubset(
const PartialDiagnostic &DiagID, const PartialDiagnostic & NoteID,
const FunctionProtoType *Superset, SourceLocation SuperLoc,
const FunctionProtoType *Subset, SourceLocation SubLoc);
bool CheckParamExceptionSpec(const PartialDiagnostic & NoteID,
const FunctionProtoType *Target, SourceLocation TargetLoc,
const FunctionProtoType *Source, SourceLocation SourceLoc);
TypeResult ActOnTypeName(Scope *S, Declarator &D);
/// \brief The parser has parsed the context-sensitive type 'instancetype'
/// in an Objective-C message declaration. Return the appropriate type.
ParsedType ActOnObjCInstanceType(SourceLocation Loc);
/// \brief Abstract class used to diagnose incomplete types.
struct TypeDiagnoser {
TypeDiagnoser() {}
virtual void diagnose(Sema &S, SourceLocation Loc, QualType T) = 0;
virtual ~TypeDiagnoser() {}
};
static int getPrintable(int I) { return I; }
static unsigned getPrintable(unsigned I) { return I; }
static bool getPrintable(bool B) { return B; }
static const char * getPrintable(const char *S) { return S; }
static StringRef getPrintable(StringRef S) { return S; }
static const std::string &getPrintable(const std::string &S) { return S; }
static const IdentifierInfo *getPrintable(const IdentifierInfo *II) {
return II;
}
static DeclarationName getPrintable(DeclarationName N) { return N; }
static QualType getPrintable(QualType T) { return T; }
static SourceRange getPrintable(SourceRange R) { return R; }
static SourceRange getPrintable(SourceLocation L) { return L; }
static SourceRange getPrintable(const Expr *E) { return E->getSourceRange(); }
static SourceRange getPrintable(TypeLoc TL) { return TL.getSourceRange();}
template <typename... Ts> class BoundTypeDiagnoser : public TypeDiagnoser {
unsigned DiagID;
std::tuple<const Ts &...> Args;
template <std::size_t... Is>
void emit(const SemaDiagnosticBuilder &DB,
llvm::index_sequence<Is...>) const {
// Apply all tuple elements to the builder in order.
bool Dummy[] = {false, (DB << getPrintable(std::get<Is>(Args)))...};
(void)Dummy;
}
public:
BoundTypeDiagnoser(unsigned DiagID, const Ts &...Args)
: TypeDiagnoser(), DiagID(DiagID), Args(Args...) {
assert(DiagID != 0 && "no diagnostic for type diagnoser");
}
void diagnose(Sema &S, SourceLocation Loc, QualType T) override {
const SemaDiagnosticBuilder &DB = S.Diag(Loc, DiagID);
emit(DB, llvm::index_sequence_for<Ts...>());
DB << T;
}
};
/// Do a check to make sure \p Name looks like a legal swift_name
/// attribute for the decl \p D. Raise a diagnostic if the name is invalid
/// for the given declaration.
///
/// For a function, this will validate a compound Swift name,
/// e.g. <code>init(foo:bar:baz:)</code> or <code>controllerForName(_:)</code>,
/// and the function will output the number of parameter names, and whether
/// this is a single-arg initializer.
///
/// For a type, enum constant, property, or variable declaration, this will
/// validate either a simple identifier, or a qualified
/// <code>context.identifier</code> name.
///
/// \returns true if the name is a valid swift name for \p D, false otherwise.
bool DiagnoseSwiftName(Decl *D, StringRef Name,
SourceLocation ArgLoc,
IdentifierInfo *AttrName);
private:
bool RequireCompleteTypeImpl(SourceLocation Loc, QualType T,
TypeDiagnoser *Diagnoser);
struct ModuleScope {
clang::Module *Module;
VisibleModuleSet OuterVisibleModules;
};
/// The modules we're currently parsing.
llvm::SmallVector<ModuleScope, 16> ModuleScopes;
VisibleModuleSet VisibleModules;
Module *CachedFakeTopLevelModule;
public:
/// \brief Get the module owning an entity.
Module *getOwningModule(Decl *Entity);
/// \brief Make a merged definition of an existing hidden definition \p ND
/// visible at the specified location.
void makeMergedDefinitionVisible(NamedDecl *ND, SourceLocation Loc);
bool isModuleVisible(Module *M) { return VisibleModules.isVisible(M); }
/// Determine whether a declaration is visible to name lookup.
bool isVisible(const NamedDecl *D) {
return !D->isHidden() || isVisibleSlow(D);
}
/// Determine whether any declaration of an entity is visible.
bool
hasVisibleDeclaration(const NamedDecl *D,
llvm::SmallVectorImpl<Module *> *Modules = nullptr) {
return isVisible(D) || hasVisibleDeclarationSlow(D, Modules);
}
bool hasVisibleDeclarationSlow(const NamedDecl *D,
llvm::SmallVectorImpl<Module *> *Modules);
bool hasVisibleMergedDefinition(NamedDecl *Def);
/// Determine if \p D has a visible definition. If not, suggest a declaration
/// that should be made visible to expose the definition.
bool hasVisibleDefinition(NamedDecl *D, NamedDecl **Suggested,
bool OnlyNeedComplete = false);
bool hasVisibleDefinition(const NamedDecl *D) {
NamedDecl *Hidden;
return hasVisibleDefinition(const_cast<NamedDecl*>(D), &Hidden);
}
/// Determine if the template parameter \p D has a visible default argument.
bool
hasVisibleDefaultArgument(const NamedDecl *D,
llvm::SmallVectorImpl<Module *> *Modules = nullptr);
/// Determine if there is a visible declaration of \p D that is a member
/// specialization declaration (as opposed to an instantiated declaration).
bool hasVisibleMemberSpecialization(
const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules = nullptr);
/// Determine if \p A and \p B are equivalent internal linkage declarations
/// from different modules, and thus an ambiguity error can be downgraded to
/// an extension warning.
bool isEquivalentInternalLinkageDeclaration(const NamedDecl *A,
const NamedDecl *B);
void diagnoseEquivalentInternalLinkageDeclarations(
SourceLocation Loc, const NamedDecl *D,
ArrayRef<const NamedDecl *> Equiv);
bool isCompleteType(SourceLocation Loc, QualType T) {
return !RequireCompleteTypeImpl(Loc, T, nullptr);
}
bool RequireCompleteType(SourceLocation Loc, QualType T,
TypeDiagnoser &Diagnoser);
bool RequireCompleteType(SourceLocation Loc, QualType T,
unsigned DiagID);
template <typename... Ts>
bool RequireCompleteType(SourceLocation Loc, QualType T, unsigned DiagID,
const Ts &...Args) {
BoundTypeDiagnoser<Ts...> Diagnoser(DiagID, Args...);
return RequireCompleteType(Loc, T, Diagnoser);
}
void completeExprArrayBound(Expr *E);
bool RequireCompleteExprType(Expr *E, TypeDiagnoser &Diagnoser);
bool RequireCompleteExprType(Expr *E, unsigned DiagID);
template <typename... Ts>
bool RequireCompleteExprType(Expr *E, unsigned DiagID, const Ts &...Args) {
BoundTypeDiagnoser<Ts...> Diagnoser(DiagID, Args...);
return RequireCompleteExprType(E, Diagnoser);
}
bool RequireLiteralType(SourceLocation Loc, QualType T,
TypeDiagnoser &Diagnoser);
bool RequireLiteralType(SourceLocation Loc, QualType T, unsigned DiagID);
template <typename... Ts>
bool RequireLiteralType(SourceLocation Loc, QualType T, unsigned DiagID,
const Ts &...Args) {
BoundTypeDiagnoser<Ts...> Diagnoser(DiagID, Args...);
return RequireLiteralType(Loc, T, Diagnoser);
}
QualType getElaboratedType(ElaboratedTypeKeyword Keyword,
const CXXScopeSpec &SS, QualType T);
QualType BuildTypeofExprType(Expr *E, SourceLocation Loc);
/// If AsUnevaluated is false, E is treated as though it were an evaluated
/// context, such as when building a type for decltype(auto).
QualType BuildDecltypeType(Expr *E, SourceLocation Loc,
bool AsUnevaluated = true);
QualType BuildUnaryTransformType(QualType BaseType,
UnaryTransformType::UTTKind UKind,
SourceLocation Loc);
//===--------------------------------------------------------------------===//
// Symbol table / Decl tracking callbacks: SemaDecl.cpp.
//
struct SkipBodyInfo {
SkipBodyInfo() : ShouldSkip(false), Previous(nullptr) {}
bool ShouldSkip;
NamedDecl *Previous;
};
/// List of decls defined in a function prototype. This contains EnumConstants
/// that incorrectly end up in translation unit scope because there is no
/// function to pin them on. ActOnFunctionDeclarator reads this list and patches
/// them into the FunctionDecl.
std::vector<NamedDecl*> DeclsInPrototypeScope;
DeclGroupPtrTy ConvertDeclToDeclGroup(Decl *Ptr, Decl *OwnedType = nullptr);
void DiagnoseUseOfUnimplementedSelectors();
bool isSimpleTypeSpecifier(tok::TokenKind Kind) const;
ParsedType getTypeName(const IdentifierInfo &II, SourceLocation NameLoc,
Scope *S, CXXScopeSpec *SS = nullptr,
bool isClassName = false, bool HasTrailingDot = false,
ParsedType ObjectType = nullptr,
bool IsCtorOrDtorName = false,
bool WantNontrivialTypeSourceInfo = false,
IdentifierInfo **CorrectedII = nullptr);
TypeSpecifierType isTagName(IdentifierInfo &II, Scope *S);
bool isMicrosoftMissingTypename(const CXXScopeSpec *SS, Scope *S);
void DiagnoseUnknownTypeName(IdentifierInfo *&II,
SourceLocation IILoc,
Scope *S,
CXXScopeSpec *SS,
ParsedType &SuggestedType,
bool AllowClassTemplates = false);
/// Attempt to behave like MSVC in situations where lookup of an unqualified
/// type name has failed in a dependent context. In these situations, we
/// automatically form a DependentTypeName that will retry lookup in a related
/// scope during instantiation.
ParsedType ActOnMSVCUnknownTypeName(const IdentifierInfo &II,
SourceLocation NameLoc,
bool IsTemplateTypeArg);
/// \brief Describes the result of the name lookup and resolution performed
/// by \c ClassifyName().
enum NameClassificationKind {
NC_Unknown,
NC_Error,
NC_Keyword,
NC_Type,
NC_Expression,
NC_NestedNameSpecifier,
NC_TypeTemplate,
NC_VarTemplate,
NC_FunctionTemplate
};
class NameClassification {
NameClassificationKind Kind;
ExprResult Expr;
TemplateName Template;
ParsedType Type;
const IdentifierInfo *Keyword;
explicit NameClassification(NameClassificationKind Kind) : Kind(Kind) {}
public:
NameClassification(ExprResult Expr) : Kind(NC_Expression), Expr(Expr) {}
NameClassification(ParsedType Type) : Kind(NC_Type), Type(Type) {}
NameClassification(const IdentifierInfo *Keyword)
: Kind(NC_Keyword), Keyword(Keyword) { }
static NameClassification Error() {
return NameClassification(NC_Error);
}
static NameClassification Unknown() {
return NameClassification(NC_Unknown);
}
static NameClassification NestedNameSpecifier() {
return NameClassification(NC_NestedNameSpecifier);
}
static NameClassification TypeTemplate(TemplateName Name) {
NameClassification Result(NC_TypeTemplate);
Result.Template = Name;
return Result;
}
static NameClassification VarTemplate(TemplateName Name) {
NameClassification Result(NC_VarTemplate);
Result.Template = Name;
return Result;
}
static NameClassification FunctionTemplate(TemplateName Name) {
NameClassification Result(NC_FunctionTemplate);
Result.Template = Name;
return Result;
}
NameClassificationKind getKind() const { return Kind; }
ParsedType getType() const {
assert(Kind == NC_Type);
return Type;
}
ExprResult getExpression() const {
assert(Kind == NC_Expression);
return Expr;
}
TemplateName getTemplateName() const {
assert(Kind == NC_TypeTemplate || Kind == NC_FunctionTemplate ||
Kind == NC_VarTemplate);
return Template;
}
TemplateNameKind getTemplateNameKind() const {
switch (Kind) {
case NC_TypeTemplate:
return TNK_Type_template;
case NC_FunctionTemplate:
return TNK_Function_template;
case NC_VarTemplate:
return TNK_Var_template;
default:
llvm_unreachable("unsupported name classification.");
}
}
};
/// \brief Perform name lookup on the given name, classifying it based on
/// the results of name lookup and the following token.
///
/// This routine is used by the parser to resolve identifiers and help direct
/// parsing. When the identifier cannot be found, this routine will attempt
/// to correct the typo and classify based on the resulting name.
///
/// \param S The scope in which we're performing name lookup.
///
/// \param SS The nested-name-specifier that precedes the name.
///
/// \param Name The identifier. If typo correction finds an alternative name,
/// this pointer parameter will be updated accordingly.
///
/// \param NameLoc The location of the identifier.
///
/// \param NextToken The token following the identifier. Used to help
/// disambiguate the name.
///
/// \param IsAddressOfOperand True if this name is the operand of a unary
/// address of ('&') expression, assuming it is classified as an
/// expression.
///
/// \param CCC The correction callback, if typo correction is desired.
NameClassification
ClassifyName(Scope *S, CXXScopeSpec &SS, IdentifierInfo *&Name,
SourceLocation NameLoc, const Token &NextToken,
bool IsAddressOfOperand,
std::unique_ptr<CorrectionCandidateCallback> CCC = nullptr);
Decl *ActOnDeclarator(Scope *S, Declarator &D);
NamedDecl *HandleDeclarator(Scope *S, Declarator &D,
MultiTemplateParamsArg TemplateParameterLists);
void RegisterLocallyScopedExternCDecl(NamedDecl *ND, Scope *S);
bool DiagnoseClassNameShadow(DeclContext *DC, DeclarationNameInfo Info);
bool diagnoseQualifiedDeclaration(CXXScopeSpec &SS, DeclContext *DC,
DeclarationName Name,
SourceLocation Loc);
void
diagnoseIgnoredQualifiers(unsigned DiagID, unsigned Quals,
SourceLocation FallbackLoc,
SourceLocation ConstQualLoc = SourceLocation(),
SourceLocation VolatileQualLoc = SourceLocation(),
SourceLocation RestrictQualLoc = SourceLocation(),
SourceLocation AtomicQualLoc = SourceLocation(),
SourceLocation UnalignedQualLoc = SourceLocation());
static bool adjustContextForLocalExternDecl(DeclContext *&DC);
void DiagnoseFunctionSpecifiers(const DeclSpec &DS);
NamedDecl *getShadowedDeclaration(const VarDecl *D, const LookupResult &R);
void CheckShadow(VarDecl *D, NamedDecl *ShadowedDecl, const LookupResult &R);
void CheckShadow(Scope *S, VarDecl *D);
/// Warn if 'E', which is an expression that is about to be modified, refers
/// to a shadowing declaration.
void CheckShadowingDeclModification(Expr *E, SourceLocation Loc);
void DiagnoseShadowingLambdaDecls(const sema::LambdaScopeInfo *LSI);
private:
/// Map of current shadowing declarations to shadowed declarations. Warn if
/// it looks like the user is trying to modify the shadowing declaration.
llvm::DenseMap<const NamedDecl *, const NamedDecl *> ShadowingDecls;
public:
void CheckCastAlign(Expr *Op, QualType T, SourceRange TRange);
void handleTagNumbering(const TagDecl *Tag, Scope *TagScope);
void setTagNameForLinkagePurposes(TagDecl *TagFromDeclSpec,
TypedefNameDecl *NewTD);
void CheckTypedefForVariablyModifiedType(Scope *S, TypedefNameDecl *D);
NamedDecl* ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
TypeSourceInfo *TInfo,
LookupResult &Previous);
NamedDecl* ActOnTypedefNameDecl(Scope* S, DeclContext* DC, TypedefNameDecl *D,
LookupResult &Previous, bool &Redeclaration);
NamedDecl *ActOnVariableDeclarator(Scope *S, Declarator &D, DeclContext *DC,
TypeSourceInfo *TInfo,
LookupResult &Previous,
MultiTemplateParamsArg TemplateParamLists,
bool &AddToScope,
ArrayRef<BindingDecl *> Bindings = None);
NamedDecl *
ActOnDecompositionDeclarator(Scope *S, Declarator &D,
MultiTemplateParamsArg TemplateParamLists);
// Returns true if the variable declaration is a redeclaration
bool CheckVariableDeclaration(VarDecl *NewVD, LookupResult &Previous);
void CheckVariableDeclarationType(VarDecl *NewVD);
void CheckCompleteVariableDeclaration(VarDecl *VD);
void CheckCompleteDecompositionDeclaration(DecompositionDecl *DD);
void MaybeSuggestAddingStaticToDecl(const FunctionDecl *D);
NamedDecl* ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
TypeSourceInfo *TInfo,
LookupResult &Previous,
MultiTemplateParamsArg TemplateParamLists,
bool &AddToScope);
bool AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD);
bool CheckConstexprFunctionDecl(const FunctionDecl *FD);
bool CheckConstexprFunctionBody(const FunctionDecl *FD, Stmt *Body);
void DiagnoseHiddenVirtualMethods(CXXMethodDecl *MD);
void FindHiddenVirtualMethods(CXXMethodDecl *MD,
SmallVectorImpl<CXXMethodDecl*> &OverloadedMethods);
void NoteHiddenVirtualMethods(CXXMethodDecl *MD,
SmallVectorImpl<CXXMethodDecl*> &OverloadedMethods);
// Returns true if the function declaration is a redeclaration
bool CheckFunctionDeclaration(Scope *S,
FunctionDecl *NewFD, LookupResult &Previous,
bool IsExplicitSpecialization);
void CheckMain(FunctionDecl *FD, const DeclSpec &D);
void CheckMSVCRTEntryPoint(FunctionDecl *FD);
Decl *ActOnParamDeclarator(Scope *S, Declarator &D);
ParmVarDecl *BuildParmVarDeclForTypedef(DeclContext *DC,
SourceLocation Loc,
QualType T);
QualType adjustParameterTypeForObjCAutoRefCount(QualType T,
SourceLocation Loc);
ParmVarDecl *CheckParameter(DeclContext *DC, SourceLocation StartLoc,
SourceLocation NameLoc, IdentifierInfo *Name,
QualType T, TypeSourceInfo *TSInfo,
StorageClass SC);
void ActOnParamDefaultArgument(Decl *param,
SourceLocation EqualLoc,
Expr *defarg);
void ActOnParamUnparsedDefaultArgument(Decl *param,
SourceLocation EqualLoc,
SourceLocation ArgLoc);
void ActOnParamDefaultArgumentError(Decl *param, SourceLocation EqualLoc);
bool SetParamDefaultArgument(ParmVarDecl *Param, Expr *DefaultArg,
SourceLocation EqualLoc);
void AddInitializerToDecl(Decl *dcl, Expr *init, bool DirectInit,
bool TypeMayContainAuto);
void ActOnUninitializedDecl(Decl *dcl, bool TypeMayContainAuto);
void ActOnInitializerError(Decl *Dcl);
void ActOnPureSpecifier(Decl *D, SourceLocation PureSpecLoc);
void ActOnCXXForRangeDecl(Decl *D);
StmtResult ActOnCXXForRangeIdentifier(Scope *S, SourceLocation IdentLoc,
IdentifierInfo *Ident,
ParsedAttributes &Attrs,
SourceLocation AttrEnd);
void SetDeclDeleted(Decl *dcl, SourceLocation DelLoc);
void SetDeclDefaulted(Decl *dcl, SourceLocation DefaultLoc);
void FinalizeDeclaration(Decl *D);
DeclGroupPtrTy FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
ArrayRef<Decl *> Group);
DeclGroupPtrTy BuildDeclaratorGroup(MutableArrayRef<Decl *> Group,
bool TypeMayContainAuto = true);
/// Should be called on all declarations that might have attached
/// documentation comments.
void ActOnDocumentableDecl(Decl *D);
void ActOnDocumentableDecls(ArrayRef<Decl *> Group);
void ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
SourceLocation LocAfterDecls);
void CheckForFunctionRedefinition(
FunctionDecl *FD, const FunctionDecl *EffectiveDefinition = nullptr,
SkipBodyInfo *SkipBody = nullptr);
Decl *ActOnStartOfFunctionDef(Scope *S, Declarator &D,
MultiTemplateParamsArg TemplateParamLists,
SkipBodyInfo *SkipBody = nullptr);
Decl *ActOnStartOfFunctionDef(Scope *S, Decl *D,
SkipBodyInfo *SkipBody = nullptr);
void ActOnStartOfObjCMethodDef(Scope *S, Decl *D);
bool isObjCMethodDecl(Decl *D) {
return D && isa<ObjCMethodDecl>(D);
}
/// \brief Determine whether we can delay parsing the body of a function or
/// function template until it is used, assuming we don't care about emitting
/// code for that function.
///
/// This will be \c false if we may need the body of the function in the
/// middle of parsing an expression (where it's impractical to switch to
/// parsing a different function), for instance, if it's constexpr in C++11
/// or has an 'auto' return type in C++14. These cases are essentially bugs.
bool canDelayFunctionBody(const Declarator &D);
/// \brief Determine whether we can skip parsing the body of a function
/// definition, assuming we don't care about analyzing its body or emitting
/// code for that function.
///
/// This will be \c false only if we may need the body of the function in
/// order to parse the rest of the program (for instance, if it is
/// \c constexpr in C++11 or has an 'auto' return type in C++14).
bool canSkipFunctionBody(Decl *D);
void computeNRVO(Stmt *Body, sema::FunctionScopeInfo *Scope);
Decl *ActOnFinishFunctionBody(Decl *Decl, Stmt *Body);
Decl *ActOnFinishFunctionBody(Decl *Decl, Stmt *Body, bool IsInstantiation);
Decl *ActOnSkippedFunctionBody(Decl *Decl);
void ActOnFinishInlineFunctionDef(FunctionDecl *D);
/// ActOnFinishDelayedAttribute - Invoked when we have finished parsing an
/// attribute for which parsing is delayed.
void ActOnFinishDelayedAttribute(Scope *S, Decl *D, ParsedAttributes &Attrs);
/// \brief Diagnose any unused parameters in the given sequence of
/// ParmVarDecl pointers.
void DiagnoseUnusedParameters(ArrayRef<ParmVarDecl *> Parameters);
/// \brief Diagnose whether the size of parameters or return value of a
/// function or obj-c method definition is pass-by-value and larger than a
/// specified threshold.
void
DiagnoseSizeOfParametersAndReturnValue(ArrayRef<ParmVarDecl *> Parameters,
QualType ReturnTy, NamedDecl *D);
void DiagnoseInvalidJumps(Stmt *Body);
Decl *ActOnFileScopeAsmDecl(Expr *expr,
SourceLocation AsmLoc,
SourceLocation RParenLoc);
/// \brief Handle a C++11 empty-declaration and attribute-declaration.
Decl *ActOnEmptyDeclaration(Scope *S,
AttributeList *AttrList,
SourceLocation SemiLoc);
/// \brief The parser has processed a module import declaration.
///
/// \param AtLoc The location of the '@' symbol, if any.
///
/// \param ImportLoc The location of the 'import' keyword.
///
/// \param Path The module access path.
DeclResult ActOnModuleImport(SourceLocation AtLoc, SourceLocation ImportLoc,
ModuleIdPath Path);
/// \brief The parser has processed a module import translated from a
/// #include or similar preprocessing directive.
void ActOnModuleInclude(SourceLocation DirectiveLoc, Module *Mod);
void BuildModuleInclude(SourceLocation DirectiveLoc, Module *Mod);
/// \brief The parsed has entered a submodule.
void ActOnModuleBegin(SourceLocation DirectiveLoc, Module *Mod);
/// \brief The parser has left a submodule.
void ActOnModuleEnd(SourceLocation DirectiveLoc, Module *Mod);
/// \brief Check if module import may be found in the current context,
/// emit error if not.
void diagnoseMisplacedModuleImport(Module *M, SourceLocation ImportLoc);
/// \brief Create an implicit import of the given module at the given
/// source location, for error recovery, if possible.
///
/// This routine is typically used when an entity found by name lookup
/// is actually hidden within a module that we know about but the user
/// has forgotten to import.
void createImplicitModuleImportForErrorRecovery(SourceLocation Loc,
Module *Mod);
/// Kinds of missing import. Note, the values of these enumerators correspond
/// to %select values in diagnostics.
enum class MissingImportKind {
Declaration,
Definition,
DefaultArgument,
ExplicitSpecialization,
PartialSpecialization
};
/// \brief Diagnose that the specified declaration needs to be visible but
/// isn't, and suggest a module import that would resolve the problem.
void diagnoseMissingImport(SourceLocation Loc, NamedDecl *Decl,
MissingImportKind MIK, bool Recover = true);
void diagnoseMissingImport(SourceLocation Loc, NamedDecl *Decl,
SourceLocation DeclLoc, ArrayRef<Module *> Modules,
MissingImportKind MIK, bool Recover);
/// \brief We've found a use of a templated declaration that would trigger an
/// implicit instantiation. Check that any relevant explicit specializations
/// and partial specializations are visible, and diagnose if not.
void checkSpecializationVisibility(SourceLocation Loc, NamedDecl *Spec);
/// \brief We've found a use of a template specialization that would select a
/// partial specialization. Check that the partial specialization is visible,
/// and diagnose if not.
void checkPartialSpecializationVisibility(SourceLocation Loc,
NamedDecl *Spec);
/// \brief Retrieve a suitable printing policy.
PrintingPolicy getPrintingPolicy() const {
return getPrintingPolicy(Context, PP);
}
/// \brief Retrieve a suitable printing policy.
static PrintingPolicy getPrintingPolicy(const ASTContext &Ctx,
const Preprocessor &PP);
/// Scope actions.
void ActOnPopScope(SourceLocation Loc, Scope *S);
void ActOnTranslationUnitScope(Scope *S);
Decl *ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS, DeclSpec &DS,
RecordDecl *&AnonRecord);
Decl *ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS, DeclSpec &DS,
MultiTemplateParamsArg TemplateParams,
bool IsExplicitInstantiation,
RecordDecl *&AnonRecord);
Decl *BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
AccessSpecifier AS,
RecordDecl *Record,
const PrintingPolicy &Policy);
Decl *BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS,
RecordDecl *Record);
bool isAcceptableTagRedeclaration(const TagDecl *Previous,
TagTypeKind NewTag, bool isDefinition,
SourceLocation NewTagLoc,
const IdentifierInfo *Name);
enum TagUseKind {
TUK_Reference, // Reference to a tag: 'struct foo *X;'
TUK_Declaration, // Fwd decl of a tag: 'struct foo;'
TUK_Definition, // Definition of a tag: 'struct foo { int X; } Y;'
TUK_Friend // Friend declaration: 'friend struct foo;'
};
Decl *ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
SourceLocation KWLoc, CXXScopeSpec &SS,
IdentifierInfo *Name, SourceLocation NameLoc,
AttributeList *Attr, AccessSpecifier AS,
SourceLocation ModulePrivateLoc,
MultiTemplateParamsArg TemplateParameterLists,
bool &OwnedDecl, bool &IsDependent,
SourceLocation ScopedEnumKWLoc,
bool ScopedEnumUsesClassTag, TypeResult UnderlyingType,
bool IsTypeSpecifier, SkipBodyInfo *SkipBody = nullptr);
Decl *ActOnTemplatedFriendTag(Scope *S, SourceLocation FriendLoc,
unsigned TagSpec, SourceLocation TagLoc,
CXXScopeSpec &SS,
IdentifierInfo *Name, SourceLocation NameLoc,
AttributeList *Attr,
MultiTemplateParamsArg TempParamLists);
TypeResult ActOnDependentTag(Scope *S,
unsigned TagSpec,
TagUseKind TUK,
const CXXScopeSpec &SS,
IdentifierInfo *Name,
SourceLocation TagLoc,
SourceLocation NameLoc);
void ActOnDefs(Scope *S, Decl *TagD, SourceLocation DeclStart,
IdentifierInfo *ClassName,
SmallVectorImpl<Decl *> &Decls);
Decl *ActOnField(Scope *S, Decl *TagD, SourceLocation DeclStart,
Declarator &D, Expr *BitfieldWidth);
FieldDecl *HandleField(Scope *S, RecordDecl *TagD, SourceLocation DeclStart,
Declarator &D, Expr *BitfieldWidth,
InClassInitStyle InitStyle,
AccessSpecifier AS);
MSPropertyDecl *HandleMSProperty(Scope *S, RecordDecl *TagD,
SourceLocation DeclStart,
Declarator &D, Expr *BitfieldWidth,
InClassInitStyle InitStyle,
AccessSpecifier AS,
AttributeList *MSPropertyAttr);
FieldDecl *CheckFieldDecl(DeclarationName Name, QualType T,
TypeSourceInfo *TInfo,
RecordDecl *Record, SourceLocation Loc,
bool Mutable, Expr *BitfieldWidth,
InClassInitStyle InitStyle,
SourceLocation TSSL,
AccessSpecifier AS, NamedDecl *PrevDecl,
Declarator *D = nullptr);
bool CheckNontrivialField(FieldDecl *FD);
void DiagnoseNontrivial(const CXXRecordDecl *Record, CXXSpecialMember CSM);
bool SpecialMemberIsTrivial(CXXMethodDecl *MD, CXXSpecialMember CSM,
bool Diagnose = false);
CXXSpecialMember getSpecialMember(const CXXMethodDecl *MD);
void ActOnLastBitfield(SourceLocation DeclStart,
SmallVectorImpl<Decl *> &AllIvarDecls);
Decl *ActOnIvar(Scope *S, SourceLocation DeclStart,
Declarator &D, Expr *BitfieldWidth,
tok::ObjCKeywordKind visibility);
// This is used for both record definitions and ObjC interface declarations.
void ActOnFields(Scope* S, SourceLocation RecLoc, Decl *TagDecl,
ArrayRef<Decl *> Fields,
SourceLocation LBrac, SourceLocation RBrac,
AttributeList *AttrList);
/// ActOnTagStartDefinition - Invoked when we have entered the
/// scope of a tag's definition (e.g., for an enumeration, class,
/// struct, or union).
void ActOnTagStartDefinition(Scope *S, Decl *TagDecl);
typedef void *SkippedDefinitionContext;
/// \brief Invoked when we enter a tag definition that we're skipping.
SkippedDefinitionContext ActOnTagStartSkippedDefinition(Scope *S, Decl *TD);
Decl *ActOnObjCContainerStartDefinition(Decl *IDecl);
/// ActOnStartCXXMemberDeclarations - Invoked when we have parsed a
/// C++ record definition's base-specifiers clause and are starting its
/// member declarations.
void ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagDecl,
SourceLocation FinalLoc,
bool IsFinalSpelledSealed,
SourceLocation LBraceLoc);
/// ActOnTagFinishDefinition - Invoked once we have finished parsing
/// the definition of a tag (enumeration, class, struct, or union).
void ActOnTagFinishDefinition(Scope *S, Decl *TagDecl,
SourceRange BraceRange);
void ActOnTagFinishSkippedDefinition(SkippedDefinitionContext Context);
void ActOnObjCContainerFinishDefinition();
/// \brief Invoked when we must temporarily exit the objective-c container
/// scope for parsing/looking-up C constructs.
///
/// Must be followed by a call to \see ActOnObjCReenterContainerContext
void ActOnObjCTemporaryExitContainerContext(DeclContext *DC);
void ActOnObjCReenterContainerContext(DeclContext *DC);
/// ActOnTagDefinitionError - Invoked when there was an unrecoverable
/// error parsing the definition of a tag.
void ActOnTagDefinitionError(Scope *S, Decl *TagDecl);
EnumConstantDecl *CheckEnumConstant(EnumDecl *Enum,
EnumConstantDecl *LastEnumConst,
SourceLocation IdLoc,
IdentifierInfo *Id,
Expr *val);
bool CheckEnumUnderlyingType(TypeSourceInfo *TI);
bool CheckEnumRedeclaration(SourceLocation EnumLoc, bool IsScoped,
QualType EnumUnderlyingTy,
bool EnumUnderlyingIsImplicit,
const EnumDecl *Prev);
/// Determine whether the body of an anonymous enumeration should be skipped.
/// \param II The name of the first enumerator.
SkipBodyInfo shouldSkipAnonEnumBody(Scope *S, IdentifierInfo *II,
SourceLocation IILoc);
Decl *ActOnEnumConstant(Scope *S, Decl *EnumDecl, Decl *LastEnumConstant,
SourceLocation IdLoc, IdentifierInfo *Id,
AttributeList *Attrs,
SourceLocation EqualLoc, Expr *Val);
void ActOnEnumBody(SourceLocation EnumLoc, SourceRange BraceRange,
Decl *EnumDecl,
ArrayRef<Decl *> Elements,
Scope *S, AttributeList *Attr);
DeclContext *getContainingDC(DeclContext *DC);
/// Set the current declaration context until it gets popped.
void PushDeclContext(Scope *S, DeclContext *DC);
void PopDeclContext();
/// EnterDeclaratorContext - Used when we must lookup names in the context
/// of a declarator's nested name specifier.
void EnterDeclaratorContext(Scope *S, DeclContext *DC);
void ExitDeclaratorContext(Scope *S);
/// Push the parameters of D, which must be a function, into scope.
void ActOnReenterFunctionContext(Scope* S, Decl* D);
void ActOnExitFunctionContext();
DeclContext *getFunctionLevelDeclContext();
/// getCurFunctionDecl - If inside of a function body, this returns a pointer
/// to the function decl for the function being parsed. If we're currently
/// in a 'block', this returns the containing context.
FunctionDecl *getCurFunctionDecl();
/// getCurMethodDecl - If inside of a method body, this returns a pointer to
/// the method decl for the method being parsed. If we're currently
/// in a 'block', this returns the containing context.
ObjCMethodDecl *getCurMethodDecl();
/// getCurFunctionOrMethodDecl - Return the Decl for the current ObjC method
/// or C function we're in, otherwise return null. If we're currently
/// in a 'block', this returns the containing context.
NamedDecl *getCurFunctionOrMethodDecl();
/// Add this decl to the scope shadowed decl chains.
void PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext = true);
/// \brief Make the given externally-produced declaration visible at the
/// top level scope.
///
/// \param D The externally-produced declaration to push.
///
/// \param Name The name of the externally-produced declaration.
void pushExternalDeclIntoScope(NamedDecl *D, DeclarationName Name);
/// isDeclInScope - If 'Ctx' is a function/method, isDeclInScope returns true
/// if 'D' is in Scope 'S', otherwise 'S' is ignored and isDeclInScope returns
/// true if 'D' belongs to the given declaration context.
///
/// \param AllowInlineNamespace If \c true, allow the declaration to be in the
/// enclosing namespace set of the context, rather than contained
/// directly within it.
bool isDeclInScope(NamedDecl *D, DeclContext *Ctx, Scope *S = nullptr,
bool AllowInlineNamespace = false);
/// Finds the scope corresponding to the given decl context, if it
/// happens to be an enclosing scope. Otherwise return NULL.
static Scope *getScopeForDeclContext(Scope *S, DeclContext *DC);
/// Subroutines of ActOnDeclarator().
TypedefDecl *ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
TypeSourceInfo *TInfo);
bool isIncompatibleTypedef(TypeDecl *Old, TypedefNameDecl *New);
/// \brief Describes the kind of merge to perform for availability
/// attributes (including "deprecated", "unavailable", and "availability").
enum AvailabilityMergeKind {
/// \brief Don't merge availability attributes at all.
AMK_None,
/// \brief Merge availability attributes for a redeclaration, which requires
/// an exact match.
AMK_Redeclaration,
/// \brief Merge availability attributes for an override, which requires
/// an exact match or a weakening of constraints.
AMK_Override,
/// \brief Merge availability attributes for an implementation of
/// a protocol requirement.
AMK_ProtocolImplementation,
};
/// Attribute merging methods. Return true if a new attribute was added.
AvailabilityAttr *mergeAvailabilityAttr(NamedDecl *D, SourceRange Range,
IdentifierInfo *Platform,
bool Implicit,
VersionTuple Introduced,
VersionTuple Deprecated,
VersionTuple Obsoleted,
bool IsUnavailable,
StringRef Message,
bool IsStrict, StringRef Replacement,
AvailabilityMergeKind AMK,
unsigned AttrSpellingListIndex);
TypeVisibilityAttr *mergeTypeVisibilityAttr(Decl *D, SourceRange Range,
TypeVisibilityAttr::VisibilityType Vis,
unsigned AttrSpellingListIndex);
VisibilityAttr *mergeVisibilityAttr(Decl *D, SourceRange Range,
VisibilityAttr::VisibilityType Vis,
unsigned AttrSpellingListIndex);
DLLImportAttr *mergeDLLImportAttr(Decl *D, SourceRange Range,
unsigned AttrSpellingListIndex);
DLLExportAttr *mergeDLLExportAttr(Decl *D, SourceRange Range,
unsigned AttrSpellingListIndex);
MSInheritanceAttr *
mergeMSInheritanceAttr(Decl *D, SourceRange Range, bool BestCase,
unsigned AttrSpellingListIndex,
MSInheritanceAttr::Spelling SemanticSpelling);
FormatAttr *mergeFormatAttr(Decl *D, SourceRange Range,
IdentifierInfo *Format, int FormatIdx,
int FirstArg, unsigned AttrSpellingListIndex);
SectionAttr *mergeSectionAttr(Decl *D, SourceRange Range, StringRef Name,
unsigned AttrSpellingListIndex);
AlwaysInlineAttr *mergeAlwaysInlineAttr(Decl *D, SourceRange Range,
IdentifierInfo *Ident,
unsigned AttrSpellingListIndex);
MinSizeAttr *mergeMinSizeAttr(Decl *D, SourceRange Range,
unsigned AttrSpellingListIndex);
OptimizeNoneAttr *mergeOptimizeNoneAttr(Decl *D, SourceRange Range,
unsigned AttrSpellingListIndex);
SwiftNameAttr *mergeSwiftNameAttr(Decl *D, SourceRange Range,
StringRef Name, bool Override,
unsigned AttrSpellingListIndex);
InternalLinkageAttr *mergeInternalLinkageAttr(Decl *D, SourceRange Range,
IdentifierInfo *Ident,
unsigned AttrSpellingListIndex);
CommonAttr *mergeCommonAttr(Decl *D, SourceRange Range, IdentifierInfo *Ident,
unsigned AttrSpellingListIndex);
void mergeDeclAttributes(NamedDecl *New, Decl *Old,
AvailabilityMergeKind AMK = AMK_Redeclaration);
void MergeTypedefNameDecl(Scope *S, TypedefNameDecl *New,
LookupResult &OldDecls);
bool MergeFunctionDecl(FunctionDecl *New, NamedDecl *&Old, Scope *S,
bool MergeTypeWithOld);
bool MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old,
Scope *S, bool MergeTypeWithOld);
void mergeObjCMethodDecls(ObjCMethodDecl *New, ObjCMethodDecl *Old);
void MergeVarDecl(VarDecl *New, LookupResult &Previous);
void MergeVarDeclTypes(VarDecl *New, VarDecl *Old, bool MergeTypeWithOld);
void MergeVarDeclExceptionSpecs(VarDecl *New, VarDecl *Old);
bool checkVarDeclRedefinition(VarDecl *OldDefn, VarDecl *NewDefn);
void diagnoseRedefinition(SourceLocation Old, SourceLocation New);
bool MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old, Scope *S);
// AssignmentAction - This is used by all the assignment diagnostic functions
// to represent what is actually causing the operation
enum AssignmentAction {
AA_Assigning,
AA_Passing,
AA_Returning,
AA_Converting,
AA_Initializing,
AA_Sending,
AA_Casting,
AA_Passing_CFAudited
};
/// C++ Overloading.
enum OverloadKind {
/// This is a legitimate overload: the existing declarations are
/// functions or function templates with different signatures.
Ovl_Overload,
/// This is not an overload because the signature exactly matches
/// an existing declaration.
Ovl_Match,
/// This is not an overload because the lookup results contain a
/// non-function.
Ovl_NonFunction
};
OverloadKind CheckOverload(Scope *S,
FunctionDecl *New,
const LookupResult &OldDecls,
NamedDecl *&OldDecl,
bool IsForUsingDecl);
bool IsOverload(FunctionDecl *New, FunctionDecl *Old, bool IsForUsingDecl,
bool ConsiderCudaAttrs = true);
/// \brief Checks availability of the function depending on the current
/// function context.Inside an unavailable function,unavailability is ignored.
///
/// \returns true if \p FD is unavailable and current context is inside
/// an available function, false otherwise.
bool isFunctionConsideredUnavailable(FunctionDecl *FD);
ImplicitConversionSequence
TryImplicitConversion(Expr *From, QualType ToType,
bool SuppressUserConversions,
bool AllowExplicit,
bool InOverloadResolution,
bool CStyle,
bool AllowObjCWritebackConversion);
bool IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType);
bool IsFloatingPointPromotion(QualType FromType, QualType ToType);
bool IsComplexPromotion(QualType FromType, QualType ToType);
bool IsPointerConversion(Expr *From, QualType FromType, QualType ToType,
bool InOverloadResolution,
QualType& ConvertedType, bool &IncompatibleObjC);
bool isObjCPointerConversion(QualType FromType, QualType ToType,
QualType& ConvertedType, bool &IncompatibleObjC);
bool isObjCWritebackConversion(QualType FromType, QualType ToType,
QualType &ConvertedType);
bool IsBlockPointerConversion(QualType FromType, QualType ToType,
QualType& ConvertedType);
bool FunctionParamTypesAreEqual(const FunctionProtoType *OldType,
const FunctionProtoType *NewType,
unsigned *ArgPos = nullptr);
void HandleFunctionTypeMismatch(PartialDiagnostic &PDiag,
QualType FromType, QualType ToType);
void maybeExtendBlockObject(ExprResult &E);
CastKind PrepareCastToObjCObjectPointer(ExprResult &E);
bool CheckPointerConversion(Expr *From, QualType ToType,
CastKind &Kind,
CXXCastPath& BasePath,
bool IgnoreBaseAccess,
bool Diagnose = true);
bool IsMemberPointerConversion(Expr *From, QualType FromType, QualType ToType,
bool InOverloadResolution,
QualType &ConvertedType);
bool CheckMemberPointerConversion(Expr *From, QualType ToType,
CastKind &Kind,
CXXCastPath &BasePath,
bool IgnoreBaseAccess);
bool IsQualificationConversion(QualType FromType, QualType ToType,
bool CStyle, bool &ObjCLifetimeConversion);
bool IsNoReturnConversion(QualType FromType, QualType ToType,
QualType &ResultTy);
bool DiagnoseMultipleUserDefinedConversion(Expr *From, QualType ToType);
bool isSameOrCompatibleFunctionType(CanQualType Param, CanQualType Arg);
ExprResult PerformMoveOrCopyInitialization(const InitializedEntity &Entity,
const VarDecl *NRVOCandidate,
QualType ResultType,
Expr *Value,
bool AllowNRVO = true);
bool CanPerformCopyInitialization(const InitializedEntity &Entity,
ExprResult Init);
ExprResult PerformCopyInitialization(const InitializedEntity &Entity,
SourceLocation EqualLoc,
ExprResult Init,
bool TopLevelOfInitList = false,
bool AllowExplicit = false);
ExprResult PerformObjectArgumentInitialization(Expr *From,
NestedNameSpecifier *Qualifier,
NamedDecl *FoundDecl,
CXXMethodDecl *Method);
ExprResult PerformContextuallyConvertToBool(Expr *From);
ExprResult PerformContextuallyConvertToObjCPointer(Expr *From);
/// Contexts in which a converted constant expression is required.
enum CCEKind {
CCEK_CaseValue, ///< Expression in a case label.
CCEK_Enumerator, ///< Enumerator value with fixed underlying type.
CCEK_TemplateArg, ///< Value of a non-type template parameter.
CCEK_NewExpr, ///< Constant expression in a noptr-new-declarator.
CCEK_ConstexprIf ///< Condition in a constexpr if statement.
};
ExprResult CheckConvertedConstantExpression(Expr *From, QualType T,
llvm::APSInt &Value, CCEKind CCE);
ExprResult CheckConvertedConstantExpression(Expr *From, QualType T,
APValue &Value, CCEKind CCE);
/// \brief Abstract base class used to perform a contextual implicit
/// conversion from an expression to any type passing a filter.
class ContextualImplicitConverter {
public:
bool Suppress;
bool SuppressConversion;
ContextualImplicitConverter(bool Suppress = false,
bool SuppressConversion = false)
: Suppress(Suppress), SuppressConversion(SuppressConversion) {}
/// \brief Determine whether the specified type is a valid destination type
/// for this conversion.
virtual bool match(QualType T) = 0;
/// \brief Emits a diagnostic complaining that the expression does not have
/// integral or enumeration type.
virtual SemaDiagnosticBuilder
diagnoseNoMatch(Sema &S, SourceLocation Loc, QualType T) = 0;
/// \brief Emits a diagnostic when the expression has incomplete class type.
virtual SemaDiagnosticBuilder
diagnoseIncomplete(Sema &S, SourceLocation Loc, QualType T) = 0;
/// \brief Emits a diagnostic when the only matching conversion function
/// is explicit.
virtual SemaDiagnosticBuilder diagnoseExplicitConv(
Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) = 0;
/// \brief Emits a note for the explicit conversion function.
virtual SemaDiagnosticBuilder
noteExplicitConv(Sema &S, CXXConversionDecl *Conv, QualType ConvTy) = 0;
/// \brief Emits a diagnostic when there are multiple possible conversion
/// functions.
virtual SemaDiagnosticBuilder
diagnoseAmbiguous(Sema &S, SourceLocation Loc, QualType T) = 0;
/// \brief Emits a note for one of the candidate conversions.
virtual SemaDiagnosticBuilder
noteAmbiguous(Sema &S, CXXConversionDecl *Conv, QualType ConvTy) = 0;
/// \brief Emits a diagnostic when we picked a conversion function
/// (for cases when we are not allowed to pick a conversion function).
virtual SemaDiagnosticBuilder diagnoseConversion(
Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) = 0;
virtual ~ContextualImplicitConverter() {}
};
class ICEConvertDiagnoser : public ContextualImplicitConverter {
bool AllowScopedEnumerations;
public:
ICEConvertDiagnoser(bool AllowScopedEnumerations,
bool Suppress, bool SuppressConversion)
: ContextualImplicitConverter(Suppress, SuppressConversion),
AllowScopedEnumerations(AllowScopedEnumerations) {}
/// Match an integral or (possibly scoped) enumeration type.
bool match(QualType T) override;
SemaDiagnosticBuilder
diagnoseNoMatch(Sema &S, SourceLocation Loc, QualType T) override {
return diagnoseNotInt(S, Loc, T);
}
/// \brief Emits a diagnostic complaining that the expression does not have
/// integral or enumeration type.
virtual SemaDiagnosticBuilder
diagnoseNotInt(Sema &S, SourceLocation Loc, QualType T) = 0;
};
/// Perform a contextual implicit conversion.
ExprResult PerformContextualImplicitConversion(
SourceLocation Loc, Expr *FromE, ContextualImplicitConverter &Converter);
enum ObjCSubscriptKind {
OS_Array,
OS_Dictionary,
OS_Error
};
ObjCSubscriptKind CheckSubscriptingKind(Expr *FromE);
// Note that LK_String is intentionally after the other literals, as
// this is used for diagnostics logic.
enum ObjCLiteralKind {
LK_Array,
LK_Dictionary,
LK_Numeric,
LK_Boxed,
LK_String,
LK_Block,
LK_None
};
ObjCLiteralKind CheckLiteralKind(Expr *FromE);
ExprResult PerformObjectMemberConversion(Expr *From,
NestedNameSpecifier *Qualifier,
NamedDecl *FoundDecl,
NamedDecl *Member);
// Members have to be NamespaceDecl* or TranslationUnitDecl*.
// TODO: make this is a typesafe union.
typedef llvm::SmallSetVector<DeclContext *, 16> AssociatedNamespaceSet;
typedef llvm::SmallSetVector<CXXRecordDecl *, 16> AssociatedClassSet;
void AddOverloadCandidate(FunctionDecl *Function,
DeclAccessPair FoundDecl,
ArrayRef<Expr *> Args,
OverloadCandidateSet& CandidateSet,
bool SuppressUserConversions = false,
bool PartialOverloading = false,
bool AllowExplicit = false);
void AddFunctionCandidates(const UnresolvedSetImpl &Functions,
ArrayRef<Expr *> Args,
OverloadCandidateSet &CandidateSet,
TemplateArgumentListInfo *ExplicitTemplateArgs = nullptr,
bool SuppressUserConversions = false,
bool PartialOverloading = false);
void AddMethodCandidate(DeclAccessPair FoundDecl,
QualType ObjectType,
Expr::Classification ObjectClassification,
ArrayRef<Expr *> Args,
OverloadCandidateSet& CandidateSet,
bool SuppressUserConversion = false);
void AddMethodCandidate(CXXMethodDecl *Method,
DeclAccessPair FoundDecl,
CXXRecordDecl *ActingContext, QualType ObjectType,
Expr::Classification ObjectClassification,
ArrayRef<Expr *> Args,
OverloadCandidateSet& CandidateSet,
bool SuppressUserConversions = false,
bool PartialOverloading = false);
void AddMethodTemplateCandidate(FunctionTemplateDecl *MethodTmpl,
DeclAccessPair FoundDecl,
CXXRecordDecl *ActingContext,
TemplateArgumentListInfo *ExplicitTemplateArgs,
QualType ObjectType,
Expr::Classification ObjectClassification,
ArrayRef<Expr *> Args,
OverloadCandidateSet& CandidateSet,
bool SuppressUserConversions = false,
bool PartialOverloading = false);
void AddTemplateOverloadCandidate(FunctionTemplateDecl *FunctionTemplate,
DeclAccessPair FoundDecl,
TemplateArgumentListInfo *ExplicitTemplateArgs,
ArrayRef<Expr *> Args,
OverloadCandidateSet& CandidateSet,
bool SuppressUserConversions = false,
bool PartialOverloading = false);
void AddConversionCandidate(CXXConversionDecl *Conversion,
DeclAccessPair FoundDecl,
CXXRecordDecl *ActingContext,
Expr *From, QualType ToType,
OverloadCandidateSet& CandidateSet,
bool AllowObjCConversionOnExplicit);
void AddTemplateConversionCandidate(FunctionTemplateDecl *FunctionTemplate,
DeclAccessPair FoundDecl,
CXXRecordDecl *ActingContext,
Expr *From, QualType ToType,
OverloadCandidateSet &CandidateSet,
bool AllowObjCConversionOnExplicit);
void AddSurrogateCandidate(CXXConversionDecl *Conversion,
DeclAccessPair FoundDecl,
CXXRecordDecl *ActingContext,
const FunctionProtoType *Proto,
Expr *Object, ArrayRef<Expr *> Args,
OverloadCandidateSet& CandidateSet);
void AddMemberOperatorCandidates(OverloadedOperatorKind Op,
SourceLocation OpLoc, ArrayRef<Expr *> Args,
OverloadCandidateSet& CandidateSet,
SourceRange OpRange = SourceRange());
void AddBuiltinCandidate(QualType ResultTy, QualType *ParamTys,
ArrayRef<Expr *> Args,
OverloadCandidateSet& CandidateSet,
bool IsAssignmentOperator = false,
unsigned NumContextualBoolArguments = 0);
void AddBuiltinOperatorCandidates(OverloadedOperatorKind Op,
SourceLocation OpLoc, ArrayRef<Expr *> Args,
OverloadCandidateSet& CandidateSet);
void AddArgumentDependentLookupCandidates(DeclarationName Name,
SourceLocation Loc,
ArrayRef<Expr *> Args,
TemplateArgumentListInfo *ExplicitTemplateArgs,
OverloadCandidateSet& CandidateSet,
bool PartialOverloading = false);
// Emit as a 'note' the specific overload candidate
void NoteOverloadCandidate(NamedDecl *Found, FunctionDecl *Fn,
QualType DestType = QualType(),
bool TakingAddress = false);
// Emit as a series of 'note's all template and non-templates identified by
// the expression Expr
void NoteAllOverloadCandidates(Expr *E, QualType DestType = QualType(),
bool TakingAddress = false);
/// Check the enable_if expressions on the given function. Returns the first
/// failing attribute, or NULL if they were all successful.
EnableIfAttr *CheckEnableIf(FunctionDecl *Function, ArrayRef<Expr *> Args,
bool MissingImplicitThis = false);
/// Returns whether the given function's address can be taken or not,
/// optionally emitting a diagnostic if the address can't be taken.
///
/// Returns false if taking the address of the function is illegal.
bool checkAddressOfFunctionIsAvailable(const FunctionDecl *Function,
bool Complain = false,
SourceLocation Loc = SourceLocation());
// [PossiblyAFunctionType] --> [Return]
// NonFunctionType --> NonFunctionType
// R (A) --> R(A)
// R (*)(A) --> R (A)
// R (&)(A) --> R (A)
// R (S::*)(A) --> R (A)
QualType ExtractUnqualifiedFunctionType(QualType PossiblyAFunctionType);
FunctionDecl *
ResolveAddressOfOverloadedFunction(Expr *AddressOfExpr,
QualType TargetType,
bool Complain,
DeclAccessPair &Found,
bool *pHadMultipleCandidates = nullptr);
FunctionDecl *
resolveAddressOfOnlyViableOverloadCandidate(Expr *E,
DeclAccessPair &FoundResult);
bool resolveAndFixAddressOfOnlyViableOverloadCandidate(ExprResult &SrcExpr);
FunctionDecl *
ResolveSingleFunctionTemplateSpecialization(OverloadExpr *ovl,
bool Complain = false,
DeclAccessPair *Found = nullptr);
bool ResolveAndFixSingleFunctionTemplateSpecialization(
ExprResult &SrcExpr,
bool DoFunctionPointerConverion = false,
bool Complain = false,
SourceRange OpRangeForComplaining = SourceRange(),
QualType DestTypeForComplaining = QualType(),
unsigned DiagIDForComplaining = 0);
Expr *FixOverloadedFunctionReference(Expr *E,
DeclAccessPair FoundDecl,
FunctionDecl *Fn);
ExprResult FixOverloadedFunctionReference(ExprResult,
DeclAccessPair FoundDecl,
FunctionDecl *Fn);
void AddOverloadedCallCandidates(UnresolvedLookupExpr *ULE,
ArrayRef<Expr *> Args,
OverloadCandidateSet &CandidateSet,
bool PartialOverloading = false);
// An enum used to represent the different possible results of building a
// range-based for loop.
enum ForRangeStatus {
FRS_Success,
FRS_NoViableFunction,
FRS_DiagnosticIssued
};
ForRangeStatus BuildForRangeBeginEndCall(SourceLocation Loc,
SourceLocation RangeLoc,
const DeclarationNameInfo &NameInfo,
LookupResult &MemberLookup,
OverloadCandidateSet *CandidateSet,
Expr *Range, ExprResult *CallExpr);
ExprResult BuildOverloadedCallExpr(Scope *S, Expr *Fn,
UnresolvedLookupExpr *ULE,
SourceLocation LParenLoc,
MultiExprArg Args,
SourceLocation RParenLoc,
Expr *ExecConfig,
bool AllowTypoCorrection=true,
bool CalleesAddressIsTaken=false);
bool buildOverloadedCallSet(Scope *S, Expr *Fn, UnresolvedLookupExpr *ULE,
MultiExprArg Args, SourceLocation RParenLoc,
OverloadCandidateSet *CandidateSet,
ExprResult *Result);
ExprResult CreateOverloadedUnaryOp(SourceLocation OpLoc,
UnaryOperatorKind Opc,
const UnresolvedSetImpl &Fns,
Expr *input);
ExprResult CreateOverloadedBinOp(SourceLocation OpLoc,
BinaryOperatorKind Opc,
const UnresolvedSetImpl &Fns,
Expr *LHS, Expr *RHS);
ExprResult CreateOverloadedArraySubscriptExpr(SourceLocation LLoc,
SourceLocation RLoc,
Expr *Base,Expr *Idx);
ExprResult
BuildCallToMemberFunction(Scope *S, Expr *MemExpr,
SourceLocation LParenLoc,
MultiExprArg Args,
SourceLocation RParenLoc);
ExprResult
BuildCallToObjectOfClassType(Scope *S, Expr *Object, SourceLocation LParenLoc,
MultiExprArg Args,
SourceLocation RParenLoc);
ExprResult BuildOverloadedArrowExpr(Scope *S, Expr *Base,
SourceLocation OpLoc,
bool *NoArrowOperatorFound = nullptr);
/// CheckCallReturnType - Checks that a call expression's return type is
/// complete. Returns true on failure. The location passed in is the location
/// that best represents the call.
bool CheckCallReturnType(QualType ReturnType, SourceLocation Loc,
CallExpr *CE, FunctionDecl *FD);
/// Helpers for dealing with blocks and functions.
bool CheckParmsForFunctionDef(ArrayRef<ParmVarDecl *> Parameters,
bool CheckParameterNames);
void CheckCXXDefaultArguments(FunctionDecl *FD);
void CheckExtraCXXDefaultArguments(Declarator &D);
Scope *getNonFieldDeclScope(Scope *S);
/// \name Name lookup
///
/// These routines provide name lookup that is used during semantic
/// analysis to resolve the various kinds of names (identifiers,
/// overloaded operator names, constructor names, etc.) into zero or
/// more declarations within a particular scope. The major entry
/// points are LookupName, which performs unqualified name lookup,
/// and LookupQualifiedName, which performs qualified name lookup.
///
/// All name lookup is performed based on some specific criteria,
/// which specify what names will be visible to name lookup and how
/// far name lookup should work. These criteria are important both
/// for capturing language semantics (certain lookups will ignore
/// certain names, for example) and for performance, since name
/// lookup is often a bottleneck in the compilation of C++. Name
/// lookup criteria is specified via the LookupCriteria enumeration.
///
/// The results of name lookup can vary based on the kind of name
/// lookup performed, the current language, and the translation
/// unit. In C, for example, name lookup will either return nothing
/// (no entity found) or a single declaration. In C++, name lookup
/// can additionally refer to a set of overloaded functions or
/// result in an ambiguity. All of the possible results of name
/// lookup are captured by the LookupResult class, which provides
/// the ability to distinguish among them.
//@{
/// @brief Describes the kind of name lookup to perform.
enum LookupNameKind {
/// Ordinary name lookup, which finds ordinary names (functions,
/// variables, typedefs, etc.) in C and most kinds of names
/// (functions, variables, members, types, etc.) in C++.
LookupOrdinaryName = 0,
/// Tag name lookup, which finds the names of enums, classes,
/// structs, and unions.
LookupTagName,
/// Label name lookup.
LookupLabel,
/// Member name lookup, which finds the names of
/// class/struct/union members.
LookupMemberName,
/// Look up of an operator name (e.g., operator+) for use with
/// operator overloading. This lookup is similar to ordinary name
/// lookup, but will ignore any declarations that are class members.
LookupOperatorName,
/// Look up of a name that precedes the '::' scope resolution
/// operator in C++. This lookup completely ignores operator, object,
/// function, and enumerator names (C++ [basic.lookup.qual]p1).
LookupNestedNameSpecifierName,
/// Look up a namespace name within a C++ using directive or
/// namespace alias definition, ignoring non-namespace names (C++
/// [basic.lookup.udir]p1).
LookupNamespaceName,
/// Look up all declarations in a scope with the given name,
/// including resolved using declarations. This is appropriate
/// for checking redeclarations for a using declaration.
LookupUsingDeclName,
/// Look up an ordinary name that is going to be redeclared as a
/// name with linkage. This lookup ignores any declarations that
/// are outside of the current scope unless they have linkage. See
/// C99 6.2.2p4-5 and C++ [basic.link]p6.
LookupRedeclarationWithLinkage,
/// Look up a friend of a local class. This lookup does not look
/// outside the innermost non-class scope. See C++11 [class.friend]p11.
LookupLocalFriendName,
/// Look up the name of an Objective-C protocol.
LookupObjCProtocolName,
/// Look up implicit 'self' parameter of an objective-c method.
LookupObjCImplicitSelfParam,
/// \brief Look up the name of an OpenMP user-defined reduction operation.
LookupOMPReductionName,
/// \brief Look up any declaration with any name.
LookupAnyName
};
/// \brief Specifies whether (or how) name lookup is being performed for a
/// redeclaration (vs. a reference).
enum RedeclarationKind {
/// \brief The lookup is a reference to this name that is not for the
/// purpose of redeclaring the name.
NotForRedeclaration = 0,
/// \brief The lookup results will be used for redeclaration of a name,
/// if an entity by that name already exists.
ForRedeclaration
};
/// \brief The possible outcomes of name lookup for a literal operator.
enum LiteralOperatorLookupResult {
/// \brief The lookup resulted in an error.
LOLR_Error,
/// \brief The lookup found a single 'cooked' literal operator, which
/// expects a normal literal to be built and passed to it.
LOLR_Cooked,
/// \brief The lookup found a single 'raw' literal operator, which expects
/// a string literal containing the spelling of the literal token.
LOLR_Raw,
/// \brief The lookup found an overload set of literal operator templates,
/// which expect the characters of the spelling of the literal token to be
/// passed as a non-type template argument pack.
LOLR_Template,
/// \brief The lookup found an overload set of literal operator templates,
/// which expect the character type and characters of the spelling of the
/// string literal token to be passed as template arguments.
LOLR_StringTemplate
};
SpecialMemberOverloadResult *LookupSpecialMember(CXXRecordDecl *D,
CXXSpecialMember SM,
bool ConstArg,
bool VolatileArg,
bool RValueThis,
bool ConstThis,
bool VolatileThis);
typedef std::function<void(const TypoCorrection &)> TypoDiagnosticGenerator;
typedef std::function<ExprResult(Sema &, TypoExpr *, TypoCorrection)>
TypoRecoveryCallback;
private:
bool CppLookupName(LookupResult &R, Scope *S);
struct TypoExprState {
std::unique_ptr<TypoCorrectionConsumer> Consumer;
TypoDiagnosticGenerator DiagHandler;
TypoRecoveryCallback RecoveryHandler;
TypoExprState();
TypoExprState(TypoExprState&& other) LLVM_NOEXCEPT;
TypoExprState& operator=(TypoExprState&& other) LLVM_NOEXCEPT;
};
/// \brief The set of unhandled TypoExprs and their associated state.
llvm::MapVector<TypoExpr *, TypoExprState> DelayedTypos;
/// \brief Creates a new TypoExpr AST node.
TypoExpr *createDelayedTypo(std::unique_ptr<TypoCorrectionConsumer> TCC,
TypoDiagnosticGenerator TDG,
TypoRecoveryCallback TRC);
// \brief The set of known/encountered (unique, canonicalized) NamespaceDecls.
//
// The boolean value will be true to indicate that the namespace was loaded
// from an AST/PCH file, or false otherwise.
llvm::MapVector<NamespaceDecl*, bool> KnownNamespaces;
/// \brief Whether we have already loaded known namespaces from an extenal
/// source.
bool LoadedExternalKnownNamespaces;
/// \brief Helper for CorrectTypo and CorrectTypoDelayed used to create and
/// populate a new TypoCorrectionConsumer. Returns nullptr if typo correction
/// should be skipped entirely.
std::unique_ptr<TypoCorrectionConsumer>
makeTypoCorrectionConsumer(const DeclarationNameInfo &Typo,
Sema::LookupNameKind LookupKind, Scope *S,
CXXScopeSpec *SS,
std::unique_ptr<CorrectionCandidateCallback> CCC,
DeclContext *MemberContext, bool EnteringContext,
const ObjCObjectPointerType *OPT,
bool ErrorRecovery);
public:
const TypoExprState &getTypoExprState(TypoExpr *TE) const;
/// \brief Clears the state of the given TypoExpr.
void clearDelayedTypo(TypoExpr *TE);
/// \brief Look up a name, looking for a single declaration. Return
/// null if the results were absent, ambiguous, or overloaded.
///
/// It is preferable to use the elaborated form and explicitly handle
/// ambiguity and overloaded.
NamedDecl *LookupSingleName(Scope *S, DeclarationName Name,
SourceLocation Loc,
LookupNameKind NameKind,
RedeclarationKind Redecl
= NotForRedeclaration);
bool LookupName(LookupResult &R, Scope *S,
bool AllowBuiltinCreation = false);
bool LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx,
bool InUnqualifiedLookup = false);
bool LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx,
CXXScopeSpec &SS);
bool LookupParsedName(LookupResult &R, Scope *S, CXXScopeSpec *SS,
bool AllowBuiltinCreation = false,
bool EnteringContext = false);
ObjCProtocolDecl *LookupProtocol(IdentifierInfo *II, SourceLocation IdLoc,
RedeclarationKind Redecl
= NotForRedeclaration);
bool LookupInSuper(LookupResult &R, CXXRecordDecl *Class);
void LookupOverloadedOperatorName(OverloadedOperatorKind Op, Scope *S,
QualType T1, QualType T2,
UnresolvedSetImpl &Functions);
void addOverloadedOperatorToUnresolvedSet(UnresolvedSetImpl &Functions,
DeclAccessPair Operator,
QualType T1, QualType T2);
LabelDecl *LookupOrCreateLabel(IdentifierInfo *II, SourceLocation IdentLoc,
SourceLocation GnuLabelLoc = SourceLocation());
DeclContextLookupResult LookupConstructors(CXXRecordDecl *Class);
CXXConstructorDecl *LookupDefaultConstructor(CXXRecordDecl *Class);
CXXConstructorDecl *LookupCopyingConstructor(CXXRecordDecl *Class,
unsigned Quals);
CXXMethodDecl *LookupCopyingAssignment(CXXRecordDecl *Class, unsigned Quals,
bool RValueThis, unsigned ThisQuals);
CXXConstructorDecl *LookupMovingConstructor(CXXRecordDecl *Class,
unsigned Quals);
CXXMethodDecl *LookupMovingAssignment(CXXRecordDecl *Class, unsigned Quals,
bool RValueThis, unsigned ThisQuals);
CXXDestructorDecl *LookupDestructor(CXXRecordDecl *Class);
bool checkLiteralOperatorId(const CXXScopeSpec &SS, const UnqualifiedId &Id);
LiteralOperatorLookupResult LookupLiteralOperator(Scope *S, LookupResult &R,
ArrayRef<QualType> ArgTys,
bool AllowRaw,
bool AllowTemplate,
bool AllowStringTemplate);
bool isKnownName(StringRef name);
void ArgumentDependentLookup(DeclarationName Name, SourceLocation Loc,
ArrayRef<Expr *> Args, ADLResult &Functions);
void LookupVisibleDecls(Scope *S, LookupNameKind Kind,
VisibleDeclConsumer &Consumer,
bool IncludeGlobalScope = true);
void LookupVisibleDecls(DeclContext *Ctx, LookupNameKind Kind,
VisibleDeclConsumer &Consumer,
bool IncludeGlobalScope = true);
enum CorrectTypoKind {
CTK_NonError, // CorrectTypo used in a non error recovery situation.
CTK_ErrorRecovery // CorrectTypo used in normal error recovery.
};
TypoCorrection CorrectTypo(const DeclarationNameInfo &Typo,
Sema::LookupNameKind LookupKind,
Scope *S, CXXScopeSpec *SS,
std::unique_ptr<CorrectionCandidateCallback> CCC,
CorrectTypoKind Mode,
DeclContext *MemberContext = nullptr,
bool EnteringContext = false,
const ObjCObjectPointerType *OPT = nullptr,
bool RecordFailure = true);
TypoExpr *CorrectTypoDelayed(const DeclarationNameInfo &Typo,
Sema::LookupNameKind LookupKind, Scope *S,
CXXScopeSpec *SS,
std::unique_ptr<CorrectionCandidateCallback> CCC,
TypoDiagnosticGenerator TDG,
TypoRecoveryCallback TRC, CorrectTypoKind Mode,
DeclContext *MemberContext = nullptr,
bool EnteringContext = false,
const ObjCObjectPointerType *OPT = nullptr);
/// \brief Process any TypoExprs in the given Expr and its children,
/// generating diagnostics as appropriate and returning a new Expr if there
/// were typos that were all successfully corrected and ExprError if one or
/// more typos could not be corrected.
///
/// \param E The Expr to check for TypoExprs.
///
/// \param InitDecl A VarDecl to avoid because the Expr being corrected is its
/// initializer.
///
/// \param Filter A function applied to a newly rebuilt Expr to determine if
/// it is an acceptable/usable result from a single combination of typo
/// corrections. As long as the filter returns ExprError, different
/// combinations of corrections will be tried until all are exhausted.
ExprResult
CorrectDelayedTyposInExpr(Expr *E, VarDecl *InitDecl = nullptr,
llvm::function_ref<ExprResult(Expr *)> Filter =
[](Expr *E) -> ExprResult { return E; });
ExprResult
CorrectDelayedTyposInExpr(Expr *E,
llvm::function_ref<ExprResult(Expr *)> Filter) {
return CorrectDelayedTyposInExpr(E, nullptr, Filter);
}
ExprResult
CorrectDelayedTyposInExpr(ExprResult ER, VarDecl *InitDecl = nullptr,
llvm::function_ref<ExprResult(Expr *)> Filter =
[](Expr *E) -> ExprResult { return E; }) {
return ER.isInvalid() ? ER : CorrectDelayedTyposInExpr(ER.get(), Filter);
}
ExprResult
CorrectDelayedTyposInExpr(ExprResult ER,
llvm::function_ref<ExprResult(Expr *)> Filter) {
return CorrectDelayedTyposInExpr(ER, nullptr, Filter);
}
void diagnoseTypo(const TypoCorrection &Correction,
const PartialDiagnostic &TypoDiag,
bool ErrorRecovery = true);
void diagnoseTypo(const TypoCorrection &Correction,
const PartialDiagnostic &TypoDiag,
const PartialDiagnostic &PrevNote,
bool ErrorRecovery = true);
void FindAssociatedClassesAndNamespaces(SourceLocation InstantiationLoc,
ArrayRef<Expr *> Args,
AssociatedNamespaceSet &AssociatedNamespaces,
AssociatedClassSet &AssociatedClasses);
void FilterLookupForScope(LookupResult &R, DeclContext *Ctx, Scope *S,
bool ConsiderLinkage, bool AllowInlineNamespace);
void DiagnoseAmbiguousLookup(LookupResult &Result);
//@}
ObjCInterfaceDecl *getObjCInterfaceDecl(IdentifierInfo *&Id,
SourceLocation IdLoc,
bool TypoCorrection = false);
NamedDecl *LazilyCreateBuiltin(IdentifierInfo *II, unsigned ID,
Scope *S, bool ForRedeclaration,
SourceLocation Loc);
NamedDecl *ImplicitlyDefineFunction(SourceLocation Loc, IdentifierInfo &II,
Scope *S);
void AddKnownFunctionAttributes(FunctionDecl *FD);
// More parsing and symbol table subroutines.
void ProcessPragmaWeak(Scope *S, Decl *D);
// Decl attributes - this routine is the top level dispatcher.
void ProcessDeclAttributes(Scope *S, Decl *D, const Declarator &PD);
void ProcessDeclAttributeList(Scope *S, Decl *D, const AttributeList *AL,
bool IncludeCXX11Attributes = true);
bool ProcessAccessDeclAttributeList(AccessSpecDecl *ASDecl,
const AttributeList *AttrList);
void checkUnusedDeclAttributes(Declarator &D);
/// Map any API notes provided for this declaration to attributes on the
/// declaration.
///
/// Triggered by declaration-attribute processing.
void ProcessAPINotes(Decl *D);
/// Determine if type T is a valid subject for a nonnull and similar
/// attributes. By default, we look through references (the behavior used by
/// nonnull), but if the second parameter is true, then we treat a reference
/// type as valid.
bool isValidPointerAttrType(QualType T, bool RefOkay = false);
bool CheckRegparmAttr(const AttributeList &attr, unsigned &value);
bool CheckCallingConvAttr(const AttributeList &attr, CallingConv &CC,
const FunctionDecl *FD = nullptr);
bool CheckNoReturnAttr(const AttributeList &attr);
bool checkStringLiteralArgumentAttr(const AttributeList &Attr,
unsigned ArgNum, StringRef &Str,
SourceLocation *ArgLocation = nullptr);
bool checkSectionName(SourceLocation LiteralLoc, StringRef Str);
void checkTargetAttr(SourceLocation LiteralLoc, StringRef Str);
bool checkMSInheritanceAttrOnDefinition(
CXXRecordDecl *RD, SourceRange Range, bool BestCase,
MSInheritanceAttr::Spelling SemanticSpelling);
void CheckAlignasUnderalignment(Decl *D);
/// Adjust the calling convention of a method to be the ABI default if it
/// wasn't specified explicitly. This handles method types formed from
/// function type typedefs and typename template arguments.
void adjustMemberFunctionCC(QualType &T, bool IsStatic, bool IsCtorOrDtor,
SourceLocation Loc);
// Check if there is an explicit attribute, but only look through parens.
// The intent is to look for an attribute on the current declarator, but not
// one that came from a typedef.
bool hasExplicitCallingConv(QualType &T);
/// Get the outermost AttributedType node that sets a calling convention.
/// Valid types should not have multiple attributes with different CCs.
const AttributedType *getCallingConvAttributedType(QualType T) const;
/// Check whether a nullability type specifier can be added to the given
/// type.
///
/// \param type The type to which the nullability specifier will be
/// added. On success, this type will be updated appropriately.
///
/// \param nullability The nullability specifier to add.
///
/// \param nullabilityLoc The location of the nullability specifier.
///
/// \param isContextSensitive Whether this nullability specifier was
/// written as a context-sensitive keyword (in an Objective-C
/// method) or an Objective-C property attribute, rather than as an
/// underscored type specifier.
///
/// \param allowArrayTypes Whether to accept nullability specifiers on an
/// array type (e.g., because it will decay to a pointer).
///
/// \param overrideExisting Whether to override an existing, locally-specified
/// nullability specifier rather than complaining about the conflict.
///
/// \returns true if nullability cannot be applied, false otherwise.
bool checkNullabilityTypeSpecifier(QualType &type, NullabilityKind nullability,
SourceLocation nullabilityLoc,
bool isContextSensitive,
bool allowArrayTypes,
bool implicit,
bool overrideExisting = false);
/// \brief Stmt attributes - this routine is the top level dispatcher.
StmtResult ProcessStmtAttributes(Stmt *Stmt, AttributeList *Attrs,
SourceRange Range);
void WarnConflictingTypedMethods(ObjCMethodDecl *Method,
ObjCMethodDecl *MethodDecl,
bool IsProtocolMethodDecl);
void CheckConflictingOverridingMethod(ObjCMethodDecl *Method,
ObjCMethodDecl *Overridden,
bool IsProtocolMethodDecl);
/// WarnExactTypedMethods - This routine issues a warning if method
/// implementation declaration matches exactly that of its declaration.
void WarnExactTypedMethods(ObjCMethodDecl *Method,
ObjCMethodDecl *MethodDecl,
bool IsProtocolMethodDecl);
typedef llvm::SmallPtrSet<Selector, 8> SelectorSet;
/// CheckImplementationIvars - This routine checks if the instance variables
/// listed in the implelementation match those listed in the interface.
void CheckImplementationIvars(ObjCImplementationDecl *ImpDecl,
ObjCIvarDecl **Fields, unsigned nIvars,
SourceLocation Loc);
/// ImplMethodsVsClassMethods - This is main routine to warn if any method
/// remains unimplemented in the class or category \@implementation.
void ImplMethodsVsClassMethods(Scope *S, ObjCImplDecl* IMPDecl,
ObjCContainerDecl* IDecl,
bool IncompleteImpl = false);
/// DiagnoseUnimplementedProperties - This routine warns on those properties
/// which must be implemented by this implementation.
void DiagnoseUnimplementedProperties(Scope *S, ObjCImplDecl* IMPDecl,
ObjCContainerDecl *CDecl,
bool SynthesizeProperties);
/// Diagnose any null-resettable synthesized setters.
void diagnoseNullResettableSynthesizedSetters(const ObjCImplDecl *impDecl);
/// DefaultSynthesizeProperties - This routine default synthesizes all
/// properties which must be synthesized in the class's \@implementation.
void DefaultSynthesizeProperties (Scope *S, ObjCImplDecl* IMPDecl,
ObjCInterfaceDecl *IDecl);
void DefaultSynthesizeProperties(Scope *S, Decl *D);
/// IvarBacksCurrentMethodAccessor - This routine returns 'true' if 'IV' is
/// an ivar synthesized for 'Method' and 'Method' is a property accessor
/// declared in class 'IFace'.
bool IvarBacksCurrentMethodAccessor(ObjCInterfaceDecl *IFace,
ObjCMethodDecl *Method, ObjCIvarDecl *IV);
/// DiagnoseUnusedBackingIvarInAccessor - Issue an 'unused' warning if ivar which
/// backs the property is not used in the property's accessor.
void DiagnoseUnusedBackingIvarInAccessor(Scope *S,
const ObjCImplementationDecl *ImplD);
/// GetIvarBackingPropertyAccessor - If method is a property setter/getter and
/// it property has a backing ivar, returns this ivar; otherwise, returns NULL.
/// It also returns ivar's property on success.
ObjCIvarDecl *GetIvarBackingPropertyAccessor(const ObjCMethodDecl *Method,
const ObjCPropertyDecl *&PDecl) const;
/// Called by ActOnProperty to handle \@property declarations in
/// class extensions.
ObjCPropertyDecl *HandlePropertyInClassExtension(Scope *S,
SourceLocation AtLoc,
SourceLocation LParenLoc,
FieldDeclarator &FD,
Selector GetterSel,
Selector SetterSel,
const bool isReadWrite,
unsigned &Attributes,
const unsigned AttributesAsWritten,
QualType T,
TypeSourceInfo *TSI,
tok::ObjCKeywordKind MethodImplKind);
/// Called by ActOnProperty and HandlePropertyInClassExtension to
/// handle creating the ObjcPropertyDecl for a category or \@interface.
ObjCPropertyDecl *CreatePropertyDecl(Scope *S,
ObjCContainerDecl *CDecl,
SourceLocation AtLoc,
SourceLocation LParenLoc,
FieldDeclarator &FD,
Selector GetterSel,
Selector SetterSel,
const bool isReadWrite,
const unsigned Attributes,
const unsigned AttributesAsWritten,
QualType T,
TypeSourceInfo *TSI,
tok::ObjCKeywordKind MethodImplKind,
DeclContext *lexicalDC = nullptr);
/// AtomicPropertySetterGetterRules - This routine enforces the rule (via
/// warning) when atomic property has one but not the other user-declared
/// setter or getter.
void AtomicPropertySetterGetterRules(ObjCImplDecl* IMPDecl,
ObjCInterfaceDecl* IDecl);
void DiagnoseOwningPropertyGetterSynthesis(const ObjCImplementationDecl *D);
void DiagnoseMissingDesignatedInitOverrides(
const ObjCImplementationDecl *ImplD,
const ObjCInterfaceDecl *IFD);
void DiagnoseDuplicateIvars(ObjCInterfaceDecl *ID, ObjCInterfaceDecl *SID);
enum MethodMatchStrategy {
MMS_loose,
MMS_strict
};
/// MatchTwoMethodDeclarations - Checks if two methods' type match and returns
/// true, or false, accordingly.
bool MatchTwoMethodDeclarations(const ObjCMethodDecl *Method,
const ObjCMethodDecl *PrevMethod,
MethodMatchStrategy strategy = MMS_strict);
/// MatchAllMethodDeclarations - Check methods declaraed in interface or
/// or protocol against those declared in their implementations.
void MatchAllMethodDeclarations(const SelectorSet &InsMap,
const SelectorSet &ClsMap,
SelectorSet &InsMapSeen,
SelectorSet &ClsMapSeen,
ObjCImplDecl* IMPDecl,
ObjCContainerDecl* IDecl,
bool &IncompleteImpl,
bool ImmediateClass,
bool WarnCategoryMethodImpl=false);
/// CheckCategoryVsClassMethodMatches - Checks that methods implemented in
/// category matches with those implemented in its primary class and
/// warns each time an exact match is found.
void CheckCategoryVsClassMethodMatches(ObjCCategoryImplDecl *CatIMP);
/// \brief Add the given method to the list of globally-known methods.
void addMethodToGlobalList(ObjCMethodList *List, ObjCMethodDecl *Method);
private:
/// AddMethodToGlobalPool - Add an instance or factory method to the global
/// pool. See descriptoin of AddInstanceMethodToGlobalPool.
void AddMethodToGlobalPool(ObjCMethodDecl *Method, bool impl, bool instance);
/// LookupMethodInGlobalPool - Returns the instance or factory method and
/// optionally warns if there are multiple signatures.
ObjCMethodDecl *LookupMethodInGlobalPool(Selector Sel, SourceRange R,
bool receiverIdOrClass,
bool instance);
public:
/// \brief - Returns instance or factory methods in global method pool for
/// given selector. It checks the desired kind first, if none is found, and
/// parameter checkTheOther is set, it then checks the other kind. If no such
/// method or only one method is found, function returns false; otherwise, it
/// returns true.
bool
CollectMultipleMethodsInGlobalPool(Selector Sel,
SmallVectorImpl<ObjCMethodDecl*>& Methods,
bool InstanceFirst, bool CheckTheOther,
const ObjCObjectType *TypeBound = nullptr);
bool
AreMultipleMethodsInGlobalPool(Selector Sel, ObjCMethodDecl *BestMethod,
SourceRange R, bool receiverIdOrClass,
SmallVectorImpl<ObjCMethodDecl*>& Methods);
void
DiagnoseMultipleMethodInGlobalPool(SmallVectorImpl<ObjCMethodDecl*> &Methods,
Selector Sel, SourceRange R,
bool receiverIdOrClass);
private:
/// \brief - Returns a selector which best matches given argument list or
/// nullptr if none could be found
ObjCMethodDecl *SelectBestMethod(Selector Sel, MultiExprArg Args,
bool IsInstance,
SmallVectorImpl<ObjCMethodDecl*>& Methods);
/// \brief Record the typo correction failure and return an empty correction.
TypoCorrection FailedCorrection(IdentifierInfo *Typo, SourceLocation TypoLoc,
bool RecordFailure = true) {
if (RecordFailure)
TypoCorrectionFailures[Typo].insert(TypoLoc);
return TypoCorrection();
}
public:
/// AddInstanceMethodToGlobalPool - All instance methods in a translation
/// unit are added to a global pool. This allows us to efficiently associate
/// a selector with a method declaraation for purposes of typechecking
/// messages sent to "id" (where the class of the object is unknown).
void AddInstanceMethodToGlobalPool(ObjCMethodDecl *Method, bool impl=false) {
AddMethodToGlobalPool(Method, impl, /*instance*/true);
}
/// AddFactoryMethodToGlobalPool - Same as above, but for factory methods.
void AddFactoryMethodToGlobalPool(ObjCMethodDecl *Method, bool impl=false) {
AddMethodToGlobalPool(Method, impl, /*instance*/false);
}
/// AddAnyMethodToGlobalPool - Add any method, instance or factory to global
/// pool.
void AddAnyMethodToGlobalPool(Decl *D);
/// LookupInstanceMethodInGlobalPool - Returns the method and warns if
/// there are multiple signatures.
ObjCMethodDecl *LookupInstanceMethodInGlobalPool(Selector Sel, SourceRange R,
bool receiverIdOrClass=false) {
return LookupMethodInGlobalPool(Sel, R, receiverIdOrClass,
/*instance*/true);
}
/// LookupFactoryMethodInGlobalPool - Returns the method and warns if
/// there are multiple signatures.
ObjCMethodDecl *LookupFactoryMethodInGlobalPool(Selector Sel, SourceRange R,
bool receiverIdOrClass=false) {
return LookupMethodInGlobalPool(Sel, R, receiverIdOrClass,
/*instance*/false);
}
const ObjCMethodDecl *SelectorsForTypoCorrection(Selector Sel,
QualType ObjectType=QualType());
/// LookupImplementedMethodInGlobalPool - Returns the method which has an
/// implementation.
ObjCMethodDecl *LookupImplementedMethodInGlobalPool(Selector Sel);
/// CollectIvarsToConstructOrDestruct - Collect those ivars which require
/// initialization.
void CollectIvarsToConstructOrDestruct(ObjCInterfaceDecl *OI,
SmallVectorImpl<ObjCIvarDecl*> &Ivars);
//===--------------------------------------------------------------------===//
// Statement Parsing Callbacks: SemaStmt.cpp.
public:
class FullExprArg {
public:
FullExprArg() : E(nullptr) { }
FullExprArg(Sema &actions) : E(nullptr) { }
ExprResult release() {
return E;
}
Expr *get() const { return E; }
Expr *operator->() {
return E;
}
private:
// FIXME: No need to make the entire Sema class a friend when it's just
// Sema::MakeFullExpr that needs access to the constructor below.
friend class Sema;
explicit FullExprArg(Expr *expr) : E(expr) {}
Expr *E;
};
FullExprArg MakeFullExpr(Expr *Arg) {
return MakeFullExpr(Arg, Arg ? Arg->getExprLoc() : SourceLocation());
}
FullExprArg MakeFullExpr(Expr *Arg, SourceLocation CC) {
return FullExprArg(ActOnFinishFullExpr(Arg, CC).get());
}
FullExprArg MakeFullDiscardedValueExpr(Expr *Arg) {
ExprResult FE =
ActOnFinishFullExpr(Arg, Arg ? Arg->getExprLoc() : SourceLocation(),
/*DiscardedValue*/ true);
return FullExprArg(FE.get());
}
StmtResult ActOnExprStmt(ExprResult Arg);
StmtResult ActOnExprStmtError();
StmtResult ActOnNullStmt(SourceLocation SemiLoc,
bool HasLeadingEmptyMacro = false);
void ActOnStartOfCompoundStmt();
void ActOnFinishOfCompoundStmt();
StmtResult ActOnCompoundStmt(SourceLocation L, SourceLocation R,
ArrayRef<Stmt *> Elts, bool isStmtExpr);
/// \brief A RAII object to enter scope of a compound statement.
class CompoundScopeRAII {
public:
CompoundScopeRAII(Sema &S): S(S) {
S.ActOnStartOfCompoundStmt();
}
~CompoundScopeRAII() {
S.ActOnFinishOfCompoundStmt();
}
private:
Sema &S;
};
/// An RAII helper that pops function a function scope on exit.
struct FunctionScopeRAII {
Sema &S;
bool Active;
FunctionScopeRAII(Sema &S) : S(S), Active(true) {}
~FunctionScopeRAII() {
if (Active)
S.PopFunctionScopeInfo();
}
void disable() { Active = false; }
};
StmtResult ActOnDeclStmt(DeclGroupPtrTy Decl,
SourceLocation StartLoc,
SourceLocation EndLoc);
void ActOnForEachDeclStmt(DeclGroupPtrTy Decl);
StmtResult ActOnForEachLValueExpr(Expr *E);
StmtResult ActOnCaseStmt(SourceLocation CaseLoc, Expr *LHSVal,
SourceLocation DotDotDotLoc, Expr *RHSVal,
SourceLocation ColonLoc);
void ActOnCaseStmtBody(Stmt *CaseStmt, Stmt *SubStmt);
StmtResult ActOnDefaultStmt(SourceLocation DefaultLoc,
SourceLocation ColonLoc,
Stmt *SubStmt, Scope *CurScope);
StmtResult ActOnLabelStmt(SourceLocation IdentLoc, LabelDecl *TheDecl,
SourceLocation ColonLoc, Stmt *SubStmt);
StmtResult ActOnAttributedStmt(SourceLocation AttrLoc,
ArrayRef<const Attr*> Attrs,
Stmt *SubStmt);
class ConditionResult;
StmtResult ActOnIfStmt(SourceLocation IfLoc, bool IsConstexpr,
Stmt *InitStmt,
ConditionResult Cond, Stmt *ThenVal,
SourceLocation ElseLoc, Stmt *ElseVal);
StmtResult BuildIfStmt(SourceLocation IfLoc, bool IsConstexpr,
Stmt *InitStmt,
ConditionResult Cond, Stmt *ThenVal,
SourceLocation ElseLoc, Stmt *ElseVal);
StmtResult ActOnStartOfSwitchStmt(SourceLocation SwitchLoc,
Stmt *InitStmt,
ConditionResult Cond);
StmtResult ActOnFinishSwitchStmt(SourceLocation SwitchLoc,
Stmt *Switch, Stmt *Body);
StmtResult ActOnWhileStmt(SourceLocation WhileLoc, ConditionResult Cond,
Stmt *Body);
StmtResult ActOnDoStmt(SourceLocation DoLoc, Stmt *Body,
SourceLocation WhileLoc, SourceLocation CondLParen,
Expr *Cond, SourceLocation CondRParen);
StmtResult ActOnForStmt(SourceLocation ForLoc,
SourceLocation LParenLoc,
Stmt *First,
ConditionResult Second,
FullExprArg Third,
SourceLocation RParenLoc,
Stmt *Body);
ExprResult CheckObjCForCollectionOperand(SourceLocation forLoc,
Expr *collection);
StmtResult ActOnObjCForCollectionStmt(SourceLocation ForColLoc,
Stmt *First, Expr *collection,
SourceLocation RParenLoc);
StmtResult FinishObjCForCollectionStmt(Stmt *ForCollection, Stmt *Body);
enum BuildForRangeKind {
/// Initial building of a for-range statement.
BFRK_Build,
/// Instantiation or recovery rebuild of a for-range statement. Don't
/// attempt any typo-correction.
BFRK_Rebuild,
/// Determining whether a for-range statement could be built. Avoid any
/// unnecessary or irreversible actions.
BFRK_Check
};
StmtResult ActOnCXXForRangeStmt(Scope *S, SourceLocation ForLoc,
SourceLocation CoawaitLoc,
Stmt *LoopVar,
SourceLocation ColonLoc, Expr *Collection,
SourceLocation RParenLoc,
BuildForRangeKind Kind);
StmtResult BuildCXXForRangeStmt(SourceLocation ForLoc,
SourceLocation CoawaitLoc,
SourceLocation ColonLoc,
Stmt *RangeDecl, Stmt *Begin, Stmt *End,
Expr *Cond, Expr *Inc,
Stmt *LoopVarDecl,
SourceLocation RParenLoc,
BuildForRangeKind Kind);
StmtResult FinishCXXForRangeStmt(Stmt *ForRange, Stmt *Body);
StmtResult ActOnGotoStmt(SourceLocation GotoLoc,
SourceLocation LabelLoc,
LabelDecl *TheDecl);
StmtResult ActOnIndirectGotoStmt(SourceLocation GotoLoc,
SourceLocation StarLoc,
Expr *DestExp);
StmtResult ActOnContinueStmt(SourceLocation ContinueLoc, Scope *CurScope);
StmtResult ActOnBreakStmt(SourceLocation BreakLoc, Scope *CurScope);
void ActOnCapturedRegionStart(SourceLocation Loc, Scope *CurScope,
CapturedRegionKind Kind, unsigned NumParams);
typedef std::pair<StringRef, QualType> CapturedParamNameType;
void ActOnCapturedRegionStart(SourceLocation Loc, Scope *CurScope,
CapturedRegionKind Kind,
ArrayRef<CapturedParamNameType> Params);
StmtResult ActOnCapturedRegionEnd(Stmt *S);
void ActOnCapturedRegionError();
RecordDecl *CreateCapturedStmtRecordDecl(CapturedDecl *&CD,
SourceLocation Loc,
unsigned NumParams);
VarDecl *getCopyElisionCandidate(QualType ReturnType, Expr *E,
bool AllowFunctionParameters);
bool isCopyElisionCandidate(QualType ReturnType, const VarDecl *VD,
bool AllowFunctionParameters);
StmtResult ActOnReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp,
Scope *CurScope);
StmtResult BuildReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp);
StmtResult ActOnCapScopeReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp);
StmtResult ActOnGCCAsmStmt(SourceLocation AsmLoc, bool IsSimple,
bool IsVolatile, unsigned NumOutputs,
unsigned NumInputs, IdentifierInfo **Names,
MultiExprArg Constraints, MultiExprArg Exprs,
Expr *AsmString, MultiExprArg Clobbers,
SourceLocation RParenLoc);
ExprResult LookupInlineAsmIdentifier(CXXScopeSpec &SS,
SourceLocation TemplateKWLoc,
UnqualifiedId &Id,
llvm::InlineAsmIdentifierInfo &Info,
bool IsUnevaluatedContext);
bool LookupInlineAsmField(StringRef Base, StringRef Member,
unsigned &Offset, SourceLocation AsmLoc);
ExprResult LookupInlineAsmVarDeclField(Expr *RefExpr, StringRef Member,
llvm::InlineAsmIdentifierInfo &Info,
SourceLocation AsmLoc);
StmtResult ActOnMSAsmStmt(SourceLocation AsmLoc, SourceLocation LBraceLoc,
ArrayRef<Token> AsmToks,
StringRef AsmString,
unsigned NumOutputs, unsigned NumInputs,
ArrayRef<StringRef> Constraints,
ArrayRef<StringRef> Clobbers,
ArrayRef<Expr*> Exprs,
SourceLocation EndLoc);
LabelDecl *GetOrCreateMSAsmLabel(StringRef ExternalLabelName,
SourceLocation Location,
bool AlwaysCreate);
VarDecl *BuildObjCExceptionDecl(TypeSourceInfo *TInfo, QualType ExceptionType,
SourceLocation StartLoc,
SourceLocation IdLoc, IdentifierInfo *Id,
bool Invalid = false);
Decl *ActOnObjCExceptionDecl(Scope *S, Declarator &D);
StmtResult ActOnObjCAtCatchStmt(SourceLocation AtLoc, SourceLocation RParen,
Decl *Parm, Stmt *Body);
StmtResult ActOnObjCAtFinallyStmt(SourceLocation AtLoc, Stmt *Body);
StmtResult ActOnObjCAtTryStmt(SourceLocation AtLoc, Stmt *Try,
MultiStmtArg Catch, Stmt *Finally);
StmtResult BuildObjCAtThrowStmt(SourceLocation AtLoc, Expr *Throw);
StmtResult ActOnObjCAtThrowStmt(SourceLocation AtLoc, Expr *Throw,
Scope *CurScope);
ExprResult ActOnObjCAtSynchronizedOperand(SourceLocation atLoc,
Expr *operand);
StmtResult ActOnObjCAtSynchronizedStmt(SourceLocation AtLoc,
Expr *SynchExpr,
Stmt *SynchBody);
StmtResult ActOnObjCAutoreleasePoolStmt(SourceLocation AtLoc, Stmt *Body);
VarDecl *BuildExceptionDeclaration(Scope *S, TypeSourceInfo *TInfo,
SourceLocation StartLoc,
SourceLocation IdLoc,
IdentifierInfo *Id);
Decl *ActOnExceptionDeclarator(Scope *S, Declarator &D);
StmtResult ActOnCXXCatchBlock(SourceLocation CatchLoc,
Decl *ExDecl, Stmt *HandlerBlock);
StmtResult ActOnCXXTryBlock(SourceLocation TryLoc, Stmt *TryBlock,
ArrayRef<Stmt *> Handlers);
StmtResult ActOnSEHTryBlock(bool IsCXXTry, // try (true) or __try (false) ?
SourceLocation TryLoc, Stmt *TryBlock,
Stmt *Handler);
StmtResult ActOnSEHExceptBlock(SourceLocation Loc,
Expr *FilterExpr,
Stmt *Block);
void ActOnStartSEHFinallyBlock();
void ActOnAbortSEHFinallyBlock();
StmtResult ActOnFinishSEHFinallyBlock(SourceLocation Loc, Stmt *Block);
StmtResult ActOnSEHLeaveStmt(SourceLocation Loc, Scope *CurScope);
void DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock);
bool ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const;
/// \brief If it's a file scoped decl that must warn if not used, keep track
/// of it.
void MarkUnusedFileScopedDecl(const DeclaratorDecl *D);
/// DiagnoseUnusedExprResult - If the statement passed in is an expression
/// whose result is unused, warn.
void DiagnoseUnusedExprResult(const Stmt *S);
void DiagnoseUnusedNestedTypedefs(const RecordDecl *D);
void DiagnoseUnusedDecl(const NamedDecl *ND);
/// Emit \p DiagID if statement located on \p StmtLoc has a suspicious null
/// statement as a \p Body, and it is located on the same line.
///
/// This helps prevent bugs due to typos, such as:
/// if (condition);
/// do_stuff();
void DiagnoseEmptyStmtBody(SourceLocation StmtLoc,
const Stmt *Body,
unsigned DiagID);
/// Warn if a for/while loop statement \p S, which is followed by
/// \p PossibleBody, has a suspicious null statement as a body.
void DiagnoseEmptyLoopBody(const Stmt *S,
const Stmt *PossibleBody);
/// Warn if a value is moved to itself.
void DiagnoseSelfMove(const Expr *LHSExpr, const Expr *RHSExpr,
SourceLocation OpLoc);
/// \brief Warn if we're implicitly casting from a _Nullable pointer type to a
/// _Nonnull one.
void diagnoseNullableToNonnullConversion(QualType DstType, QualType SrcType,
SourceLocation Loc);
ParsingDeclState PushParsingDeclaration(sema::DelayedDiagnosticPool &pool) {
return DelayedDiagnostics.push(pool);
}
void PopParsingDeclaration(ParsingDeclState state, Decl *decl);
typedef ProcessingContextState ParsingClassState;
ParsingClassState PushParsingClass() {
return DelayedDiagnostics.pushUndelayed();
}
void PopParsingClass(ParsingClassState state) {
DelayedDiagnostics.popUndelayed(state);
}
void redelayDiagnostics(sema::DelayedDiagnosticPool &pool);
void EmitAvailabilityWarning(AvailabilityResult AR, NamedDecl *D,
StringRef Message, SourceLocation Loc,
const ObjCInterfaceDecl *UnknownObjCClass,
const ObjCPropertyDecl *ObjCProperty,
bool ObjCPropertyAccess);
bool makeUnavailableInSystemHeader(SourceLocation loc,
UnavailableAttr::ImplicitReason reason);
/// \brief Issue any -Wunguarded-availability warnings in \c FD
void DiagnoseUnguardedAvailabilityViolations(Decl *FD);
//===--------------------------------------------------------------------===//
// Expression Parsing Callbacks: SemaExpr.cpp.
bool CanUseDecl(NamedDecl *D, bool TreatUnavailableAsInvalid);
bool DiagnoseUseOfDecl(NamedDecl *D, SourceLocation Loc,
const ObjCInterfaceDecl *UnknownObjCClass=nullptr,
bool ObjCPropertyAccess=false);
void NoteDeletedFunction(FunctionDecl *FD);
void NoteDeletedInheritingConstructor(CXXConstructorDecl *CD);
std::string getDeletedOrUnavailableSuffix(const FunctionDecl *FD);
bool DiagnosePropertyAccessorMismatch(ObjCPropertyDecl *PD,
ObjCMethodDecl *Getter,
SourceLocation Loc);
void DiagnoseSentinelCalls(NamedDecl *D, SourceLocation Loc,
ArrayRef<Expr *> Args);
void PushExpressionEvaluationContext(ExpressionEvaluationContext NewContext,
Decl *LambdaContextDecl = nullptr,
bool IsDecltype = false);
enum ReuseLambdaContextDecl_t { ReuseLambdaContextDecl };
void PushExpressionEvaluationContext(ExpressionEvaluationContext NewContext,
ReuseLambdaContextDecl_t,
bool IsDecltype = false);
void PopExpressionEvaluationContext();
void DiscardCleanupsInEvaluationContext();
ExprResult TransformToPotentiallyEvaluated(Expr *E);
ExprResult HandleExprEvaluationContextForTypeof(Expr *E);
ExprResult ActOnConstantExpression(ExprResult Res);
// Functions for marking a declaration referenced. These functions also
// contain the relevant logic for marking if a reference to a function or
// variable is an odr-use (in the C++11 sense). There are separate variants
// for expressions referring to a decl; these exist because odr-use marking
// needs to be delayed for some constant variables when we build one of the
// named expressions.
//
// MightBeOdrUse indicates whether the use could possibly be an odr-use, and
// should usually be true. This only needs to be set to false if the lack of
// odr-use cannot be determined from the current context (for instance,
// because the name denotes a virtual function and was written without an
// explicit nested-name-specifier).
void MarkAnyDeclReferenced(SourceLocation Loc, Decl *D, bool MightBeOdrUse);
void MarkFunctionReferenced(SourceLocation Loc, FunctionDecl *Func,
bool MightBeOdrUse = true);
void MarkVariableReferenced(SourceLocation Loc, VarDecl *Var);
void MarkDeclRefReferenced(DeclRefExpr *E);
void MarkMemberReferenced(MemberExpr *E);
void UpdateMarkingForLValueToRValue(Expr *E);
void CleanupVarDeclMarking();
enum TryCaptureKind {
TryCapture_Implicit, TryCapture_ExplicitByVal, TryCapture_ExplicitByRef
};
/// \brief Try to capture the given variable.
///
/// \param Var The variable to capture.
///
/// \param Loc The location at which the capture occurs.
///
/// \param Kind The kind of capture, which may be implicit (for either a
/// block or a lambda), or explicit by-value or by-reference (for a lambda).
///
/// \param EllipsisLoc The location of the ellipsis, if one is provided in
/// an explicit lambda capture.
///
/// \param BuildAndDiagnose Whether we are actually supposed to add the
/// captures or diagnose errors. If false, this routine merely check whether
/// the capture can occur without performing the capture itself or complaining
/// if the variable cannot be captured.
///
/// \param CaptureType Will be set to the type of the field used to capture
/// this variable in the innermost block or lambda. Only valid when the
/// variable can be captured.
///
/// \param DeclRefType Will be set to the type of a reference to the capture
/// from within the current scope. Only valid when the variable can be
/// captured.
///
/// \param FunctionScopeIndexToStopAt If non-null, it points to the index
/// of the FunctionScopeInfo stack beyond which we do not attempt to capture.
/// This is useful when enclosing lambdas must speculatively capture
/// variables that may or may not be used in certain specializations of
/// a nested generic lambda.
///
/// \returns true if an error occurred (i.e., the variable cannot be
/// captured) and false if the capture succeeded.
bool tryCaptureVariable(VarDecl *Var, SourceLocation Loc, TryCaptureKind Kind,
SourceLocation EllipsisLoc, bool BuildAndDiagnose,
QualType &CaptureType,
QualType &DeclRefType,
const unsigned *const FunctionScopeIndexToStopAt);
/// \brief Try to capture the given variable.
bool tryCaptureVariable(VarDecl *Var, SourceLocation Loc,
TryCaptureKind Kind = TryCapture_Implicit,
SourceLocation EllipsisLoc = SourceLocation());
/// \brief Checks if the variable must be captured.
bool NeedToCaptureVariable(VarDecl *Var, SourceLocation Loc);
/// \brief Given a variable, determine the type that a reference to that
/// variable will have in the given scope.
QualType getCapturedDeclRefType(VarDecl *Var, SourceLocation Loc);
void MarkDeclarationsReferencedInType(SourceLocation Loc, QualType T);
void MarkDeclarationsReferencedInExpr(Expr *E,
bool SkipLocalVariables = false);
/// \brief Try to recover by turning the given expression into a
/// call. Returns true if recovery was attempted or an error was
/// emitted; this may also leave the ExprResult invalid.
bool tryToRecoverWithCall(ExprResult &E, const PartialDiagnostic &PD,
bool ForceComplain = false,
bool (*IsPlausibleResult)(QualType) = nullptr);
/// \brief Figure out if an expression could be turned into a call.
bool tryExprAsCall(Expr &E, QualType &ZeroArgCallReturnTy,
UnresolvedSetImpl &NonTemplateOverloads);
/// \brief Conditionally issue a diagnostic based on the current
/// evaluation context.
///
/// \param Statement If Statement is non-null, delay reporting the
/// diagnostic until the function body is parsed, and then do a basic
/// reachability analysis to determine if the statement is reachable.
/// If it is unreachable, the diagnostic will not be emitted.
bool DiagRuntimeBehavior(SourceLocation Loc, const Stmt *Statement,
const PartialDiagnostic &PD);
// Primary Expressions.
SourceRange getExprRange(Expr *E) const;
ExprResult ActOnIdExpression(
Scope *S, CXXScopeSpec &SS, SourceLocation TemplateKWLoc,
UnqualifiedId &Id, bool HasTrailingLParen, bool IsAddressOfOperand,
std::unique_ptr<CorrectionCandidateCallback> CCC = nullptr,
bool IsInlineAsmIdentifier = false, Token *KeywordReplacement = nullptr);
void DecomposeUnqualifiedId(const UnqualifiedId &Id,
TemplateArgumentListInfo &Buffer,
DeclarationNameInfo &NameInfo,
const TemplateArgumentListInfo *&TemplateArgs);
bool
DiagnoseEmptyLookup(Scope *S, CXXScopeSpec &SS, LookupResult &R,
std::unique_ptr<CorrectionCandidateCallback> CCC,
TemplateArgumentListInfo *ExplicitTemplateArgs = nullptr,
ArrayRef<Expr *> Args = None, TypoExpr **Out = nullptr);
ExprResult LookupInObjCMethod(LookupResult &LookUp, Scope *S,
IdentifierInfo *II,
bool AllowBuiltinCreation=false);
ExprResult ActOnDependentIdExpression(const CXXScopeSpec &SS,
SourceLocation TemplateKWLoc,
const DeclarationNameInfo &NameInfo,
bool isAddressOfOperand,
const TemplateArgumentListInfo *TemplateArgs);
ExprResult BuildDeclRefExpr(ValueDecl *D, QualType Ty,
ExprValueKind VK,
SourceLocation Loc,
const CXXScopeSpec *SS = nullptr);
ExprResult
BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
const DeclarationNameInfo &NameInfo,
const CXXScopeSpec *SS = nullptr,
NamedDecl *FoundD = nullptr,
const TemplateArgumentListInfo *TemplateArgs = nullptr);
ExprResult
BuildAnonymousStructUnionMemberReference(
const CXXScopeSpec &SS,
SourceLocation nameLoc,
IndirectFieldDecl *indirectField,
DeclAccessPair FoundDecl = DeclAccessPair::make(nullptr, AS_none),
Expr *baseObjectExpr = nullptr,
SourceLocation opLoc = SourceLocation());
ExprResult BuildPossibleImplicitMemberExpr(const CXXScopeSpec &SS,
SourceLocation TemplateKWLoc,
LookupResult &R,
const TemplateArgumentListInfo *TemplateArgs,
const Scope *S);
ExprResult BuildImplicitMemberExpr(const CXXScopeSpec &SS,
SourceLocation TemplateKWLoc,
LookupResult &R,
const TemplateArgumentListInfo *TemplateArgs,
bool IsDefiniteInstance,
const Scope *S);
bool UseArgumentDependentLookup(const CXXScopeSpec &SS,
const LookupResult &R,
bool HasTrailingLParen);
ExprResult
BuildQualifiedDeclarationNameExpr(CXXScopeSpec &SS,
const DeclarationNameInfo &NameInfo,
bool IsAddressOfOperand, const Scope *S,
TypeSourceInfo **RecoveryTSI = nullptr);
ExprResult BuildDependentDeclRefExpr(const CXXScopeSpec &SS,
SourceLocation TemplateKWLoc,
const DeclarationNameInfo &NameInfo,
const TemplateArgumentListInfo *TemplateArgs);
ExprResult BuildDeclarationNameExpr(const CXXScopeSpec &SS,
LookupResult &R,
bool NeedsADL,
bool AcceptInvalidDecl = false);
ExprResult BuildDeclarationNameExpr(
const CXXScopeSpec &SS, const DeclarationNameInfo &NameInfo, NamedDecl *D,
NamedDecl *FoundD = nullptr,
const TemplateArgumentListInfo *TemplateArgs = nullptr,
bool AcceptInvalidDecl = false);
ExprResult BuildLiteralOperatorCall(LookupResult &R,
DeclarationNameInfo &SuffixInfo,
ArrayRef<Expr *> Args,
SourceLocation LitEndLoc,
TemplateArgumentListInfo *ExplicitTemplateArgs = nullptr);
ExprResult BuildPredefinedExpr(SourceLocation Loc,
PredefinedExpr::IdentType IT);
ExprResult ActOnPredefinedExpr(SourceLocation Loc, tok::TokenKind Kind);
ExprResult ActOnIntegerConstant(SourceLocation Loc, uint64_t Val);
bool CheckLoopHintExpr(Expr *E, SourceLocation Loc);
ExprResult ActOnNumericConstant(const Token &Tok, Scope *UDLScope = nullptr);
ExprResult ActOnCharacterConstant(const Token &Tok,
Scope *UDLScope = nullptr);
ExprResult ActOnParenExpr(SourceLocation L, SourceLocation R, Expr *E);
ExprResult ActOnParenListExpr(SourceLocation L,
SourceLocation R,
MultiExprArg Val);
/// ActOnStringLiteral - The specified tokens were lexed as pasted string
/// fragments (e.g. "foo" "bar" L"baz").
ExprResult ActOnStringLiteral(ArrayRef<Token> StringToks,
Scope *UDLScope = nullptr);
ExprResult ActOnGenericSelectionExpr(SourceLocation KeyLoc,
SourceLocation DefaultLoc,
SourceLocation RParenLoc,
Expr *ControllingExpr,
ArrayRef<ParsedType> ArgTypes,
ArrayRef<Expr *> ArgExprs);
ExprResult CreateGenericSelectionExpr(SourceLocation KeyLoc,
SourceLocation DefaultLoc,
SourceLocation RParenLoc,
Expr *ControllingExpr,
ArrayRef<TypeSourceInfo *> Types,
ArrayRef<Expr *> Exprs);
// Binary/Unary Operators. 'Tok' is the token for the operator.
ExprResult CreateBuiltinUnaryOp(SourceLocation OpLoc, UnaryOperatorKind Opc,
Expr *InputExpr);
ExprResult BuildUnaryOp(Scope *S, SourceLocation OpLoc,
UnaryOperatorKind Opc, Expr *Input);
ExprResult ActOnUnaryOp(Scope *S, SourceLocation OpLoc,
tok::TokenKind Op, Expr *Input);
QualType CheckAddressOfOperand(ExprResult &Operand, SourceLocation OpLoc);
ExprResult CreateUnaryExprOrTypeTraitExpr(TypeSourceInfo *TInfo,
SourceLocation OpLoc,
UnaryExprOrTypeTrait ExprKind,
SourceRange R);
ExprResult CreateUnaryExprOrTypeTraitExpr(Expr *E, SourceLocation OpLoc,
UnaryExprOrTypeTrait ExprKind);
ExprResult
ActOnUnaryExprOrTypeTraitExpr(SourceLocation OpLoc,
UnaryExprOrTypeTrait ExprKind,
bool IsType, void *TyOrEx,
SourceRange ArgRange);
ExprResult CheckPlaceholderExpr(Expr *E);
bool CheckVecStepExpr(Expr *E);
bool CheckUnaryExprOrTypeTraitOperand(Expr *E, UnaryExprOrTypeTrait ExprKind);
bool CheckUnaryExprOrTypeTraitOperand(QualType ExprType, SourceLocation OpLoc,
SourceRange ExprRange,
UnaryExprOrTypeTrait ExprKind);
ExprResult ActOnSizeofParameterPackExpr(Scope *S,
SourceLocation OpLoc,
IdentifierInfo &Name,
SourceLocation NameLoc,
SourceLocation RParenLoc);
ExprResult ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc,
tok::TokenKind Kind, Expr *Input);
ExprResult ActOnArraySubscriptExpr(Scope *S, Expr *Base, SourceLocation LLoc,
Expr *Idx, SourceLocation RLoc);
ExprResult CreateBuiltinArraySubscriptExpr(Expr *Base, SourceLocation LLoc,
Expr *Idx, SourceLocation RLoc);
ExprResult ActOnOMPArraySectionExpr(Expr *Base, SourceLocation LBLoc,
Expr *LowerBound, SourceLocation ColonLoc,
Expr *Length, SourceLocation RBLoc);
// This struct is for use by ActOnMemberAccess to allow
// BuildMemberReferenceExpr to be able to reinvoke ActOnMemberAccess after
// changing the access operator from a '.' to a '->' (to see if that is the
// change needed to fix an error about an unknown member, e.g. when the class
// defines a custom operator->).
struct ActOnMemberAccessExtraArgs {
Scope *S;
UnqualifiedId &Id;
Decl *ObjCImpDecl;
};
ExprResult BuildMemberReferenceExpr(
Expr *Base, QualType BaseType, SourceLocation OpLoc, bool IsArrow,
CXXScopeSpec &SS, SourceLocation TemplateKWLoc,
NamedDecl *FirstQualifierInScope, const DeclarationNameInfo &NameInfo,
const TemplateArgumentListInfo *TemplateArgs,
const Scope *S,
ActOnMemberAccessExtraArgs *ExtraArgs = nullptr);
ExprResult
BuildMemberReferenceExpr(Expr *Base, QualType BaseType, SourceLocation OpLoc,
bool IsArrow, const CXXScopeSpec &SS,
SourceLocation TemplateKWLoc,
NamedDecl *FirstQualifierInScope, LookupResult &R,
const TemplateArgumentListInfo *TemplateArgs,
const Scope *S,
bool SuppressQualifierCheck = false,
ActOnMemberAccessExtraArgs *ExtraArgs = nullptr);
ExprResult BuildFieldReferenceExpr(Expr *BaseExpr, bool IsArrow,
SourceLocation OpLoc,
const CXXScopeSpec &SS, FieldDecl *Field,
DeclAccessPair FoundDecl,
const DeclarationNameInfo &MemberNameInfo);
ExprResult PerformMemberExprBaseConversion(Expr *Base, bool IsArrow);
bool CheckQualifiedMemberReference(Expr *BaseExpr, QualType BaseType,
const CXXScopeSpec &SS,
const LookupResult &R);
ExprResult ActOnDependentMemberExpr(Expr *Base, QualType BaseType,
bool IsArrow, SourceLocation OpLoc,
const CXXScopeSpec &SS,
SourceLocation TemplateKWLoc,
NamedDecl *FirstQualifierInScope,
const DeclarationNameInfo &NameInfo,
const TemplateArgumentListInfo *TemplateArgs);
ExprResult ActOnMemberAccessExpr(Scope *S, Expr *Base,
SourceLocation OpLoc,
tok::TokenKind OpKind,
CXXScopeSpec &SS,
SourceLocation TemplateKWLoc,
UnqualifiedId &Member,
Decl *ObjCImpDecl);
void ActOnDefaultCtorInitializers(Decl *CDtorDecl);
bool ConvertArgumentsForCall(CallExpr *Call, Expr *Fn,
FunctionDecl *FDecl,
const FunctionProtoType *Proto,
ArrayRef<Expr *> Args,
SourceLocation RParenLoc,
bool ExecConfig = false);
void CheckStaticArrayArgument(SourceLocation CallLoc,
ParmVarDecl *Param,
const Expr *ArgExpr);
/// ActOnCallExpr - Handle a call to Fn with the specified array of arguments.
/// This provides the location of the left/right parens and a list of comma
/// locations.
ExprResult ActOnCallExpr(Scope *S, Expr *Fn, SourceLocation LParenLoc,
MultiExprArg ArgExprs, SourceLocation RParenLoc,
Expr *ExecConfig = nullptr,
bool IsExecConfig = false);
ExprResult BuildResolvedCallExpr(Expr *Fn, NamedDecl *NDecl,
SourceLocation LParenLoc,
ArrayRef<Expr *> Arg,
SourceLocation RParenLoc,
Expr *Config = nullptr,
bool IsExecConfig = false);
ExprResult ActOnCUDAExecConfigExpr(Scope *S, SourceLocation LLLLoc,
MultiExprArg ExecConfig,
SourceLocation GGGLoc);
ExprResult ActOnCastExpr(Scope *S, SourceLocation LParenLoc,
Declarator &D, ParsedType &Ty,
SourceLocation RParenLoc, Expr *CastExpr);
ExprResult BuildCStyleCastExpr(SourceLocation LParenLoc,
TypeSourceInfo *Ty,
SourceLocation RParenLoc,
Expr *Op);
CastKind PrepareScalarCast(ExprResult &src, QualType destType);
/// \brief Build an altivec or OpenCL literal.
ExprResult BuildVectorLiteral(SourceLocation LParenLoc,
SourceLocation RParenLoc, Expr *E,
TypeSourceInfo *TInfo);
ExprResult MaybeConvertParenListExprToParenExpr(Scope *S, Expr *ME);
ExprResult ActOnCompoundLiteral(SourceLocation LParenLoc,
ParsedType Ty,
SourceLocation RParenLoc,
Expr *InitExpr);
ExprResult BuildCompoundLiteralExpr(SourceLocation LParenLoc,
TypeSourceInfo *TInfo,
SourceLocation RParenLoc,
Expr *LiteralExpr);
ExprResult ActOnInitList(SourceLocation LBraceLoc,
MultiExprArg InitArgList,
SourceLocation RBraceLoc);
ExprResult ActOnDesignatedInitializer(Designation &Desig,
SourceLocation Loc,
bool GNUSyntax,
ExprResult Init);
private:
static BinaryOperatorKind ConvertTokenKindToBinaryOpcode(tok::TokenKind Kind);
public:
ExprResult ActOnBinOp(Scope *S, SourceLocation TokLoc,
tok::TokenKind Kind, Expr *LHSExpr, Expr *RHSExpr);
ExprResult BuildBinOp(Scope *S, SourceLocation OpLoc,
BinaryOperatorKind Opc, Expr *LHSExpr, Expr *RHSExpr);
ExprResult CreateBuiltinBinOp(SourceLocation OpLoc, BinaryOperatorKind Opc,
Expr *LHSExpr, Expr *RHSExpr);
void DiagnoseCommaOperator(const Expr *LHS, SourceLocation Loc);
/// ActOnConditionalOp - Parse a ?: operation. Note that 'LHS' may be null
/// in the case of a the GNU conditional expr extension.
ExprResult ActOnConditionalOp(SourceLocation QuestionLoc,
SourceLocation ColonLoc,
Expr *CondExpr, Expr *LHSExpr, Expr *RHSExpr);
/// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo".
ExprResult ActOnAddrLabel(SourceLocation OpLoc, SourceLocation LabLoc,
LabelDecl *TheDecl);
void ActOnStartStmtExpr();
ExprResult ActOnStmtExpr(SourceLocation LPLoc, Stmt *SubStmt,
SourceLocation RPLoc); // "({..})"
void ActOnStmtExprError();
// __builtin_offsetof(type, identifier(.identifier|[expr])*)
struct OffsetOfComponent {
SourceLocation LocStart, LocEnd;
bool isBrackets; // true if [expr], false if .ident
union {
IdentifierInfo *IdentInfo;
Expr *E;
} U;
};
/// __builtin_offsetof(type, a.b[123][456].c)
ExprResult BuildBuiltinOffsetOf(SourceLocation BuiltinLoc,
TypeSourceInfo *TInfo,
ArrayRef<OffsetOfComponent> Components,
SourceLocation RParenLoc);
ExprResult ActOnBuiltinOffsetOf(Scope *S,
SourceLocation BuiltinLoc,
SourceLocation TypeLoc,
ParsedType ParsedArgTy,
ArrayRef<OffsetOfComponent> Components,
SourceLocation RParenLoc);
// __builtin_choose_expr(constExpr, expr1, expr2)
ExprResult ActOnChooseExpr(SourceLocation BuiltinLoc,
Expr *CondExpr, Expr *LHSExpr,
Expr *RHSExpr, SourceLocation RPLoc);
// __builtin_va_arg(expr, type)
ExprResult ActOnVAArg(SourceLocation BuiltinLoc, Expr *E, ParsedType Ty,
SourceLocation RPLoc);
ExprResult BuildVAArgExpr(SourceLocation BuiltinLoc, Expr *E,
TypeSourceInfo *TInfo, SourceLocation RPLoc);
// __null
ExprResult ActOnGNUNullExpr(SourceLocation TokenLoc);
bool CheckCaseExpression(Expr *E);
/// \brief Describes the result of an "if-exists" condition check.
enum IfExistsResult {
/// \brief The symbol exists.
IER_Exists,
/// \brief The symbol does not exist.
IER_DoesNotExist,
/// \brief The name is a dependent name, so the results will differ
/// from one instantiation to the next.
IER_Dependent,
/// \brief An error occurred.
IER_Error
};
IfExistsResult
CheckMicrosoftIfExistsSymbol(Scope *S, CXXScopeSpec &SS,
const DeclarationNameInfo &TargetNameInfo);
IfExistsResult
CheckMicrosoftIfExistsSymbol(Scope *S, SourceLocation KeywordLoc,
bool IsIfExists, CXXScopeSpec &SS,
UnqualifiedId &Name);
StmtResult BuildMSDependentExistsStmt(SourceLocation KeywordLoc,
bool IsIfExists,
NestedNameSpecifierLoc QualifierLoc,
DeclarationNameInfo NameInfo,
Stmt *Nested);
StmtResult ActOnMSDependentExistsStmt(SourceLocation KeywordLoc,
bool IsIfExists,
CXXScopeSpec &SS, UnqualifiedId &Name,
Stmt *Nested);
//===------------------------- "Block" Extension ------------------------===//
/// ActOnBlockStart - This callback is invoked when a block literal is
/// started.
void ActOnBlockStart(SourceLocation CaretLoc, Scope *CurScope);
/// ActOnBlockArguments - This callback allows processing of block arguments.
/// If there are no arguments, this is still invoked.
void ActOnBlockArguments(SourceLocation CaretLoc, Declarator &ParamInfo,
Scope *CurScope);
/// ActOnBlockError - If there is an error parsing a block, this callback
/// is invoked to pop the information about the block from the action impl.
void ActOnBlockError(SourceLocation CaretLoc, Scope *CurScope);
/// ActOnBlockStmtExpr - This is called when the body of a block statement
/// literal was successfully completed. ^(int x){...}
ExprResult ActOnBlockStmtExpr(SourceLocation CaretLoc, Stmt *Body,
Scope *CurScope);
//===---------------------------- Clang Extensions ----------------------===//
/// __builtin_convertvector(...)
ExprResult ActOnConvertVectorExpr(Expr *E, ParsedType ParsedDestTy,
SourceLocation BuiltinLoc,
SourceLocation RParenLoc);
//===---------------------------- OpenCL Features -----------------------===//
/// __builtin_astype(...)
ExprResult ActOnAsTypeExpr(Expr *E, ParsedType ParsedDestTy,
SourceLocation BuiltinLoc,
SourceLocation RParenLoc);
//===---------------------------- C++ Features --------------------------===//
// Act on C++ namespaces
Decl *ActOnStartNamespaceDef(Scope *S, SourceLocation InlineLoc,
SourceLocation NamespaceLoc,
SourceLocation IdentLoc,
IdentifierInfo *Ident,
SourceLocation LBrace,
AttributeList *AttrList,
UsingDirectiveDecl * &UsingDecl);
void ActOnFinishNamespaceDef(Decl *Dcl, SourceLocation RBrace);
NamespaceDecl *getStdNamespace() const;
NamespaceDecl *getOrCreateStdNamespace();
CXXRecordDecl *getStdBadAlloc() const;
/// \brief Tests whether Ty is an instance of std::initializer_list and, if
/// it is and Element is not NULL, assigns the element type to Element.
bool isStdInitializerList(QualType Ty, QualType *Element);
/// \brief Looks for the std::initializer_list template and instantiates it
/// with Element, or emits an error if it's not found.
///
/// \returns The instantiated template, or null on error.
QualType BuildStdInitializerList(QualType Element, SourceLocation Loc);
/// \brief Determine whether Ctor is an initializer-list constructor, as
/// defined in [dcl.init.list]p2.
bool isInitListConstructor(const CXXConstructorDecl *Ctor);
Decl *ActOnUsingDirective(Scope *CurScope,
SourceLocation UsingLoc,
SourceLocation NamespcLoc,
CXXScopeSpec &SS,
SourceLocation IdentLoc,
IdentifierInfo *NamespcName,
AttributeList *AttrList);
void PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir);
Decl *ActOnNamespaceAliasDef(Scope *CurScope,
SourceLocation NamespaceLoc,
SourceLocation AliasLoc,
IdentifierInfo *Alias,
CXXScopeSpec &SS,
SourceLocation IdentLoc,
IdentifierInfo *Ident);
void HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow);
bool CheckUsingShadowDecl(UsingDecl *UD, NamedDecl *Target,
const LookupResult &PreviousDecls,
UsingShadowDecl *&PrevShadow);
UsingShadowDecl *BuildUsingShadowDecl(Scope *S, UsingDecl *UD,
NamedDecl *Target,
UsingShadowDecl *PrevDecl);
bool CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
bool HasTypenameKeyword,
const CXXScopeSpec &SS,
SourceLocation NameLoc,
const LookupResult &Previous);
bool CheckUsingDeclQualifier(SourceLocation UsingLoc,
const CXXScopeSpec &SS,
const DeclarationNameInfo &NameInfo,
SourceLocation NameLoc);
NamedDecl *BuildUsingDeclaration(Scope *S, AccessSpecifier AS,
SourceLocation UsingLoc,
CXXScopeSpec &SS,
DeclarationNameInfo NameInfo,
AttributeList *AttrList,
bool IsInstantiation,
bool HasTypenameKeyword,
SourceLocation TypenameLoc);
bool CheckInheritingConstructorUsingDecl(UsingDecl *UD);
/// Given a derived-class using shadow declaration for a constructor and the
/// correspnding base class constructor, find or create the implicit
/// synthesized derived class constructor to use for this initialization.
CXXConstructorDecl *
findInheritingConstructor(SourceLocation Loc, CXXConstructorDecl *BaseCtor,
ConstructorUsingShadowDecl *DerivedShadow);
Decl *ActOnUsingDeclaration(Scope *CurScope,
AccessSpecifier AS,
bool HasUsingKeyword,
SourceLocation UsingLoc,
CXXScopeSpec &SS,
UnqualifiedId &Name,
AttributeList *AttrList,
bool HasTypenameKeyword,
SourceLocation TypenameLoc);
Decl *ActOnAliasDeclaration(Scope *CurScope,
AccessSpecifier AS,
MultiTemplateParamsArg TemplateParams,
SourceLocation UsingLoc,
UnqualifiedId &Name,
AttributeList *AttrList,
TypeResult Type,
Decl *DeclFromDeclSpec);
/// BuildCXXConstructExpr - Creates a complete call to a constructor,
/// including handling of its default argument expressions.
///
/// \param ConstructKind - a CXXConstructExpr::ConstructionKind
ExprResult
BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
NamedDecl *FoundDecl,
CXXConstructorDecl *Constructor, MultiExprArg Exprs,
bool HadMultipleCandidates, bool IsListInitialization,
bool IsStdInitListInitialization,
bool RequiresZeroInit, unsigned ConstructKind,
SourceRange ParenRange);
/// Build a CXXConstructExpr whose constructor has already been resolved if
/// it denotes an inherited constructor.
ExprResult
BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
CXXConstructorDecl *Constructor, bool Elidable,
MultiExprArg Exprs,
bool HadMultipleCandidates, bool IsListInitialization,
bool IsStdInitListInitialization,
bool RequiresZeroInit, unsigned ConstructKind,
SourceRange ParenRange);
// FIXME: Can we remove this and have the above BuildCXXConstructExpr check if
// the constructor can be elidable?
ExprResult
BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
NamedDecl *FoundDecl,
CXXConstructorDecl *Constructor, bool Elidable,
MultiExprArg Exprs, bool HadMultipleCandidates,
bool IsListInitialization,
bool IsStdInitListInitialization, bool RequiresZeroInit,
unsigned ConstructKind, SourceRange ParenRange);
ExprResult BuildCXXDefaultInitExpr(SourceLocation Loc, FieldDecl *Field);
/// BuildCXXDefaultArgExpr - Creates a CXXDefaultArgExpr, instantiating
/// the default expr if needed.
ExprResult BuildCXXDefaultArgExpr(SourceLocation CallLoc,
FunctionDecl *FD,
ParmVarDecl *Param);
/// FinalizeVarWithDestructor - Prepare for calling destructor on the
/// constructed variable.
void FinalizeVarWithDestructor(VarDecl *VD, const RecordType *DeclInitType);
/// \brief Helper class that collects exception specifications for
/// implicitly-declared special member functions.
class ImplicitExceptionSpecification {
// Pointer to allow copying
Sema *Self;
// We order exception specifications thus:
// noexcept is the most restrictive, but is only used in C++11.
// throw() comes next.
// Then a throw(collected exceptions)
// Finally no specification, which is expressed as noexcept(false).
// throw(...) is used instead if any called function uses it.
ExceptionSpecificationType ComputedEST;
llvm::SmallPtrSet<CanQualType, 4> ExceptionsSeen;
SmallVector<QualType, 4> Exceptions;
void ClearExceptions() {
ExceptionsSeen.clear();
Exceptions.clear();
}
public:
explicit ImplicitExceptionSpecification(Sema &Self)
: Self(&Self), ComputedEST(EST_BasicNoexcept) {
if (!Self.getLangOpts().CPlusPlus11)
ComputedEST = EST_DynamicNone;
}
/// \brief Get the computed exception specification type.
ExceptionSpecificationType getExceptionSpecType() const {
assert(ComputedEST != EST_ComputedNoexcept &&
"noexcept(expr) should not be a possible result");
return ComputedEST;
}
/// \brief The number of exceptions in the exception specification.
unsigned size() const { return Exceptions.size(); }
/// \brief The set of exceptions in the exception specification.
const QualType *data() const { return Exceptions.data(); }
/// \brief Integrate another called method into the collected data.
void CalledDecl(SourceLocation CallLoc, const CXXMethodDecl *Method);
/// \brief Integrate an invoked expression into the collected data.
void CalledExpr(Expr *E);
/// \brief Overwrite an EPI's exception specification with this
/// computed exception specification.
FunctionProtoType::ExceptionSpecInfo getExceptionSpec() const {
FunctionProtoType::ExceptionSpecInfo ESI;
ESI.Type = getExceptionSpecType();
if (ESI.Type == EST_Dynamic) {
ESI.Exceptions = Exceptions;
} else if (ESI.Type == EST_None) {
/// C++11 [except.spec]p14:
/// The exception-specification is noexcept(false) if the set of
/// potential exceptions of the special member function contains "any"
ESI.Type = EST_ComputedNoexcept;
ESI.NoexceptExpr = Self->ActOnCXXBoolLiteral(SourceLocation(),
tok::kw_false).get();
}
return ESI;
}
};
/// \brief Determine what sort of exception specification a defaulted
/// copy constructor of a class will have.
ImplicitExceptionSpecification
ComputeDefaultedDefaultCtorExceptionSpec(SourceLocation Loc,
CXXMethodDecl *MD);
/// \brief Determine what sort of exception specification a defaulted
/// default constructor of a class will have, and whether the parameter
/// will be const.
ImplicitExceptionSpecification
ComputeDefaultedCopyCtorExceptionSpec(CXXMethodDecl *MD);
/// \brief Determine what sort of exception specification a defautled
/// copy assignment operator of a class will have, and whether the
/// parameter will be const.
ImplicitExceptionSpecification
ComputeDefaultedCopyAssignmentExceptionSpec(CXXMethodDecl *MD);
/// \brief Determine what sort of exception specification a defaulted move
/// constructor of a class will have.
ImplicitExceptionSpecification
ComputeDefaultedMoveCtorExceptionSpec(CXXMethodDecl *MD);
/// \brief Determine what sort of exception specification a defaulted move
/// assignment operator of a class will have.
ImplicitExceptionSpecification
ComputeDefaultedMoveAssignmentExceptionSpec(CXXMethodDecl *MD);
/// \brief Determine what sort of exception specification a defaulted
/// destructor of a class will have.
ImplicitExceptionSpecification
ComputeDefaultedDtorExceptionSpec(CXXMethodDecl *MD);
/// \brief Determine what sort of exception specification an inheriting
/// constructor of a class will have.
ImplicitExceptionSpecification
ComputeInheritingCtorExceptionSpec(SourceLocation Loc,
CXXConstructorDecl *CD);
/// \brief Evaluate the implicit exception specification for a defaulted
/// special member function.
void EvaluateImplicitExceptionSpec(SourceLocation Loc, CXXMethodDecl *MD);
/// \brief Check the given exception-specification and update the
/// exception specification information with the results.
void checkExceptionSpecification(bool IsTopLevel,
ExceptionSpecificationType EST,
ArrayRef<ParsedType> DynamicExceptions,
ArrayRef<SourceRange> DynamicExceptionRanges,
Expr *NoexceptExpr,
SmallVectorImpl<QualType> &Exceptions,
FunctionProtoType::ExceptionSpecInfo &ESI);
/// \brief Determine if we're in a case where we need to (incorrectly) eagerly
/// parse an exception specification to work around a libstdc++ bug.
bool isLibstdcxxEagerExceptionSpecHack(const Declarator &D);
/// \brief Add an exception-specification to the given member function
/// (or member function template). The exception-specification was parsed
/// after the method itself was declared.
void actOnDelayedExceptionSpecification(Decl *Method,
ExceptionSpecificationType EST,
SourceRange SpecificationRange,
ArrayRef<ParsedType> DynamicExceptions,
ArrayRef<SourceRange> DynamicExceptionRanges,
Expr *NoexceptExpr);
class InheritedConstructorInfo;
/// \brief Determine if a special member function should have a deleted
/// definition when it is defaulted.
bool ShouldDeleteSpecialMember(CXXMethodDecl *MD, CXXSpecialMember CSM,
InheritedConstructorInfo *ICI = nullptr,
bool Diagnose = false);
/// \brief Declare the implicit default constructor for the given class.
///
/// \param ClassDecl The class declaration into which the implicit
/// default constructor will be added.
///
/// \returns The implicitly-declared default constructor.
CXXConstructorDecl *DeclareImplicitDefaultConstructor(
CXXRecordDecl *ClassDecl);
/// DefineImplicitDefaultConstructor - Checks for feasibility of
/// defining this constructor as the default constructor.
void DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
CXXConstructorDecl *Constructor);
/// \brief Declare the implicit destructor for the given class.
///
/// \param ClassDecl The class declaration into which the implicit
/// destructor will be added.
///
/// \returns The implicitly-declared destructor.
CXXDestructorDecl *DeclareImplicitDestructor(CXXRecordDecl *ClassDecl);
/// DefineImplicitDestructor - Checks for feasibility of
/// defining this destructor as the default destructor.
void DefineImplicitDestructor(SourceLocation CurrentLocation,
CXXDestructorDecl *Destructor);
/// \brief Build an exception spec for destructors that don't have one.
///
/// C++11 says that user-defined destructors with no exception spec get one
/// that looks as if the destructor was implicitly declared.
void AdjustDestructorExceptionSpec(CXXRecordDecl *ClassDecl,
CXXDestructorDecl *Destructor);
/// \brief Define the specified inheriting constructor.
void DefineInheritingConstructor(SourceLocation UseLoc,
CXXConstructorDecl *Constructor);
/// \brief Declare the implicit copy constructor for the given class.
///
/// \param ClassDecl The class declaration into which the implicit
/// copy constructor will be added.
///
/// \returns The implicitly-declared copy constructor.
CXXConstructorDecl *DeclareImplicitCopyConstructor(CXXRecordDecl *ClassDecl);
/// DefineImplicitCopyConstructor - Checks for feasibility of
/// defining this constructor as the copy constructor.
void DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
CXXConstructorDecl *Constructor);
/// \brief Declare the implicit move constructor for the given class.
///
/// \param ClassDecl The Class declaration into which the implicit
/// move constructor will be added.
///
/// \returns The implicitly-declared move constructor, or NULL if it wasn't
/// declared.
CXXConstructorDecl *DeclareImplicitMoveConstructor(CXXRecordDecl *ClassDecl);
/// DefineImplicitMoveConstructor - Checks for feasibility of
/// defining this constructor as the move constructor.
void DefineImplicitMoveConstructor(SourceLocation CurrentLocation,
CXXConstructorDecl *Constructor);
/// \brief Declare the implicit copy assignment operator for the given class.
///
/// \param ClassDecl The class declaration into which the implicit
/// copy assignment operator will be added.
///
/// \returns The implicitly-declared copy assignment operator.
CXXMethodDecl *DeclareImplicitCopyAssignment(CXXRecordDecl *ClassDecl);
/// \brief Defines an implicitly-declared copy assignment operator.
void DefineImplicitCopyAssignment(SourceLocation CurrentLocation,
CXXMethodDecl *MethodDecl);
/// \brief Declare the implicit move assignment operator for the given class.
///
/// \param ClassDecl The Class declaration into which the implicit
/// move assignment operator will be added.
///
/// \returns The implicitly-declared move assignment operator, or NULL if it
/// wasn't declared.
CXXMethodDecl *DeclareImplicitMoveAssignment(CXXRecordDecl *ClassDecl);
/// \brief Defines an implicitly-declared move assignment operator.
void DefineImplicitMoveAssignment(SourceLocation CurrentLocation,
CXXMethodDecl *MethodDecl);
/// \brief Force the declaration of any implicitly-declared members of this
/// class.
void ForceDeclarationOfImplicitMembers(CXXRecordDecl *Class);
/// \brief Check a completed declaration of an implicit special member.
void CheckImplicitSpecialMemberDeclaration(Scope *S, FunctionDecl *FD);
/// \brief Determine whether the given function is an implicitly-deleted
/// special member function.
bool isImplicitlyDeleted(FunctionDecl *FD);
/// \brief Check whether 'this' shows up in the type of a static member
/// function after the (naturally empty) cv-qualifier-seq would be.
///
/// \returns true if an error occurred.
bool checkThisInStaticMemberFunctionType(CXXMethodDecl *Method);
/// \brief Whether this' shows up in the exception specification of a static
/// member function.
bool checkThisInStaticMemberFunctionExceptionSpec(CXXMethodDecl *Method);
/// \brief Check whether 'this' shows up in the attributes of the given
/// static member function.
///
/// \returns true if an error occurred.
bool checkThisInStaticMemberFunctionAttributes(CXXMethodDecl *Method);
/// MaybeBindToTemporary - If the passed in expression has a record type with
/// a non-trivial destructor, this will return CXXBindTemporaryExpr. Otherwise
/// it simply returns the passed in expression.
ExprResult MaybeBindToTemporary(Expr *E);
bool CompleteConstructorCall(CXXConstructorDecl *Constructor,
MultiExprArg ArgsPtr,
SourceLocation Loc,
SmallVectorImpl<Expr*> &ConvertedArgs,
bool AllowExplicit = false,
bool IsListInitialization = false);
ParsedType getInheritingConstructorName(CXXScopeSpec &SS,
SourceLocation NameLoc,
IdentifierInfo &Name);
ParsedType getDestructorName(SourceLocation TildeLoc,
IdentifierInfo &II, SourceLocation NameLoc,
Scope *S, CXXScopeSpec &SS,
ParsedType ObjectType,
bool EnteringContext);
ParsedType getDestructorType(const DeclSpec& DS, ParsedType ObjectType);
// Checks that reinterpret casts don't have undefined behavior.
void CheckCompatibleReinterpretCast(QualType SrcType, QualType DestType,
bool IsDereference, SourceRange Range);
/// ActOnCXXNamedCast - Parse {dynamic,static,reinterpret,const}_cast's.
ExprResult ActOnCXXNamedCast(SourceLocation OpLoc,
tok::TokenKind Kind,
SourceLocation LAngleBracketLoc,
Declarator &D,
SourceLocation RAngleBracketLoc,
SourceLocation LParenLoc,
Expr *E,
SourceLocation RParenLoc);
ExprResult BuildCXXNamedCast(SourceLocation OpLoc,
tok::TokenKind Kind,
TypeSourceInfo *Ty,
Expr *E,
SourceRange AngleBrackets,
SourceRange Parens);
ExprResult BuildCXXTypeId(QualType TypeInfoType,
SourceLocation TypeidLoc,
TypeSourceInfo *Operand,
SourceLocation RParenLoc);
ExprResult BuildCXXTypeId(QualType TypeInfoType,
SourceLocation TypeidLoc,
Expr *Operand,
SourceLocation RParenLoc);
/// ActOnCXXTypeid - Parse typeid( something ).
ExprResult ActOnCXXTypeid(SourceLocation OpLoc,
SourceLocation LParenLoc, bool isType,
void *TyOrExpr,
SourceLocation RParenLoc);
ExprResult BuildCXXUuidof(QualType TypeInfoType,
SourceLocation TypeidLoc,
TypeSourceInfo *Operand,
SourceLocation RParenLoc);
ExprResult BuildCXXUuidof(QualType TypeInfoType,
SourceLocation TypeidLoc,
Expr *Operand,
SourceLocation RParenLoc);
/// ActOnCXXUuidof - Parse __uuidof( something ).
ExprResult ActOnCXXUuidof(SourceLocation OpLoc,
SourceLocation LParenLoc, bool isType,
void *TyOrExpr,
SourceLocation RParenLoc);
/// \brief Handle a C++1z fold-expression: ( expr op ... op expr ).
ExprResult ActOnCXXFoldExpr(SourceLocation LParenLoc, Expr *LHS,
tok::TokenKind Operator,
SourceLocation EllipsisLoc, Expr *RHS,
SourceLocation RParenLoc);
ExprResult BuildCXXFoldExpr(SourceLocation LParenLoc, Expr *LHS,
BinaryOperatorKind Operator,
SourceLocation EllipsisLoc, Expr *RHS,
SourceLocation RParenLoc);
ExprResult BuildEmptyCXXFoldExpr(SourceLocation EllipsisLoc,
BinaryOperatorKind Operator);
//// ActOnCXXThis - Parse 'this' pointer.
ExprResult ActOnCXXThis(SourceLocation loc);
/// \brief Try to retrieve the type of the 'this' pointer.
///
/// \returns The type of 'this', if possible. Otherwise, returns a NULL type.
QualType getCurrentThisType();
/// \brief When non-NULL, the C++ 'this' expression is allowed despite the
/// current context not being a non-static member function. In such cases,
/// this provides the type used for 'this'.
QualType CXXThisTypeOverride;
/// \brief RAII object used to temporarily allow the C++ 'this' expression
/// to be used, with the given qualifiers on the current class type.
class CXXThisScopeRAII {
Sema &S;
QualType OldCXXThisTypeOverride;
bool Enabled;
public:
/// \brief Introduce a new scope where 'this' may be allowed (when enabled),
/// using the given declaration (which is either a class template or a
/// class) along with the given qualifiers.
/// along with the qualifiers placed on '*this'.
CXXThisScopeRAII(Sema &S, Decl *ContextDecl, unsigned CXXThisTypeQuals,
bool Enabled = true);
~CXXThisScopeRAII();
};
/// \brief Make sure the value of 'this' is actually available in the current
/// context, if it is a potentially evaluated context.
///
/// \param Loc The location at which the capture of 'this' occurs.
///
/// \param Explicit Whether 'this' is explicitly captured in a lambda
/// capture list.
///
/// \param FunctionScopeIndexToStopAt If non-null, it points to the index
/// of the FunctionScopeInfo stack beyond which we do not attempt to capture.
/// This is useful when enclosing lambdas must speculatively capture
/// 'this' that may or may not be used in certain specializations of
/// a nested generic lambda (depending on whether the name resolves to
/// a non-static member function or a static function).
/// \return returns 'true' if failed, 'false' if success.
bool CheckCXXThisCapture(SourceLocation Loc, bool Explicit = false,
bool BuildAndDiagnose = true,
const unsigned *const FunctionScopeIndexToStopAt = nullptr,
bool ByCopy = false);
/// \brief Determine whether the given type is the type of *this that is used
/// outside of the body of a member function for a type that is currently
/// being defined.
bool isThisOutsideMemberFunctionBody(QualType BaseType);
/// ActOnCXXBoolLiteral - Parse {true,false} literals.
ExprResult ActOnCXXBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind);
/// ActOnObjCBoolLiteral - Parse {__objc_yes,__objc_no} literals.
ExprResult ActOnObjCBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind);
ExprResult
ActOnObjCAvailabilityCheckExpr(llvm::ArrayRef<AvailabilitySpec> AvailSpecs,
SourceLocation AtLoc, SourceLocation RParen);
/// ActOnCXXNullPtrLiteral - Parse 'nullptr'.
ExprResult ActOnCXXNullPtrLiteral(SourceLocation Loc);
//// ActOnCXXThrow - Parse throw expressions.
ExprResult ActOnCXXThrow(Scope *S, SourceLocation OpLoc, Expr *expr);
ExprResult BuildCXXThrow(SourceLocation OpLoc, Expr *Ex,
bool IsThrownVarInScope);
bool CheckCXXThrowOperand(SourceLocation ThrowLoc, QualType ThrowTy, Expr *E);
/// ActOnCXXTypeConstructExpr - Parse construction of a specified type.
/// Can be interpreted either as function-style casting ("int(x)")
/// or class type construction ("ClassType(x,y,z)")
/// or creation of a value-initialized type ("int()").
ExprResult ActOnCXXTypeConstructExpr(ParsedType TypeRep,
SourceLocation LParenLoc,
MultiExprArg Exprs,
SourceLocation RParenLoc);
ExprResult BuildCXXTypeConstructExpr(TypeSourceInfo *Type,
SourceLocation LParenLoc,
MultiExprArg Exprs,
SourceLocation RParenLoc);
/// ActOnCXXNew - Parsed a C++ 'new' expression.
ExprResult ActOnCXXNew(SourceLocation StartLoc, bool UseGlobal,
SourceLocation PlacementLParen,
MultiExprArg PlacementArgs,
SourceLocation PlacementRParen,
SourceRange TypeIdParens, Declarator &D,
Expr *Initializer);
ExprResult BuildCXXNew(SourceRange Range, bool UseGlobal,
SourceLocation PlacementLParen,
MultiExprArg PlacementArgs,
SourceLocation PlacementRParen,
SourceRange TypeIdParens,
QualType AllocType,
TypeSourceInfo *AllocTypeInfo,
Expr *ArraySize,
SourceRange DirectInitRange,
Expr *Initializer,
bool TypeMayContainAuto = true);
bool CheckAllocatedType(QualType AllocType, SourceLocation Loc,
SourceRange R);
bool FindAllocationFunctions(SourceLocation StartLoc, SourceRange Range,
bool UseGlobal, QualType AllocType, bool IsArray,
MultiExprArg PlaceArgs,
FunctionDecl *&OperatorNew,
FunctionDecl *&OperatorDelete);
bool FindAllocationOverload(SourceLocation StartLoc, SourceRange Range,
DeclarationName Name, MultiExprArg Args,
DeclContext *Ctx,
bool AllowMissing, FunctionDecl *&Operator,
bool Diagnose = true);
void DeclareGlobalNewDelete();
void DeclareGlobalAllocationFunction(DeclarationName Name, QualType Return,
QualType Param1,
QualType Param2 = QualType());
bool FindDeallocationFunction(SourceLocation StartLoc, CXXRecordDecl *RD,
DeclarationName Name, FunctionDecl* &Operator,
bool Diagnose = true);
FunctionDecl *FindUsualDeallocationFunction(SourceLocation StartLoc,
bool CanProvideSize,
DeclarationName Name);
/// ActOnCXXDelete - Parsed a C++ 'delete' expression
ExprResult ActOnCXXDelete(SourceLocation StartLoc,
bool UseGlobal, bool ArrayForm,
Expr *Operand);
void CheckVirtualDtorCall(CXXDestructorDecl *dtor, SourceLocation Loc,
bool IsDelete, bool CallCanBeVirtual,
bool WarnOnNonAbstractTypes,
SourceLocation DtorLoc);
ExprResult ActOnNoexceptExpr(SourceLocation KeyLoc, SourceLocation LParen,
Expr *Operand, SourceLocation RParen);
ExprResult BuildCXXNoexceptExpr(SourceLocation KeyLoc, Expr *Operand,
SourceLocation RParen);
/// \brief Parsed one of the type trait support pseudo-functions.
ExprResult ActOnTypeTrait(TypeTrait Kind, SourceLocation KWLoc,
ArrayRef<ParsedType> Args,
SourceLocation RParenLoc);
ExprResult BuildTypeTrait(TypeTrait Kind, SourceLocation KWLoc,
ArrayRef<TypeSourceInfo *> Args,
SourceLocation RParenLoc);
/// ActOnArrayTypeTrait - Parsed one of the bianry type trait support
/// pseudo-functions.
ExprResult ActOnArrayTypeTrait(ArrayTypeTrait ATT,
SourceLocation KWLoc,
ParsedType LhsTy,
Expr *DimExpr,
SourceLocation RParen);
ExprResult BuildArrayTypeTrait(ArrayTypeTrait ATT,
SourceLocation KWLoc,
TypeSourceInfo *TSInfo,
Expr *DimExpr,
SourceLocation RParen);
/// ActOnExpressionTrait - Parsed one of the unary type trait support
/// pseudo-functions.
ExprResult ActOnExpressionTrait(ExpressionTrait OET,
SourceLocation KWLoc,
Expr *Queried,
SourceLocation RParen);
ExprResult BuildExpressionTrait(ExpressionTrait OET,
SourceLocation KWLoc,
Expr *Queried,
SourceLocation RParen);
ExprResult ActOnStartCXXMemberReference(Scope *S,
Expr *Base,
SourceLocation OpLoc,
tok::TokenKind OpKind,
ParsedType &ObjectType,
bool &MayBePseudoDestructor);
ExprResult BuildPseudoDestructorExpr(Expr *Base,
SourceLocation OpLoc,
tok::TokenKind OpKind,
const CXXScopeSpec &SS,
TypeSourceInfo *ScopeType,
SourceLocation CCLoc,
SourceLocation TildeLoc,
PseudoDestructorTypeStorage DestroyedType);
ExprResult ActOnPseudoDestructorExpr(Scope *S, Expr *Base,
SourceLocation OpLoc,
tok::TokenKind OpKind,
CXXScopeSpec &SS,
UnqualifiedId &FirstTypeName,
SourceLocation CCLoc,
SourceLocation TildeLoc,
UnqualifiedId &SecondTypeName);
ExprResult ActOnPseudoDestructorExpr(Scope *S, Expr *Base,
SourceLocation OpLoc,
tok::TokenKind OpKind,
SourceLocation TildeLoc,
const DeclSpec& DS);
/// MaybeCreateExprWithCleanups - If the current full-expression
/// requires any cleanups, surround it with a ExprWithCleanups node.
/// Otherwise, just returns the passed-in expression.
Expr *MaybeCreateExprWithCleanups(Expr *SubExpr);
Stmt *MaybeCreateStmtWithCleanups(Stmt *SubStmt);
ExprResult MaybeCreateExprWithCleanups(ExprResult SubExpr);
MaterializeTemporaryExpr *
CreateMaterializeTemporaryExpr(QualType T, Expr *Temporary,
bool BoundToLvalueReference);
ExprResult ActOnFinishFullExpr(Expr *Expr) {
return ActOnFinishFullExpr(Expr, Expr ? Expr->getExprLoc()
: SourceLocation());
}
ExprResult ActOnFinishFullExpr(Expr *Expr, SourceLocation CC,
bool DiscardedValue = false,
bool IsConstexpr = false,
bool IsLambdaInitCaptureInitializer = false);
StmtResult ActOnFinishFullStmt(Stmt *Stmt);
// Marks SS invalid if it represents an incomplete type.
bool RequireCompleteDeclContext(CXXScopeSpec &SS, DeclContext *DC);
DeclContext *computeDeclContext(QualType T);
DeclContext *computeDeclContext(const CXXScopeSpec &SS,
bool EnteringContext = false);
bool isDependentScopeSpecifier(const CXXScopeSpec &SS);
CXXRecordDecl *getCurrentInstantiationOf(NestedNameSpecifier *NNS);
/// \brief The parser has parsed a global nested-name-specifier '::'.
///
/// \param CCLoc The location of the '::'.
///
/// \param SS The nested-name-specifier, which will be updated in-place
/// to reflect the parsed nested-name-specifier.
///
/// \returns true if an error occurred, false otherwise.
bool ActOnCXXGlobalScopeSpecifier(SourceLocation CCLoc, CXXScopeSpec &SS);
/// \brief The parser has parsed a '__super' nested-name-specifier.
///
/// \param SuperLoc The location of the '__super' keyword.
///
/// \param ColonColonLoc The location of the '::'.
///
/// \param SS The nested-name-specifier, which will be updated in-place
/// to reflect the parsed nested-name-specifier.
///
/// \returns true if an error occurred, false otherwise.
bool ActOnSuperScopeSpecifier(SourceLocation SuperLoc,
SourceLocation ColonColonLoc, CXXScopeSpec &SS);
bool isAcceptableNestedNameSpecifier(const NamedDecl *SD,
bool *CanCorrect = nullptr);
NamedDecl *FindFirstQualifierInScope(Scope *S, NestedNameSpecifier *NNS);
/// \brief Keeps information about an identifier in a nested-name-spec.
///
struct NestedNameSpecInfo {
/// \brief The type of the object, if we're parsing nested-name-specifier in
/// a member access expression.
ParsedType ObjectType;
/// \brief The identifier preceding the '::'.
IdentifierInfo *Identifier;
/// \brief The location of the identifier.
SourceLocation IdentifierLoc;
/// \brief The location of the '::'.
SourceLocation CCLoc;
/// \brief Creates info object for the most typical case.
NestedNameSpecInfo(IdentifierInfo *II, SourceLocation IdLoc,
SourceLocation ColonColonLoc, ParsedType ObjectType = ParsedType())
: ObjectType(ObjectType), Identifier(II), IdentifierLoc(IdLoc),
CCLoc(ColonColonLoc) {
}
NestedNameSpecInfo(IdentifierInfo *II, SourceLocation IdLoc,
SourceLocation ColonColonLoc, QualType ObjectType)
: ObjectType(ParsedType::make(ObjectType)), Identifier(II),
IdentifierLoc(IdLoc), CCLoc(ColonColonLoc) {
}
};
bool isNonTypeNestedNameSpecifier(Scope *S, CXXScopeSpec &SS,
NestedNameSpecInfo &IdInfo);
bool BuildCXXNestedNameSpecifier(Scope *S,
NestedNameSpecInfo &IdInfo,
bool EnteringContext,
CXXScopeSpec &SS,
NamedDecl *ScopeLookupResult,
bool ErrorRecoveryLookup,
bool *IsCorrectedToColon = nullptr);
/// \brief The parser has parsed a nested-name-specifier 'identifier::'.
///
/// \param S The scope in which this nested-name-specifier occurs.
///
/// \param IdInfo Parser information about an identifier in the
/// nested-name-spec.
///
/// \param EnteringContext Whether we're entering the context nominated by
/// this nested-name-specifier.
///
/// \param SS The nested-name-specifier, which is both an input
/// parameter (the nested-name-specifier before this type) and an
/// output parameter (containing the full nested-name-specifier,
/// including this new type).
///
/// \param ErrorRecoveryLookup If true, then this method is called to improve
/// error recovery. In this case do not emit error message.
///
/// \param IsCorrectedToColon If not null, suggestions to replace '::' -> ':'
/// are allowed. The bool value pointed by this parameter is set to 'true'
/// if the identifier is treated as if it was followed by ':', not '::'.
///
/// \returns true if an error occurred, false otherwise.
bool ActOnCXXNestedNameSpecifier(Scope *S,
NestedNameSpecInfo &IdInfo,
bool EnteringContext,
CXXScopeSpec &SS,
bool ErrorRecoveryLookup = false,
bool *IsCorrectedToColon = nullptr);
ExprResult ActOnDecltypeExpression(Expr *E);
bool ActOnCXXNestedNameSpecifierDecltype(CXXScopeSpec &SS,
const DeclSpec &DS,
SourceLocation ColonColonLoc);
bool IsInvalidUnlessNestedName(Scope *S, CXXScopeSpec &SS,
NestedNameSpecInfo &IdInfo,
bool EnteringContext);
/// \brief The parser has parsed a nested-name-specifier
/// 'template[opt] template-name < template-args >::'.
///
/// \param S The scope in which this nested-name-specifier occurs.
///
/// \param SS The nested-name-specifier, which is both an input
/// parameter (the nested-name-specifier before this type) and an
/// output parameter (containing the full nested-name-specifier,
/// including this new type).
///
/// \param TemplateKWLoc the location of the 'template' keyword, if any.
/// \param TemplateName the template name.
/// \param TemplateNameLoc The location of the template name.
/// \param LAngleLoc The location of the opening angle bracket ('<').
/// \param TemplateArgs The template arguments.
/// \param RAngleLoc The location of the closing angle bracket ('>').
/// \param CCLoc The location of the '::'.
///
/// \param EnteringContext Whether we're entering the context of the
/// nested-name-specifier.
///
///
/// \returns true if an error occurred, false otherwise.
bool ActOnCXXNestedNameSpecifier(Scope *S,
CXXScopeSpec &SS,
SourceLocation TemplateKWLoc,
TemplateTy TemplateName,
SourceLocation TemplateNameLoc,
SourceLocation LAngleLoc,
ASTTemplateArgsPtr TemplateArgs,
SourceLocation RAngleLoc,
SourceLocation CCLoc,
bool EnteringContext);
/// \brief Given a C++ nested-name-specifier, produce an annotation value
/// that the parser can use later to reconstruct the given
/// nested-name-specifier.
///
/// \param SS A nested-name-specifier.
///
/// \returns A pointer containing all of the information in the
/// nested-name-specifier \p SS.
void *SaveNestedNameSpecifierAnnotation(CXXScopeSpec &SS);
/// \brief Given an annotation pointer for a nested-name-specifier, restore
/// the nested-name-specifier structure.
///
/// \param Annotation The annotation pointer, produced by
/// \c SaveNestedNameSpecifierAnnotation().
///
/// \param AnnotationRange The source range corresponding to the annotation.
///
/// \param SS The nested-name-specifier that will be updated with the contents
/// of the annotation pointer.
void RestoreNestedNameSpecifierAnnotation(void *Annotation,
SourceRange AnnotationRange,
CXXScopeSpec &SS);
bool ShouldEnterDeclaratorScope(Scope *S, const CXXScopeSpec &SS);
/// ActOnCXXEnterDeclaratorScope - Called when a C++ scope specifier (global
/// scope or nested-name-specifier) is parsed, part of a declarator-id.
/// After this method is called, according to [C++ 3.4.3p3], names should be
/// looked up in the declarator-id's scope, until the declarator is parsed and
/// ActOnCXXExitDeclaratorScope is called.
/// The 'SS' should be a non-empty valid CXXScopeSpec.
bool ActOnCXXEnterDeclaratorScope(Scope *S, CXXScopeSpec &SS);
/// ActOnCXXExitDeclaratorScope - Called when a declarator that previously
/// invoked ActOnCXXEnterDeclaratorScope(), is finished. 'SS' is the same
/// CXXScopeSpec that was passed to ActOnCXXEnterDeclaratorScope as well.
/// Used to indicate that names should revert to being looked up in the
/// defining scope.
void ActOnCXXExitDeclaratorScope(Scope *S, const CXXScopeSpec &SS);
/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse an
/// initializer for the declaration 'Dcl'.
/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
/// static data member of class X, names should be looked up in the scope of
/// class X.
void ActOnCXXEnterDeclInitializer(Scope *S, Decl *Dcl);
/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
/// initializer for the declaration 'Dcl'.
void ActOnCXXExitDeclInitializer(Scope *S, Decl *Dcl);
/// \brief Create a new lambda closure type.
CXXRecordDecl *createLambdaClosureType(SourceRange IntroducerRange,
TypeSourceInfo *Info,
bool KnownDependent,
LambdaCaptureDefault CaptureDefault);
/// \brief Start the definition of a lambda expression.
CXXMethodDecl *startLambdaDefinition(CXXRecordDecl *Class,
SourceRange IntroducerRange,
TypeSourceInfo *MethodType,
SourceLocation EndLoc,
ArrayRef<ParmVarDecl *> Params,
bool IsConstexprSpecified);
/// \brief Endow the lambda scope info with the relevant properties.
void buildLambdaScope(sema::LambdaScopeInfo *LSI,
CXXMethodDecl *CallOperator,
SourceRange IntroducerRange,
LambdaCaptureDefault CaptureDefault,
SourceLocation CaptureDefaultLoc,
bool ExplicitParams,
bool ExplicitResultType,
bool Mutable);
/// \brief Perform initialization analysis of the init-capture and perform
/// any implicit conversions such as an lvalue-to-rvalue conversion if
/// not being used to initialize a reference.
ParsedType actOnLambdaInitCaptureInitialization(
SourceLocation Loc, bool ByRef, IdentifierInfo *Id,
LambdaCaptureInitKind InitKind, Expr *&Init) {
return ParsedType::make(buildLambdaInitCaptureInitialization(
Loc, ByRef, Id, InitKind != LambdaCaptureInitKind::CopyInit, Init));
}
QualType buildLambdaInitCaptureInitialization(SourceLocation Loc, bool ByRef,
IdentifierInfo *Id,
bool DirectInit, Expr *&Init);
/// \brief Create a dummy variable within the declcontext of the lambda's
/// call operator, for name lookup purposes for a lambda init capture.
///
/// CodeGen handles emission of lambda captures, ignoring these dummy
/// variables appropriately.
VarDecl *createLambdaInitCaptureVarDecl(SourceLocation Loc,
QualType InitCaptureType,
IdentifierInfo *Id,
unsigned InitStyle, Expr *Init);
/// \brief Build the implicit field for an init-capture.
FieldDecl *buildInitCaptureField(sema::LambdaScopeInfo *LSI, VarDecl *Var);
/// \brief Note that we have finished the explicit captures for the
/// given lambda.
void finishLambdaExplicitCaptures(sema::LambdaScopeInfo *LSI);
/// \brief Introduce the lambda parameters into scope.
void addLambdaParameters(CXXMethodDecl *CallOperator, Scope *CurScope);
/// \brief Deduce a block or lambda's return type based on the return
/// statements present in the body.
void deduceClosureReturnType(sema::CapturingScopeInfo &CSI);
/// ActOnStartOfLambdaDefinition - This is called just before we start
/// parsing the body of a lambda; it analyzes the explicit captures and
/// arguments, and sets up various data-structures for the body of the
/// lambda.
void ActOnStartOfLambdaDefinition(LambdaIntroducer &Intro,
Declarator &ParamInfo, Scope *CurScope);
/// ActOnLambdaError - If there is an error parsing a lambda, this callback
/// is invoked to pop the information about the lambda.
void ActOnLambdaError(SourceLocation StartLoc, Scope *CurScope,
bool IsInstantiation = false);
/// ActOnLambdaExpr - This is called when the body of a lambda expression
/// was successfully completed.
ExprResult ActOnLambdaExpr(SourceLocation StartLoc, Stmt *Body,
Scope *CurScope);
/// \brief Complete a lambda-expression having processed and attached the
/// lambda body.
ExprResult BuildLambdaExpr(SourceLocation StartLoc, SourceLocation EndLoc,
sema::LambdaScopeInfo *LSI);
/// \brief Define the "body" of the conversion from a lambda object to a
/// function pointer.
///
/// This routine doesn't actually define a sensible body; rather, it fills
/// in the initialization expression needed to copy the lambda object into
/// the block, and IR generation actually generates the real body of the
/// block pointer conversion.
void DefineImplicitLambdaToFunctionPointerConversion(
SourceLocation CurrentLoc, CXXConversionDecl *Conv);
/// \brief Define the "body" of the conversion from a lambda object to a
/// block pointer.
///
/// This routine doesn't actually define a sensible body; rather, it fills
/// in the initialization expression needed to copy the lambda object into
/// the block, and IR generation actually generates the real body of the
/// block pointer conversion.
void DefineImplicitLambdaToBlockPointerConversion(SourceLocation CurrentLoc,
CXXConversionDecl *Conv);
ExprResult BuildBlockForLambdaConversion(SourceLocation CurrentLocation,
SourceLocation ConvLocation,
CXXConversionDecl *Conv,
Expr *Src);
// ParseObjCStringLiteral - Parse Objective-C string literals.
ExprResult ParseObjCStringLiteral(SourceLocation *AtLocs,
ArrayRef<Expr *> Strings);
ExprResult BuildObjCStringLiteral(SourceLocation AtLoc, StringLiteral *S);
/// BuildObjCNumericLiteral - builds an ObjCBoxedExpr AST node for the
/// numeric literal expression. Type of the expression will be "NSNumber *"
/// or "id" if NSNumber is unavailable.
ExprResult BuildObjCNumericLiteral(SourceLocation AtLoc, Expr *Number);
ExprResult ActOnObjCBoolLiteral(SourceLocation AtLoc, SourceLocation ValueLoc,
bool Value);
ExprResult BuildObjCArrayLiteral(SourceRange SR, MultiExprArg Elements);
/// BuildObjCBoxedExpr - builds an ObjCBoxedExpr AST node for the
/// '@' prefixed parenthesized expression. The type of the expression will
/// either be "NSNumber *", "NSString *" or "NSValue *" depending on the type
/// of ValueType, which is allowed to be a built-in numeric type, "char *",
/// "const char *" or C structure with attribute 'objc_boxable'.
ExprResult BuildObjCBoxedExpr(SourceRange SR, Expr *ValueExpr);
ExprResult BuildObjCSubscriptExpression(SourceLocation RB, Expr *BaseExpr,
Expr *IndexExpr,
ObjCMethodDecl *getterMethod,
ObjCMethodDecl *setterMethod);
ExprResult BuildObjCDictionaryLiteral(SourceRange SR,
MutableArrayRef<ObjCDictionaryElement> Elements);
ExprResult BuildObjCEncodeExpression(SourceLocation AtLoc,
TypeSourceInfo *EncodedTypeInfo,
SourceLocation RParenLoc);
ExprResult BuildCXXMemberCallExpr(Expr *Exp, NamedDecl *FoundDecl,
CXXConversionDecl *Method,
bool HadMultipleCandidates);
ExprResult ParseObjCEncodeExpression(SourceLocation AtLoc,
SourceLocation EncodeLoc,
SourceLocation LParenLoc,
ParsedType Ty,
SourceLocation RParenLoc);
/// ParseObjCSelectorExpression - Build selector expression for \@selector
ExprResult ParseObjCSelectorExpression(Selector Sel,
SourceLocation AtLoc,
SourceLocation SelLoc,
SourceLocation LParenLoc,
SourceLocation RParenLoc,
bool WarnMultipleSelectors);
/// ParseObjCProtocolExpression - Build protocol expression for \@protocol
ExprResult ParseObjCProtocolExpression(IdentifierInfo * ProtocolName,
SourceLocation AtLoc,
SourceLocation ProtoLoc,
SourceLocation LParenLoc,
SourceLocation ProtoIdLoc,
SourceLocation RParenLoc);
//===--------------------------------------------------------------------===//
// C++ Declarations
//
Decl *ActOnStartLinkageSpecification(Scope *S,
SourceLocation ExternLoc,
Expr *LangStr,
SourceLocation LBraceLoc);
Decl *ActOnFinishLinkageSpecification(Scope *S,
Decl *LinkageSpec,
SourceLocation RBraceLoc);
//===--------------------------------------------------------------------===//
// C++ Classes
//
bool isCurrentClassName(const IdentifierInfo &II, Scope *S,
const CXXScopeSpec *SS = nullptr);
bool isCurrentClassNameTypo(IdentifierInfo *&II, const CXXScopeSpec *SS);
bool ActOnAccessSpecifier(AccessSpecifier Access,
SourceLocation ASLoc,
SourceLocation ColonLoc,
AttributeList *Attrs = nullptr);
NamedDecl *ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS,
Declarator &D,
MultiTemplateParamsArg TemplateParameterLists,
Expr *BitfieldWidth, const VirtSpecifiers &VS,
InClassInitStyle InitStyle);
void ActOnStartCXXInClassMemberInitializer();
void ActOnFinishCXXInClassMemberInitializer(Decl *VarDecl,
SourceLocation EqualLoc,
Expr *Init);
MemInitResult ActOnMemInitializer(Decl *ConstructorD,
Scope *S,
CXXScopeSpec &SS,
IdentifierInfo *MemberOrBase,
ParsedType TemplateTypeTy,
const DeclSpec &DS,
SourceLocation IdLoc,
SourceLocation LParenLoc,
ArrayRef<Expr *> Args,
SourceLocation RParenLoc,
SourceLocation EllipsisLoc);
MemInitResult ActOnMemInitializer(Decl *ConstructorD,
Scope *S,
CXXScopeSpec &SS,
IdentifierInfo *MemberOrBase,
ParsedType TemplateTypeTy,
const DeclSpec &DS,
SourceLocation IdLoc,
Expr *InitList,
SourceLocation EllipsisLoc);
MemInitResult BuildMemInitializer(Decl *ConstructorD,
Scope *S,
CXXScopeSpec &SS,
IdentifierInfo *MemberOrBase,
ParsedType TemplateTypeTy,
const DeclSpec &DS,
SourceLocation IdLoc,
Expr *Init,
SourceLocation EllipsisLoc);
MemInitResult BuildMemberInitializer(ValueDecl *Member,
Expr *Init,
SourceLocation IdLoc);
MemInitResult BuildBaseInitializer(QualType BaseType,
TypeSourceInfo *BaseTInfo,
Expr *Init,
CXXRecordDecl *ClassDecl,
SourceLocation EllipsisLoc);
MemInitResult BuildDelegatingInitializer(TypeSourceInfo *TInfo,
Expr *Init,
CXXRecordDecl *ClassDecl);
bool SetDelegatingInitializer(CXXConstructorDecl *Constructor,
CXXCtorInitializer *Initializer);
bool SetCtorInitializers(CXXConstructorDecl *Constructor, bool AnyErrors,
ArrayRef<CXXCtorInitializer *> Initializers = None);
void SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation);
/// MarkBaseAndMemberDestructorsReferenced - Given a record decl,
/// mark all the non-trivial destructors of its members and bases as
/// referenced.
void MarkBaseAndMemberDestructorsReferenced(SourceLocation Loc,
CXXRecordDecl *Record);
/// \brief The list of classes whose vtables have been used within
/// this translation unit, and the source locations at which the
/// first use occurred.
typedef std::pair<CXXRecordDecl*, SourceLocation> VTableUse;
/// \brief The list of vtables that are required but have not yet been
/// materialized.
SmallVector<VTableUse, 16> VTableUses;
/// \brief The set of classes whose vtables have been used within
/// this translation unit, and a bit that will be true if the vtable is
/// required to be emitted (otherwise, it should be emitted only if needed
/// by code generation).
llvm::DenseMap<CXXRecordDecl *, bool> VTablesUsed;
/// \brief Load any externally-stored vtable uses.
void LoadExternalVTableUses();
/// \brief Note that the vtable for the given class was used at the
/// given location.
void MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class,
bool DefinitionRequired = false);
/// \brief Mark the exception specifications of all virtual member functions
/// in the given class as needed.
void MarkVirtualMemberExceptionSpecsNeeded(SourceLocation Loc,
const CXXRecordDecl *RD);
/// MarkVirtualMembersReferenced - Will mark all members of the given
/// CXXRecordDecl referenced.
void MarkVirtualMembersReferenced(SourceLocation Loc,
const CXXRecordDecl *RD);
/// \brief Define all of the vtables that have been used in this
/// translation unit and reference any virtual members used by those
/// vtables.
///
/// \returns true if any work was done, false otherwise.
bool DefineUsedVTables();
void AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl);
void ActOnMemInitializers(Decl *ConstructorDecl,
SourceLocation ColonLoc,
ArrayRef<CXXCtorInitializer*> MemInits,
bool AnyErrors);
/// \brief Check class-level dllimport/dllexport attribute. The caller must
/// ensure that referenceDLLExportedClassMethods is called some point later
/// when all outer classes of Class are complete.
void checkClassLevelDLLAttribute(CXXRecordDecl *Class);
void referenceDLLExportedClassMethods();
void propagateDLLAttrToBaseClassTemplate(
CXXRecordDecl *Class, Attr *ClassAttr,
ClassTemplateSpecializationDecl *BaseTemplateSpec,
SourceLocation BaseLoc);
void CheckCompletedCXXClass(CXXRecordDecl *Record);
void ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
Decl *TagDecl,
SourceLocation LBrac,
SourceLocation RBrac,
AttributeList *AttrList);
void ActOnFinishCXXMemberDecls();
void ActOnFinishCXXNonNestedClass(Decl *D);
void ActOnReenterCXXMethodParameter(Scope *S, ParmVarDecl *Param);
unsigned ActOnReenterTemplateScope(Scope *S, Decl *Template);
void ActOnStartDelayedMemberDeclarations(Scope *S, Decl *Record);
void ActOnStartDelayedCXXMethodDeclaration(Scope *S, Decl *Method);
void ActOnDelayedCXXMethodParameter(Scope *S, Decl *Param);
void ActOnFinishDelayedMemberDeclarations(Scope *S, Decl *Record);
void ActOnFinishDelayedCXXMethodDeclaration(Scope *S, Decl *Method);
void ActOnFinishDelayedMemberInitializers(Decl *Record);
void MarkAsLateParsedTemplate(FunctionDecl *FD, Decl *FnD,
CachedTokens &Toks);
void UnmarkAsLateParsedTemplate(FunctionDecl *FD);
bool IsInsideALocalClassWithinATemplateFunction();
Decl *ActOnStaticAssertDeclaration(SourceLocation StaticAssertLoc,
Expr *AssertExpr,
Expr *AssertMessageExpr,
SourceLocation RParenLoc);
Decl *BuildStaticAssertDeclaration(SourceLocation StaticAssertLoc,
Expr *AssertExpr,
StringLiteral *AssertMessageExpr,
SourceLocation RParenLoc,
bool Failed);
FriendDecl *CheckFriendTypeDecl(SourceLocation LocStart,
SourceLocation FriendLoc,
TypeSourceInfo *TSInfo);
Decl *ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
MultiTemplateParamsArg TemplateParams);
NamedDecl *ActOnFriendFunctionDecl(Scope *S, Declarator &D,
MultiTemplateParamsArg TemplateParams);
QualType CheckConstructorDeclarator(Declarator &D, QualType R,
StorageClass& SC);
void CheckConstructor(CXXConstructorDecl *Constructor);
QualType CheckDestructorDeclarator(Declarator &D, QualType R,
StorageClass& SC);
bool CheckDestructor(CXXDestructorDecl *Destructor);
void CheckConversionDeclarator(Declarator &D, QualType &R,
StorageClass& SC);
Decl *ActOnConversionDeclarator(CXXConversionDecl *Conversion);
void CheckExplicitlyDefaultedSpecialMember(CXXMethodDecl *MD);
void CheckExplicitlyDefaultedMemberExceptionSpec(CXXMethodDecl *MD,
const FunctionProtoType *T);
void CheckDelayedMemberExceptionSpecs();
//===--------------------------------------------------------------------===//
// C++ Derived Classes
//
/// ActOnBaseSpecifier - Parsed a base specifier
CXXBaseSpecifier *CheckBaseSpecifier(CXXRecordDecl *Class,
SourceRange SpecifierRange,
bool Virtual, AccessSpecifier Access,
TypeSourceInfo *TInfo,
SourceLocation EllipsisLoc);
BaseResult ActOnBaseSpecifier(Decl *classdecl,
SourceRange SpecifierRange,
ParsedAttributes &Attrs,
bool Virtual, AccessSpecifier Access,
ParsedType basetype,
SourceLocation BaseLoc,
SourceLocation EllipsisLoc);
bool AttachBaseSpecifiers(CXXRecordDecl *Class,
MutableArrayRef<CXXBaseSpecifier *> Bases);
void ActOnBaseSpecifiers(Decl *ClassDecl,
MutableArrayRef<CXXBaseSpecifier *> Bases);
bool IsDerivedFrom(SourceLocation Loc, QualType Derived, QualType Base);
bool IsDerivedFrom(SourceLocation Loc, QualType Derived, QualType Base,
CXXBasePaths &Paths);
// FIXME: I don't like this name.
void BuildBasePathArray(const CXXBasePaths &Paths, CXXCastPath &BasePath);
bool CheckDerivedToBaseConversion(QualType Derived, QualType Base,
SourceLocation Loc, SourceRange Range,
CXXCastPath *BasePath = nullptr,
bool IgnoreAccess = false);
bool CheckDerivedToBaseConversion(QualType Derived, QualType Base,
unsigned InaccessibleBaseID,
unsigned AmbigiousBaseConvID,
SourceLocation Loc, SourceRange Range,
DeclarationName Name,
CXXCastPath *BasePath,
bool IgnoreAccess = false);
std::string getAmbiguousPathsDisplayString(CXXBasePaths &Paths);
bool CheckOverridingFunctionAttributes(const CXXMethodDecl *New,
const CXXMethodDecl *Old);
/// CheckOverridingFunctionReturnType - Checks whether the return types are
/// covariant, according to C++ [class.virtual]p5.
bool CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
const CXXMethodDecl *Old);
/// CheckOverridingFunctionExceptionSpec - Checks whether the exception
/// spec is a subset of base spec.
bool CheckOverridingFunctionExceptionSpec(const CXXMethodDecl *New,
const CXXMethodDecl *Old);
bool CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange);
/// CheckOverrideControl - Check C++11 override control semantics.
void CheckOverrideControl(NamedDecl *D);
/// DiagnoseAbsenceOfOverrideControl - Diagnose if 'override' keyword was
/// not used in the declaration of an overriding method.
void DiagnoseAbsenceOfOverrideControl(NamedDecl *D);
/// CheckForFunctionMarkedFinal - Checks whether a virtual member function
/// overrides a virtual member function marked 'final', according to
/// C++11 [class.virtual]p4.
bool CheckIfOverriddenFunctionIsMarkedFinal(const CXXMethodDecl *New,
const CXXMethodDecl *Old);
//===--------------------------------------------------------------------===//
// C++ Access Control
//
enum AccessResult {
AR_accessible,
AR_inaccessible,
AR_dependent,
AR_delayed
};
bool SetMemberAccessSpecifier(NamedDecl *MemberDecl,
NamedDecl *PrevMemberDecl,
AccessSpecifier LexicalAS);
AccessResult CheckUnresolvedMemberAccess(UnresolvedMemberExpr *E,
DeclAccessPair FoundDecl);
AccessResult CheckUnresolvedLookupAccess(UnresolvedLookupExpr *E,
DeclAccessPair FoundDecl);
AccessResult CheckAllocationAccess(SourceLocation OperatorLoc,
SourceRange PlacementRange,
CXXRecordDecl *NamingClass,
DeclAccessPair FoundDecl,
bool Diagnose = true);
AccessResult CheckConstructorAccess(SourceLocation Loc,
CXXConstructorDecl *D,
DeclAccessPair FoundDecl,
const InitializedEntity &Entity,
bool IsCopyBindingRefToTemp = false);
AccessResult CheckConstructorAccess(SourceLocation Loc,
CXXConstructorDecl *D,
DeclAccessPair FoundDecl,
const InitializedEntity &Entity,
const PartialDiagnostic &PDiag);
AccessResult CheckDestructorAccess(SourceLocation Loc,
CXXDestructorDecl *Dtor,
const PartialDiagnostic &PDiag,
QualType objectType = QualType());
AccessResult CheckFriendAccess(NamedDecl *D);
AccessResult CheckMemberAccess(SourceLocation UseLoc,
CXXRecordDecl *NamingClass,
DeclAccessPair Found);
AccessResult CheckMemberOperatorAccess(SourceLocation Loc,
Expr *ObjectExpr,
Expr *ArgExpr,
DeclAccessPair FoundDecl);
AccessResult CheckAddressOfMemberAccess(Expr *OvlExpr,
DeclAccessPair FoundDecl);
AccessResult CheckBaseClassAccess(SourceLocation AccessLoc,
QualType Base, QualType Derived,
const CXXBasePath &Path,
unsigned DiagID,
bool ForceCheck = false,
bool ForceUnprivileged = false);
void CheckLookupAccess(const LookupResult &R);
bool IsSimplyAccessible(NamedDecl *decl, DeclContext *Ctx);
bool isSpecialMemberAccessibleForDeletion(CXXMethodDecl *decl,
AccessSpecifier access,
QualType objectType);
void HandleDependentAccessCheck(const DependentDiagnostic &DD,
const MultiLevelTemplateArgumentList &TemplateArgs);
void PerformDependentDiagnostics(const DeclContext *Pattern,
const MultiLevelTemplateArgumentList &TemplateArgs);
void HandleDelayedAccessCheck(sema::DelayedDiagnostic &DD, Decl *Ctx);
/// \brief When true, access checking violations are treated as SFINAE
/// failures rather than hard errors.
bool AccessCheckingSFINAE;
enum AbstractDiagSelID {
AbstractNone = -1,
AbstractReturnType,
AbstractParamType,
AbstractVariableType,
AbstractFieldType,
AbstractIvarType,
AbstractSynthesizedIvarType,
AbstractArrayType
};
bool isAbstractType(SourceLocation Loc, QualType T);
bool RequireNonAbstractType(SourceLocation Loc, QualType T,
TypeDiagnoser &Diagnoser);
template <typename... Ts>
bool RequireNonAbstractType(SourceLocation Loc, QualType T, unsigned DiagID,
const Ts &...Args) {
BoundTypeDiagnoser<Ts...> Diagnoser(DiagID, Args...);
return RequireNonAbstractType(Loc, T, Diagnoser);
}
void DiagnoseAbstractType(const CXXRecordDecl *RD);
//===--------------------------------------------------------------------===//
// C++ Overloaded Operators [C++ 13.5]
//
bool CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl);
bool CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl);
//===--------------------------------------------------------------------===//
// C++ Templates [C++ 14]
//
void FilterAcceptableTemplateNames(LookupResult &R,
bool AllowFunctionTemplates = true);
bool hasAnyAcceptableTemplateNames(LookupResult &R,
bool AllowFunctionTemplates = true);
void LookupTemplateName(LookupResult &R, Scope *S, CXXScopeSpec &SS,
QualType ObjectType, bool EnteringContext,
bool &MemberOfUnknownSpecialization);
TemplateNameKind isTemplateName(Scope *S,
CXXScopeSpec &SS,
bool hasTemplateKeyword,
UnqualifiedId &Name,
ParsedType ObjectType,
bool EnteringContext,
TemplateTy &Template,
bool &MemberOfUnknownSpecialization);
bool DiagnoseUnknownTemplateName(const IdentifierInfo &II,
SourceLocation IILoc,
Scope *S,
const CXXScopeSpec *SS,
TemplateTy &SuggestedTemplate,
TemplateNameKind &SuggestedKind);
bool DiagnoseUninstantiableTemplate(SourceLocation PointOfInstantiation,
NamedDecl *Instantiation,
bool InstantiatedFromMember,
const NamedDecl *Pattern,
const NamedDecl *PatternDef,
TemplateSpecializationKind TSK,
bool Complain = true);
void DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl);
TemplateDecl *AdjustDeclIfTemplate(Decl *&Decl);
Decl *ActOnTypeParameter(Scope *S, bool Typename,
SourceLocation EllipsisLoc,
SourceLocation KeyLoc,
IdentifierInfo *ParamName,
SourceLocation ParamNameLoc,
unsigned Depth, unsigned Position,
SourceLocation EqualLoc,
ParsedType DefaultArg);
QualType CheckNonTypeTemplateParameterType(QualType T, SourceLocation Loc);
Decl *ActOnNonTypeTemplateParameter(Scope *S, Declarator &D,
unsigned Depth,
unsigned Position,
SourceLocation EqualLoc,
Expr *DefaultArg);
Decl *ActOnTemplateTemplateParameter(Scope *S,
SourceLocation TmpLoc,
TemplateParameterList *Params,
SourceLocation EllipsisLoc,
IdentifierInfo *ParamName,
SourceLocation ParamNameLoc,
unsigned Depth,
unsigned Position,
SourceLocation EqualLoc,
ParsedTemplateArgument DefaultArg);
TemplateParameterList *
ActOnTemplateParameterList(unsigned Depth,
SourceLocation ExportLoc,
SourceLocation TemplateLoc,
SourceLocation LAngleLoc,
ArrayRef<Decl *> Params,
SourceLocation RAngleLoc,
Expr *RequiresClause);
/// \brief The context in which we are checking a template parameter list.
enum TemplateParamListContext {
TPC_ClassTemplate,
TPC_VarTemplate,
TPC_FunctionTemplate,
TPC_ClassTemplateMember,
TPC_FriendClassTemplate,
TPC_FriendFunctionTemplate,
TPC_FriendFunctionTemplateDefinition,
TPC_TypeAliasTemplate
};
bool CheckTemplateParameterList(TemplateParameterList *NewParams,
TemplateParameterList *OldParams,
TemplateParamListContext TPC);
TemplateParameterList *MatchTemplateParametersToScopeSpecifier(
SourceLocation DeclStartLoc, SourceLocation DeclLoc,
const CXXScopeSpec &SS, TemplateIdAnnotation *TemplateId,
ArrayRef<TemplateParameterList *> ParamLists,
bool IsFriend, bool &IsExplicitSpecialization, bool &Invalid);
DeclResult CheckClassTemplate(Scope *S, unsigned TagSpec, TagUseKind TUK,
SourceLocation KWLoc, CXXScopeSpec &SS,
IdentifierInfo *Name, SourceLocation NameLoc,
AttributeList *Attr,
TemplateParameterList *TemplateParams,
AccessSpecifier AS,
SourceLocation ModulePrivateLoc,
SourceLocation FriendLoc,
unsigned NumOuterTemplateParamLists,
TemplateParameterList **OuterTemplateParamLists,
SkipBodyInfo *SkipBody = nullptr);
TemplateArgumentLoc getTrivialTemplateArgumentLoc(const TemplateArgument &Arg,
QualType NTTPType,
SourceLocation Loc);
void translateTemplateArguments(const ASTTemplateArgsPtr &In,
TemplateArgumentListInfo &Out);
void NoteAllFoundTemplates(TemplateName Name);
QualType CheckTemplateIdType(TemplateName Template,
SourceLocation TemplateLoc,
TemplateArgumentListInfo &TemplateArgs);
TypeResult
ActOnTemplateIdType(CXXScopeSpec &SS, SourceLocation TemplateKWLoc,
TemplateTy Template, SourceLocation TemplateLoc,
SourceLocation LAngleLoc,
ASTTemplateArgsPtr TemplateArgs,
SourceLocation RAngleLoc,
bool IsCtorOrDtorName = false);
/// \brief Parsed an elaborated-type-specifier that refers to a template-id,
/// such as \c class T::template apply<U>.
TypeResult ActOnTagTemplateIdType(TagUseKind TUK,
TypeSpecifierType TagSpec,
SourceLocation TagLoc,
CXXScopeSpec &SS,
SourceLocation TemplateKWLoc,
TemplateTy TemplateD,
SourceLocation TemplateLoc,
SourceLocation LAngleLoc,
ASTTemplateArgsPtr TemplateArgsIn,
SourceLocation RAngleLoc);
DeclResult ActOnVarTemplateSpecialization(
Scope *S, Declarator &D, TypeSourceInfo *DI,
SourceLocation TemplateKWLoc, TemplateParameterList *TemplateParams,
StorageClass SC, bool IsPartialSpecialization);
DeclResult CheckVarTemplateId(VarTemplateDecl *Template,
SourceLocation TemplateLoc,
SourceLocation TemplateNameLoc,
const TemplateArgumentListInfo &TemplateArgs);
ExprResult CheckVarTemplateId(const CXXScopeSpec &SS,
const DeclarationNameInfo &NameInfo,
VarTemplateDecl *Template,
SourceLocation TemplateLoc,
const TemplateArgumentListInfo *TemplateArgs);
ExprResult BuildTemplateIdExpr(const CXXScopeSpec &SS,
SourceLocation TemplateKWLoc,
LookupResult &R,
bool RequiresADL,
const TemplateArgumentListInfo *TemplateArgs);
ExprResult BuildQualifiedTemplateIdExpr(CXXScopeSpec &SS,
SourceLocation TemplateKWLoc,
const DeclarationNameInfo &NameInfo,
const TemplateArgumentListInfo *TemplateArgs);
TemplateNameKind ActOnDependentTemplateName(Scope *S,
CXXScopeSpec &SS,
SourceLocation TemplateKWLoc,
UnqualifiedId &Name,
ParsedType ObjectType,
bool EnteringContext,
TemplateTy &Template);
DeclResult
ActOnClassTemplateSpecialization(Scope *S, unsigned TagSpec, TagUseKind TUK,
SourceLocation KWLoc,
SourceLocation ModulePrivateLoc,
TemplateIdAnnotation &TemplateId,
AttributeList *Attr,
MultiTemplateParamsArg TemplateParameterLists,
SkipBodyInfo *SkipBody = nullptr);
Decl *ActOnTemplateDeclarator(Scope *S,
MultiTemplateParamsArg TemplateParameterLists,
Declarator &D);
bool
CheckSpecializationInstantiationRedecl(SourceLocation NewLoc,
TemplateSpecializationKind NewTSK,
NamedDecl *PrevDecl,
TemplateSpecializationKind PrevTSK,
SourceLocation PrevPtOfInstantiation,
bool &SuppressNew);
bool CheckDependentFunctionTemplateSpecialization(FunctionDecl *FD,
const TemplateArgumentListInfo &ExplicitTemplateArgs,
LookupResult &Previous);
bool CheckFunctionTemplateSpecialization(FunctionDecl *FD,
TemplateArgumentListInfo *ExplicitTemplateArgs,
LookupResult &Previous);
bool CheckMemberSpecialization(NamedDecl *Member, LookupResult &Previous);
DeclResult
ActOnExplicitInstantiation(Scope *S,
SourceLocation ExternLoc,
SourceLocation TemplateLoc,
unsigned TagSpec,
SourceLocation KWLoc,
const CXXScopeSpec &SS,
TemplateTy Template,
SourceLocation TemplateNameLoc,
SourceLocation LAngleLoc,
ASTTemplateArgsPtr TemplateArgs,
SourceLocation RAngleLoc,
AttributeList *Attr);
DeclResult
ActOnExplicitInstantiation(Scope *S,
SourceLocation ExternLoc,
SourceLocation TemplateLoc,
unsigned TagSpec,
SourceLocation KWLoc,
CXXScopeSpec &SS,
IdentifierInfo *Name,
SourceLocation NameLoc,
AttributeList *Attr);
DeclResult ActOnExplicitInstantiation(Scope *S,
SourceLocation ExternLoc,
SourceLocation TemplateLoc,
Declarator &D);
TemplateArgumentLoc
SubstDefaultTemplateArgumentIfAvailable(TemplateDecl *Template,
SourceLocation TemplateLoc,
SourceLocation RAngleLoc,
Decl *Param,
SmallVectorImpl<TemplateArgument>
&Converted,
bool &HasDefaultArg);
/// \brief Specifies the context in which a particular template
/// argument is being checked.
enum CheckTemplateArgumentKind {
/// \brief The template argument was specified in the code or was
/// instantiated with some deduced template arguments.
CTAK_Specified,
/// \brief The template argument was deduced via template argument
/// deduction.
CTAK_Deduced,
/// \brief The template argument was deduced from an array bound
/// via template argument deduction.
CTAK_DeducedFromArrayBound
};
bool CheckTemplateArgument(NamedDecl *Param,
TemplateArgumentLoc &Arg,
NamedDecl *Template,
SourceLocation TemplateLoc,
SourceLocation RAngleLoc,
unsigned ArgumentPackIndex,
SmallVectorImpl<TemplateArgument> &Converted,
CheckTemplateArgumentKind CTAK = CTAK_Specified);
/// \brief Check that the given template arguments can be be provided to
/// the given template, converting the arguments along the way.
///
/// \param Template The template to which the template arguments are being
/// provided.
///
/// \param TemplateLoc The location of the template name in the source.
///
/// \param TemplateArgs The list of template arguments. If the template is
/// a template template parameter, this function may extend the set of
/// template arguments to also include substituted, defaulted template
/// arguments.
///
/// \param PartialTemplateArgs True if the list of template arguments is
/// intentionally partial, e.g., because we're checking just the initial
/// set of template arguments.
///
/// \param Converted Will receive the converted, canonicalized template
/// arguments.
///
/// \returns true if an error occurred, false otherwise.
bool CheckTemplateArgumentList(TemplateDecl *Template,
SourceLocation TemplateLoc,
TemplateArgumentListInfo &TemplateArgs,
bool PartialTemplateArgs,
SmallVectorImpl<TemplateArgument> &Converted);
bool CheckTemplateTypeArgument(TemplateTypeParmDecl *Param,
TemplateArgumentLoc &Arg,
SmallVectorImpl<TemplateArgument> &Converted);
bool CheckTemplateArgument(TemplateTypeParmDecl *Param,
TypeSourceInfo *Arg);
ExprResult CheckTemplateArgument(NonTypeTemplateParmDecl *Param,
QualType InstantiatedParamType, Expr *Arg,
TemplateArgument &Converted,
CheckTemplateArgumentKind CTAK = CTAK_Specified);
bool CheckTemplateArgument(TemplateTemplateParmDecl *Param,
TemplateArgumentLoc &Arg,
unsigned ArgumentPackIndex);
ExprResult
BuildExpressionFromDeclTemplateArgument(const TemplateArgument &Arg,
QualType ParamType,
SourceLocation Loc);
ExprResult
BuildExpressionFromIntegralTemplateArgument(const TemplateArgument &Arg,
SourceLocation Loc);
/// \brief Enumeration describing how template parameter lists are compared
/// for equality.
enum TemplateParameterListEqualKind {
/// \brief We are matching the template parameter lists of two templates
/// that might be redeclarations.
///
/// \code
/// template<typename T> struct X;
/// template<typename T> struct X;
/// \endcode
TPL_TemplateMatch,
/// \brief We are matching the template parameter lists of two template
/// template parameters as part of matching the template parameter lists
/// of two templates that might be redeclarations.
///
/// \code
/// template<template<int I> class TT> struct X;
/// template<template<int Value> class Other> struct X;
/// \endcode
TPL_TemplateTemplateParmMatch,
/// \brief We are matching the template parameter lists of a template
/// template argument against the template parameter lists of a template
/// template parameter.
///
/// \code
/// template<template<int Value> class Metafun> struct X;
/// template<int Value> struct integer_c;
/// X<integer_c> xic;
/// \endcode
TPL_TemplateTemplateArgumentMatch
};
bool TemplateParameterListsAreEqual(TemplateParameterList *New,
TemplateParameterList *Old,
bool Complain,
TemplateParameterListEqualKind Kind,
SourceLocation TemplateArgLoc
= SourceLocation());
bool CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams);
/// \brief Called when the parser has parsed a C++ typename
/// specifier, e.g., "typename T::type".
///
/// \param S The scope in which this typename type occurs.
/// \param TypenameLoc the location of the 'typename' keyword
/// \param SS the nested-name-specifier following the typename (e.g., 'T::').
/// \param II the identifier we're retrieving (e.g., 'type' in the example).
/// \param IdLoc the location of the identifier.
TypeResult
ActOnTypenameType(Scope *S, SourceLocation TypenameLoc,
const CXXScopeSpec &SS, const IdentifierInfo &II,
SourceLocation IdLoc);
/// \brief Called when the parser has parsed a C++ typename
/// specifier that ends in a template-id, e.g.,
/// "typename MetaFun::template apply<T1, T2>".
///
/// \param S The scope in which this typename type occurs.
/// \param TypenameLoc the location of the 'typename' keyword
/// \param SS the nested-name-specifier following the typename (e.g., 'T::').
/// \param TemplateLoc the location of the 'template' keyword, if any.
/// \param TemplateName The template name.
/// \param TemplateNameLoc The location of the template name.
/// \param LAngleLoc The location of the opening angle bracket ('<').
/// \param TemplateArgs The template arguments.
/// \param RAngleLoc The location of the closing angle bracket ('>').
TypeResult
ActOnTypenameType(Scope *S, SourceLocation TypenameLoc,
const CXXScopeSpec &SS,
SourceLocation TemplateLoc,
TemplateTy TemplateName,
SourceLocation TemplateNameLoc,
SourceLocation LAngleLoc,
ASTTemplateArgsPtr TemplateArgs,
SourceLocation RAngleLoc);
QualType CheckTypenameType(ElaboratedTypeKeyword Keyword,
SourceLocation KeywordLoc,
NestedNameSpecifierLoc QualifierLoc,
const IdentifierInfo &II,
SourceLocation IILoc);
TypeSourceInfo *RebuildTypeInCurrentInstantiation(TypeSourceInfo *T,
SourceLocation Loc,
DeclarationName Name);
bool RebuildNestedNameSpecifierInCurrentInstantiation(CXXScopeSpec &SS);
ExprResult RebuildExprInCurrentInstantiation(Expr *E);
bool RebuildTemplateParamsInCurrentInstantiation(
TemplateParameterList *Params);
std::string
getTemplateArgumentBindingsText(const TemplateParameterList *Params,
const TemplateArgumentList &Args);
std::string
getTemplateArgumentBindingsText(const TemplateParameterList *Params,
const TemplateArgument *Args,
unsigned NumArgs);
//===--------------------------------------------------------------------===//
// C++ Variadic Templates (C++0x [temp.variadic])
//===--------------------------------------------------------------------===//
/// Determine whether an unexpanded parameter pack might be permitted in this
/// location. Useful for error recovery.
bool isUnexpandedParameterPackPermitted();
/// \brief The context in which an unexpanded parameter pack is
/// being diagnosed.
///
/// Note that the values of this enumeration line up with the first
/// argument to the \c err_unexpanded_parameter_pack diagnostic.
enum UnexpandedParameterPackContext {
/// \brief An arbitrary expression.
UPPC_Expression = 0,
/// \brief The base type of a class type.
UPPC_BaseType,
/// \brief The type of an arbitrary declaration.
UPPC_DeclarationType,
/// \brief The type of a data member.
UPPC_DataMemberType,
/// \brief The size of a bit-field.
UPPC_BitFieldWidth,
/// \brief The expression in a static assertion.
UPPC_StaticAssertExpression,
/// \brief The fixed underlying type of an enumeration.
UPPC_FixedUnderlyingType,
/// \brief The enumerator value.
UPPC_EnumeratorValue,
/// \brief A using declaration.
UPPC_UsingDeclaration,
/// \brief A friend declaration.
UPPC_FriendDeclaration,
/// \brief A declaration qualifier.
UPPC_DeclarationQualifier,
/// \brief An initializer.
UPPC_Initializer,
/// \brief A default argument.
UPPC_DefaultArgument,
/// \brief The type of a non-type template parameter.
UPPC_NonTypeTemplateParameterType,
/// \brief The type of an exception.
UPPC_ExceptionType,
/// \brief Partial specialization.
UPPC_PartialSpecialization,
/// \brief Microsoft __if_exists.
UPPC_IfExists,
/// \brief Microsoft __if_not_exists.
UPPC_IfNotExists,
/// \brief Lambda expression.
UPPC_Lambda,
/// \brief Block expression,
UPPC_Block
};
/// \brief Diagnose unexpanded parameter packs.
///
/// \param Loc The location at which we should emit the diagnostic.
///
/// \param UPPC The context in which we are diagnosing unexpanded
/// parameter packs.
///
/// \param Unexpanded the set of unexpanded parameter packs.
///
/// \returns true if an error occurred, false otherwise.
bool DiagnoseUnexpandedParameterPacks(SourceLocation Loc,
UnexpandedParameterPackContext UPPC,
ArrayRef<UnexpandedParameterPack> Unexpanded);
/// \brief If the given type contains an unexpanded parameter pack,
/// diagnose the error.
///
/// \param Loc The source location where a diagnostc should be emitted.
///
/// \param T The type that is being checked for unexpanded parameter
/// packs.
///
/// \returns true if an error occurred, false otherwise.
bool DiagnoseUnexpandedParameterPack(SourceLocation Loc, TypeSourceInfo *T,
UnexpandedParameterPackContext UPPC);
/// \brief If the given expression contains an unexpanded parameter
/// pack, diagnose the error.
///
/// \param E The expression that is being checked for unexpanded
/// parameter packs.
///
/// \returns true if an error occurred, false otherwise.
bool DiagnoseUnexpandedParameterPack(Expr *E,
UnexpandedParameterPackContext UPPC = UPPC_Expression);
/// \brief If the given nested-name-specifier contains an unexpanded
/// parameter pack, diagnose the error.
///
/// \param SS The nested-name-specifier that is being checked for
/// unexpanded parameter packs.
///
/// \returns true if an error occurred, false otherwise.
bool DiagnoseUnexpandedParameterPack(const CXXScopeSpec &SS,
UnexpandedParameterPackContext UPPC);
/// \brief If the given name contains an unexpanded parameter pack,
/// diagnose the error.
///
/// \param NameInfo The name (with source location information) that
/// is being checked for unexpanded parameter packs.
///
/// \returns true if an error occurred, false otherwise.
bool DiagnoseUnexpandedParameterPack(const DeclarationNameInfo &NameInfo,
UnexpandedParameterPackContext UPPC);
/// \brief If the given template name contains an unexpanded parameter pack,
/// diagnose the error.
///
/// \param Loc The location of the template name.
///
/// \param Template The template name that is being checked for unexpanded
/// parameter packs.
///
/// \returns true if an error occurred, false otherwise.
bool DiagnoseUnexpandedParameterPack(SourceLocation Loc,
TemplateName Template,
UnexpandedParameterPackContext UPPC);
/// \brief If the given template argument contains an unexpanded parameter
/// pack, diagnose the error.
///
/// \param Arg The template argument that is being checked for unexpanded
/// parameter packs.
///
/// \returns true if an error occurred, false otherwise.
bool DiagnoseUnexpandedParameterPack(TemplateArgumentLoc Arg,
UnexpandedParameterPackContext UPPC);
/// \brief Collect the set of unexpanded parameter packs within the given
/// template argument.
///
/// \param Arg The template argument that will be traversed to find
/// unexpanded parameter packs.
void collectUnexpandedParameterPacks(TemplateArgument Arg,
SmallVectorImpl<UnexpandedParameterPack> &Unexpanded);
/// \brief Collect the set of unexpanded parameter packs within the given
/// template argument.
///
/// \param Arg The template argument that will be traversed to find
/// unexpanded parameter packs.
void collectUnexpandedParameterPacks(TemplateArgumentLoc Arg,
SmallVectorImpl<UnexpandedParameterPack> &Unexpanded);
/// \brief Collect the set of unexpanded parameter packs within the given
/// type.
///
/// \param T The type that will be traversed to find
/// unexpanded parameter packs.
void collectUnexpandedParameterPacks(QualType T,
SmallVectorImpl<UnexpandedParameterPack> &Unexpanded);
/// \brief Collect the set of unexpanded parameter packs within the given
/// type.
///
/// \param TL The type that will be traversed to find
/// unexpanded parameter packs.
void collectUnexpandedParameterPacks(TypeLoc TL,
SmallVectorImpl<UnexpandedParameterPack> &Unexpanded);
/// \brief Collect the set of unexpanded parameter packs within the given
/// nested-name-specifier.
///
/// \param SS The nested-name-specifier that will be traversed to find
/// unexpanded parameter packs.
void collectUnexpandedParameterPacks(CXXScopeSpec &SS,
SmallVectorImpl<UnexpandedParameterPack> &Unexpanded);
/// \brief Collect the set of unexpanded parameter packs within the given
/// name.
///
/// \param NameInfo The name that will be traversed to find
/// unexpanded parameter packs.
void collectUnexpandedParameterPacks(const DeclarationNameInfo &NameInfo,
SmallVectorImpl<UnexpandedParameterPack> &Unexpanded);
/// \brief Invoked when parsing a template argument followed by an
/// ellipsis, which creates a pack expansion.
///
/// \param Arg The template argument preceding the ellipsis, which
/// may already be invalid.
///
/// \param EllipsisLoc The location of the ellipsis.
ParsedTemplateArgument ActOnPackExpansion(const ParsedTemplateArgument &Arg,
SourceLocation EllipsisLoc);
/// \brief Invoked when parsing a type followed by an ellipsis, which
/// creates a pack expansion.
///
/// \param Type The type preceding the ellipsis, which will become
/// the pattern of the pack expansion.
///
/// \param EllipsisLoc The location of the ellipsis.
TypeResult ActOnPackExpansion(ParsedType Type, SourceLocation EllipsisLoc);
/// \brief Construct a pack expansion type from the pattern of the pack
/// expansion.
TypeSourceInfo *CheckPackExpansion(TypeSourceInfo *Pattern,
SourceLocation EllipsisLoc,
Optional<unsigned> NumExpansions);
/// \brief Construct a pack expansion type from the pattern of the pack
/// expansion.
QualType CheckPackExpansion(QualType Pattern,
SourceRange PatternRange,
SourceLocation EllipsisLoc,
Optional<unsigned> NumExpansions);
/// \brief Invoked when parsing an expression followed by an ellipsis, which
/// creates a pack expansion.
///
/// \param Pattern The expression preceding the ellipsis, which will become
/// the pattern of the pack expansion.
///
/// \param EllipsisLoc The location of the ellipsis.
ExprResult ActOnPackExpansion(Expr *Pattern, SourceLocation EllipsisLoc);
/// \brief Invoked when parsing an expression followed by an ellipsis, which
/// creates a pack expansion.
///
/// \param Pattern The expression preceding the ellipsis, which will become
/// the pattern of the pack expansion.
///
/// \param EllipsisLoc The location of the ellipsis.
ExprResult CheckPackExpansion(Expr *Pattern, SourceLocation EllipsisLoc,
Optional<unsigned> NumExpansions);
/// \brief Determine whether we could expand a pack expansion with the
/// given set of parameter packs into separate arguments by repeatedly
/// transforming the pattern.
///
/// \param EllipsisLoc The location of the ellipsis that identifies the
/// pack expansion.
///
/// \param PatternRange The source range that covers the entire pattern of
/// the pack expansion.
///
/// \param Unexpanded The set of unexpanded parameter packs within the
/// pattern.
///
/// \param ShouldExpand Will be set to \c true if the transformer should
/// expand the corresponding pack expansions into separate arguments. When
/// set, \c NumExpansions must also be set.
///
/// \param RetainExpansion Whether the caller should add an unexpanded
/// pack expansion after all of the expanded arguments. This is used
/// when extending explicitly-specified template argument packs per
/// C++0x [temp.arg.explicit]p9.
///
/// \param NumExpansions The number of separate arguments that will be in
/// the expanded form of the corresponding pack expansion. This is both an
/// input and an output parameter, which can be set by the caller if the
/// number of expansions is known a priori (e.g., due to a prior substitution)
/// and will be set by the callee when the number of expansions is known.
/// The callee must set this value when \c ShouldExpand is \c true; it may
/// set this value in other cases.
///
/// \returns true if an error occurred (e.g., because the parameter packs
/// are to be instantiated with arguments of different lengths), false
/// otherwise. If false, \c ShouldExpand (and possibly \c NumExpansions)
/// must be set.
bool CheckParameterPacksForExpansion(SourceLocation EllipsisLoc,
SourceRange PatternRange,
ArrayRef<UnexpandedParameterPack> Unexpanded,
const MultiLevelTemplateArgumentList &TemplateArgs,
bool &ShouldExpand,
bool &RetainExpansion,
Optional<unsigned> &NumExpansions);
/// \brief Determine the number of arguments in the given pack expansion
/// type.
///
/// This routine assumes that the number of arguments in the expansion is
/// consistent across all of the unexpanded parameter packs in its pattern.
///
/// Returns an empty Optional if the type can't be expanded.
Optional<unsigned> getNumArgumentsInExpansion(QualType T,
const MultiLevelTemplateArgumentList &TemplateArgs);
/// \brief Determine whether the given declarator contains any unexpanded
/// parameter packs.
///
/// This routine is used by the parser to disambiguate function declarators
/// with an ellipsis prior to the ')', e.g.,
///
/// \code
/// void f(T...);
/// \endcode
///
/// To determine whether we have an (unnamed) function parameter pack or
/// a variadic function.
///
/// \returns true if the declarator contains any unexpanded parameter packs,
/// false otherwise.
bool containsUnexpandedParameterPacks(Declarator &D);
/// \brief Returns the pattern of the pack expansion for a template argument.
///
/// \param OrigLoc The template argument to expand.
///
/// \param Ellipsis Will be set to the location of the ellipsis.
///
/// \param NumExpansions Will be set to the number of expansions that will
/// be generated from this pack expansion, if known a priori.
TemplateArgumentLoc getTemplateArgumentPackExpansionPattern(
TemplateArgumentLoc OrigLoc,
SourceLocation &Ellipsis,
Optional<unsigned> &NumExpansions) const;
//===--------------------------------------------------------------------===//
// C++ Template Argument Deduction (C++ [temp.deduct])
//===--------------------------------------------------------------------===//
QualType adjustCCAndNoReturn(QualType ArgFunctionType, QualType FunctionType);
/// \brief Describes the result of template argument deduction.
///
/// The TemplateDeductionResult enumeration describes the result of
/// template argument deduction, as returned from
/// DeduceTemplateArguments(). The separate TemplateDeductionInfo
/// structure provides additional information about the results of
/// template argument deduction, e.g., the deduced template argument
/// list (if successful) or the specific template parameters or
/// deduced arguments that were involved in the failure.
enum TemplateDeductionResult {
/// \brief Template argument deduction was successful.
TDK_Success = 0,
/// \brief The declaration was invalid; do nothing.
TDK_Invalid,
/// \brief Template argument deduction exceeded the maximum template
/// instantiation depth (which has already been diagnosed).
TDK_InstantiationDepth,
/// \brief Template argument deduction did not deduce a value
/// for every template parameter.
TDK_Incomplete,
/// \brief Template argument deduction produced inconsistent
/// deduced values for the given template parameter.
TDK_Inconsistent,
/// \brief Template argument deduction failed due to inconsistent
/// cv-qualifiers on a template parameter type that would
/// otherwise be deduced, e.g., we tried to deduce T in "const T"
/// but were given a non-const "X".
TDK_Underqualified,
/// \brief Substitution of the deduced template argument values
/// resulted in an error.
TDK_SubstitutionFailure,
/// \brief After substituting deduced template arguments, a dependent
/// parameter type did not match the corresponding argument.
TDK_DeducedMismatch,
/// \brief A non-depnedent component of the parameter did not match the
/// corresponding component of the argument.
TDK_NonDeducedMismatch,
/// \brief When performing template argument deduction for a function
/// template, there were too many call arguments.
TDK_TooManyArguments,
/// \brief When performing template argument deduction for a function
/// template, there were too few call arguments.
TDK_TooFewArguments,
/// \brief The explicitly-specified template arguments were not valid
/// template arguments for the given template.
TDK_InvalidExplicitArguments,
/// \brief The arguments included an overloaded function name that could
/// not be resolved to a suitable function.
TDK_FailedOverloadResolution,
/// \brief Deduction failed; that's all we know.
TDK_MiscellaneousDeductionFailure
};
TemplateDeductionResult
DeduceTemplateArguments(ClassTemplatePartialSpecializationDecl *Partial,
const TemplateArgumentList &TemplateArgs,
sema::TemplateDeductionInfo &Info);
TemplateDeductionResult
DeduceTemplateArguments(VarTemplatePartialSpecializationDecl *Partial,
const TemplateArgumentList &TemplateArgs,
sema::TemplateDeductionInfo &Info);
TemplateDeductionResult SubstituteExplicitTemplateArguments(
FunctionTemplateDecl *FunctionTemplate,
TemplateArgumentListInfo &ExplicitTemplateArgs,
SmallVectorImpl<DeducedTemplateArgument> &Deduced,
SmallVectorImpl<QualType> &ParamTypes, QualType *FunctionType,
sema::TemplateDeductionInfo &Info);
/// brief A function argument from which we performed template argument
// deduction for a call.
struct OriginalCallArg {
OriginalCallArg(QualType OriginalParamType,
unsigned ArgIdx,
QualType OriginalArgType)
: OriginalParamType(OriginalParamType), ArgIdx(ArgIdx),
OriginalArgType(OriginalArgType) { }
QualType OriginalParamType;
unsigned ArgIdx;
QualType OriginalArgType;
};
TemplateDeductionResult
FinishTemplateArgumentDeduction(FunctionTemplateDecl *FunctionTemplate,
SmallVectorImpl<DeducedTemplateArgument> &Deduced,
unsigned NumExplicitlySpecified,
FunctionDecl *&Specialization,
sema::TemplateDeductionInfo &Info,
SmallVectorImpl<OriginalCallArg> const *OriginalCallArgs = nullptr,
bool PartialOverloading = false);
TemplateDeductionResult
DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
TemplateArgumentListInfo *ExplicitTemplateArgs,
ArrayRef<Expr *> Args,
FunctionDecl *&Specialization,
sema::TemplateDeductionInfo &Info,
bool PartialOverloading = false);
TemplateDeductionResult
DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
TemplateArgumentListInfo *ExplicitTemplateArgs,
QualType ArgFunctionType,
FunctionDecl *&Specialization,
sema::TemplateDeductionInfo &Info,
bool InOverloadResolution = false);
TemplateDeductionResult
DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
QualType ToType,
CXXConversionDecl *&Specialization,
sema::TemplateDeductionInfo &Info);
TemplateDeductionResult
DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
TemplateArgumentListInfo *ExplicitTemplateArgs,
FunctionDecl *&Specialization,
sema::TemplateDeductionInfo &Info,
bool InOverloadResolution = false);
/// \brief Substitute Replacement for \p auto in \p TypeWithAuto
QualType SubstAutoType(QualType TypeWithAuto, QualType Replacement);
/// \brief Substitute Replacement for auto in TypeWithAuto
TypeSourceInfo* SubstAutoTypeSourceInfo(TypeSourceInfo *TypeWithAuto,
QualType Replacement);
/// \brief Result type of DeduceAutoType.
enum DeduceAutoResult {
DAR_Succeeded,
DAR_Failed,
DAR_FailedAlreadyDiagnosed
};
DeduceAutoResult DeduceAutoType(TypeSourceInfo *AutoType, Expr *&Initializer,
QualType &Result);
DeduceAutoResult DeduceAutoType(TypeLoc AutoTypeLoc, Expr *&Initializer,
QualType &Result);
void DiagnoseAutoDeductionFailure(VarDecl *VDecl, Expr *Init);
bool DeduceReturnType(FunctionDecl *FD, SourceLocation Loc,
bool Diagnose = true);
QualType deduceVarTypeFromInitializer(VarDecl *VDecl, DeclarationName Name,
QualType Type, TypeSourceInfo *TSI,
SourceRange Range, bool DirectInit,
Expr *Init);
TypeLoc getReturnTypeLoc(FunctionDecl *FD) const;
bool DeduceFunctionTypeFromReturnExpr(FunctionDecl *FD,
SourceLocation ReturnLoc,
Expr *&RetExpr, AutoType *AT);
FunctionTemplateDecl *getMoreSpecializedTemplate(FunctionTemplateDecl *FT1,
FunctionTemplateDecl *FT2,
SourceLocation Loc,
TemplatePartialOrderingContext TPOC,
unsigned NumCallArguments1,
unsigned NumCallArguments2);
UnresolvedSetIterator
getMostSpecialized(UnresolvedSetIterator SBegin, UnresolvedSetIterator SEnd,
TemplateSpecCandidateSet &FailedCandidates,
SourceLocation Loc,
const PartialDiagnostic &NoneDiag,
const PartialDiagnostic &AmbigDiag,
const PartialDiagnostic &CandidateDiag,
bool Complain = true, QualType TargetType = QualType());
ClassTemplatePartialSpecializationDecl *
getMoreSpecializedPartialSpecialization(
ClassTemplatePartialSpecializationDecl *PS1,
ClassTemplatePartialSpecializationDecl *PS2,
SourceLocation Loc);
VarTemplatePartialSpecializationDecl *getMoreSpecializedPartialSpecialization(
VarTemplatePartialSpecializationDecl *PS1,
VarTemplatePartialSpecializationDecl *PS2, SourceLocation Loc);
void MarkUsedTemplateParameters(const TemplateArgumentList &TemplateArgs,
bool OnlyDeduced,
unsigned Depth,
llvm::SmallBitVector &Used);
void MarkDeducedTemplateParameters(
const FunctionTemplateDecl *FunctionTemplate,
llvm::SmallBitVector &Deduced) {
return MarkDeducedTemplateParameters(Context, FunctionTemplate, Deduced);
}
static void MarkDeducedTemplateParameters(ASTContext &Ctx,
const FunctionTemplateDecl *FunctionTemplate,
llvm::SmallBitVector &Deduced);
//===--------------------------------------------------------------------===//
// C++ Template Instantiation
//
MultiLevelTemplateArgumentList
getTemplateInstantiationArgs(NamedDecl *D,
const TemplateArgumentList *Innermost = nullptr,
bool RelativeToPrimary = false,
const FunctionDecl *Pattern = nullptr);
/// \brief A template instantiation that is currently in progress.
struct ActiveTemplateInstantiation {
/// \brief The kind of template instantiation we are performing
enum InstantiationKind {
/// We are instantiating a template declaration. The entity is
/// the declaration we're instantiating (e.g., a CXXRecordDecl).
TemplateInstantiation,
/// We are instantiating a default argument for a template
/// parameter. The Entity is the template parameter whose argument is
/// being instantiated, the Template is the template, and the
/// TemplateArgs/NumTemplateArguments provide the template arguments as
/// specified.
DefaultTemplateArgumentInstantiation,
/// We are instantiating a default argument for a function.
/// The Entity is the ParmVarDecl, and TemplateArgs/NumTemplateArgs
/// provides the template arguments as specified.
DefaultFunctionArgumentInstantiation,
/// We are substituting explicit template arguments provided for
/// a function template. The entity is a FunctionTemplateDecl.
ExplicitTemplateArgumentSubstitution,
/// We are substituting template argument determined as part of
/// template argument deduction for either a class template
/// partial specialization or a function template. The
/// Entity is either a ClassTemplatePartialSpecializationDecl or
/// a FunctionTemplateDecl.
DeducedTemplateArgumentSubstitution,
/// We are substituting prior template arguments into a new
/// template parameter. The template parameter itself is either a
/// NonTypeTemplateParmDecl or a TemplateTemplateParmDecl.
PriorTemplateArgumentSubstitution,
/// We are checking the validity of a default template argument that
/// has been used when naming a template-id.
DefaultTemplateArgumentChecking,
/// We are instantiating the exception specification for a function
/// template which was deferred until it was needed.
ExceptionSpecInstantiation
} Kind;
/// \brief The point of instantiation within the source code.
SourceLocation PointOfInstantiation;
/// \brief The template (or partial specialization) in which we are
/// performing the instantiation, for substitutions of prior template
/// arguments.
NamedDecl *Template;
/// \brief The entity that is being instantiated.
Decl *Entity;
/// \brief The list of template arguments we are substituting, if they
/// are not part of the entity.
const TemplateArgument *TemplateArgs;
/// \brief The number of template arguments in TemplateArgs.
unsigned NumTemplateArgs;
ArrayRef<TemplateArgument> template_arguments() const {
return {TemplateArgs, NumTemplateArgs};
}
/// \brief The template deduction info object associated with the
/// substitution or checking of explicit or deduced template arguments.
sema::TemplateDeductionInfo *DeductionInfo;
/// \brief The source range that covers the construct that cause
/// the instantiation, e.g., the template-id that causes a class
/// template instantiation.
SourceRange InstantiationRange;
ActiveTemplateInstantiation()
: Kind(TemplateInstantiation), Template(nullptr), Entity(nullptr),
TemplateArgs(nullptr), NumTemplateArgs(0), DeductionInfo(nullptr) {}
/// \brief Determines whether this template is an actual instantiation
/// that should be counted toward the maximum instantiation depth.
bool isInstantiationRecord() const;
friend bool operator==(const ActiveTemplateInstantiation &X,
const ActiveTemplateInstantiation &Y) {
if (X.Kind != Y.Kind)
return false;
if (X.Entity != Y.Entity)
return false;
switch (X.Kind) {
case TemplateInstantiation:
case ExceptionSpecInstantiation:
return true;
case PriorTemplateArgumentSubstitution:
case DefaultTemplateArgumentChecking:
return X.Template == Y.Template && X.TemplateArgs == Y.TemplateArgs;
case DefaultTemplateArgumentInstantiation:
case ExplicitTemplateArgumentSubstitution:
case DeducedTemplateArgumentSubstitution:
case DefaultFunctionArgumentInstantiation:
return X.TemplateArgs == Y.TemplateArgs;
}
llvm_unreachable("Invalid InstantiationKind!");
}
friend bool operator!=(const ActiveTemplateInstantiation &X,
const ActiveTemplateInstantiation &Y) {
return !(X == Y);
}
};
/// \brief List of active template instantiations.
///
/// This vector is treated as a stack. As one template instantiation
/// requires another template instantiation, additional
/// instantiations are pushed onto the stack up to a
/// user-configurable limit LangOptions::InstantiationDepth.
SmallVector<ActiveTemplateInstantiation, 16>
ActiveTemplateInstantiations;
/// Specializations whose definitions are currently being instantiated.
llvm::DenseSet<std::pair<Decl *, unsigned>> InstantiatingSpecializations;
/// \brief Extra modules inspected when performing a lookup during a template
/// instantiation. Computed lazily.
SmallVector<Module*, 16> ActiveTemplateInstantiationLookupModules;
/// \brief Cache of additional modules that should be used for name lookup
/// within the current template instantiation. Computed lazily; use
/// getLookupModules() to get a complete set.
llvm::DenseSet<Module*> LookupModulesCache;
/// \brief Get the set of additional modules that should be checked during
/// name lookup. A module and its imports become visible when instanting a
/// template defined within it.
llvm::DenseSet<Module*> &getLookupModules();
/// \brief Map from the most recent declaration of a namespace to the most
/// recent visible declaration of that namespace.
llvm::DenseMap<NamedDecl*, NamedDecl*> VisibleNamespaceCache;
/// \brief Whether we are in a SFINAE context that is not associated with
/// template instantiation.
///
/// This is used when setting up a SFINAE trap (\c see SFINAETrap) outside
/// of a template instantiation or template argument deduction.
bool InNonInstantiationSFINAEContext;
/// \brief The number of ActiveTemplateInstantiation entries in
/// \c ActiveTemplateInstantiations that are not actual instantiations and,
/// therefore, should not be counted as part of the instantiation depth.
unsigned NonInstantiationEntries;
/// \brief The last template from which a template instantiation
/// error or warning was produced.
///
/// This value is used to suppress printing of redundant template
/// instantiation backtraces when there are multiple errors in the
/// same instantiation. FIXME: Does this belong in Sema? It's tough
/// to implement it anywhere else.
ActiveTemplateInstantiation LastTemplateInstantiationErrorContext;
/// \brief The current index into pack expansion arguments that will be
/// used for substitution of parameter packs.
///
/// The pack expansion index will be -1 to indicate that parameter packs
/// should be instantiated as themselves. Otherwise, the index specifies
/// which argument within the parameter pack will be used for substitution.
int ArgumentPackSubstitutionIndex;
/// \brief RAII object used to change the argument pack substitution index
/// within a \c Sema object.
///
/// See \c ArgumentPackSubstitutionIndex for more information.
class ArgumentPackSubstitutionIndexRAII {
Sema &Self;
int OldSubstitutionIndex;
public:
ArgumentPackSubstitutionIndexRAII(Sema &Self, int NewSubstitutionIndex)
: Self(Self), OldSubstitutionIndex(Self.ArgumentPackSubstitutionIndex) {
Self.ArgumentPackSubstitutionIndex = NewSubstitutionIndex;
}
~ArgumentPackSubstitutionIndexRAII() {
Self.ArgumentPackSubstitutionIndex = OldSubstitutionIndex;
}
};
friend class ArgumentPackSubstitutionRAII;
/// \brief For each declaration that involved template argument deduction, the
/// set of diagnostics that were suppressed during that template argument
/// deduction.
///
/// FIXME: Serialize this structure to the AST file.
typedef llvm::DenseMap<Decl *, SmallVector<PartialDiagnosticAt, 1> >
SuppressedDiagnosticsMap;
SuppressedDiagnosticsMap SuppressedDiagnostics;
/// \brief A stack object to be created when performing template
/// instantiation.
///
/// Construction of an object of type \c InstantiatingTemplate
/// pushes the current instantiation onto the stack of active
/// instantiations. If the size of this stack exceeds the maximum
/// number of recursive template instantiations, construction
/// produces an error and evaluates true.
///
/// Destruction of this object will pop the named instantiation off
/// the stack.
struct InstantiatingTemplate {
/// \brief Note that we are instantiating a class template,
/// function template, variable template, alias template,
/// or a member thereof.
InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
Decl *Entity,
SourceRange InstantiationRange = SourceRange());
struct ExceptionSpecification {};
/// \brief Note that we are instantiating an exception specification
/// of a function template.
InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
FunctionDecl *Entity, ExceptionSpecification,
SourceRange InstantiationRange = SourceRange());
/// \brief Note that we are instantiating a default argument in a
/// template-id.
InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
TemplateParameter Param, TemplateDecl *Template,
ArrayRef<TemplateArgument> TemplateArgs,
SourceRange InstantiationRange = SourceRange());
/// \brief Note that we are substituting either explicitly-specified or
/// deduced template arguments during function template argument deduction.
InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
FunctionTemplateDecl *FunctionTemplate,
ArrayRef<TemplateArgument> TemplateArgs,
ActiveTemplateInstantiation::InstantiationKind Kind,
sema::TemplateDeductionInfo &DeductionInfo,
SourceRange InstantiationRange = SourceRange());
/// \brief Note that we are instantiating as part of template
/// argument deduction for a class template partial
/// specialization.
InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
ClassTemplatePartialSpecializationDecl *PartialSpec,
ArrayRef<TemplateArgument> TemplateArgs,
sema::TemplateDeductionInfo &DeductionInfo,
SourceRange InstantiationRange = SourceRange());
/// \brief Note that we are instantiating as part of template
/// argument deduction for a variable template partial
/// specialization.
InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
VarTemplatePartialSpecializationDecl *PartialSpec,
ArrayRef<TemplateArgument> TemplateArgs,
sema::TemplateDeductionInfo &DeductionInfo,
SourceRange InstantiationRange = SourceRange());
/// \brief Note that we are instantiating a default argument for a function
/// parameter.
InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
ParmVarDecl *Param,
ArrayRef<TemplateArgument> TemplateArgs,
SourceRange InstantiationRange = SourceRange());
/// \brief Note that we are substituting prior template arguments into a
/// non-type parameter.
InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
NamedDecl *Template,
NonTypeTemplateParmDecl *Param,
ArrayRef<TemplateArgument> TemplateArgs,
SourceRange InstantiationRange);
/// \brief Note that we are substituting prior template arguments into a
/// template template parameter.
InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
NamedDecl *Template,
TemplateTemplateParmDecl *Param,
ArrayRef<TemplateArgument> TemplateArgs,
SourceRange InstantiationRange);
/// \brief Note that we are checking the default template argument
/// against the template parameter for a given template-id.
InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
TemplateDecl *Template,
NamedDecl *Param,
ArrayRef<TemplateArgument> TemplateArgs,
SourceRange InstantiationRange);
/// \brief Note that we have finished instantiating this template.
void Clear();
~InstantiatingTemplate() { Clear(); }
/// \brief Determines whether we have exceeded the maximum
/// recursive template instantiations.
bool isInvalid() const { return Invalid; }
/// \brief Determine whether we are already instantiating this
/// specialization in some surrounding active instantiation.
bool isAlreadyInstantiating() const { return AlreadyInstantiating; }
private:
Sema &SemaRef;
bool Invalid;
bool AlreadyInstantiating;
bool SavedInNonInstantiationSFINAEContext;
bool CheckInstantiationDepth(SourceLocation PointOfInstantiation,
SourceRange InstantiationRange);
InstantiatingTemplate(
Sema &SemaRef, ActiveTemplateInstantiation::InstantiationKind Kind,
SourceLocation PointOfInstantiation, SourceRange InstantiationRange,
Decl *Entity, NamedDecl *Template = nullptr,
ArrayRef<TemplateArgument> TemplateArgs = None,
sema::TemplateDeductionInfo *DeductionInfo = nullptr);
InstantiatingTemplate(const InstantiatingTemplate&) = delete;
InstantiatingTemplate&
operator=(const InstantiatingTemplate&) = delete;
};
void PrintInstantiationStack();
/// \brief Determines whether we are currently in a context where
/// template argument substitution failures are not considered
/// errors.
///
/// \returns An empty \c Optional if we're not in a SFINAE context.
/// Otherwise, contains a pointer that, if non-NULL, contains the nearest
/// template-deduction context object, which can be used to capture
/// diagnostics that will be suppressed.
Optional<sema::TemplateDeductionInfo *> isSFINAEContext() const;
/// \brief Determines whether we are currently in a context that
/// is not evaluated as per C++ [expr] p5.
bool isUnevaluatedContext() const {
assert(!ExprEvalContexts.empty() &&
"Must be in an expression evaluation context");
return ExprEvalContexts.back().isUnevaluated();
}
/// \brief RAII class used to determine whether SFINAE has
/// trapped any errors that occur during template argument
/// deduction.
class SFINAETrap {
Sema &SemaRef;
unsigned PrevSFINAEErrors;
bool PrevInNonInstantiationSFINAEContext;
bool PrevAccessCheckingSFINAE;
public:
explicit SFINAETrap(Sema &SemaRef, bool AccessCheckingSFINAE = false)
: SemaRef(SemaRef), PrevSFINAEErrors(SemaRef.NumSFINAEErrors),
PrevInNonInstantiationSFINAEContext(
SemaRef.InNonInstantiationSFINAEContext),
PrevAccessCheckingSFINAE(SemaRef.AccessCheckingSFINAE)
{
if (!SemaRef.isSFINAEContext())
SemaRef.InNonInstantiationSFINAEContext = true;
SemaRef.AccessCheckingSFINAE = AccessCheckingSFINAE;
}
~SFINAETrap() {
SemaRef.NumSFINAEErrors = PrevSFINAEErrors;
SemaRef.InNonInstantiationSFINAEContext
= PrevInNonInstantiationSFINAEContext;
SemaRef.AccessCheckingSFINAE = PrevAccessCheckingSFINAE;
}
/// \brief Determine whether any SFINAE errors have been trapped.
bool hasErrorOccurred() const {
return SemaRef.NumSFINAEErrors > PrevSFINAEErrors;
}
};
/// \brief RAII class used to indicate that we are performing provisional
/// semantic analysis to determine the validity of a construct, so
/// typo-correction and diagnostics in the immediate context (not within
/// implicitly-instantiated templates) should be suppressed.
class TentativeAnalysisScope {
Sema &SemaRef;
// FIXME: Using a SFINAETrap for this is a hack.
SFINAETrap Trap;
bool PrevDisableTypoCorrection;
public:
explicit TentativeAnalysisScope(Sema &SemaRef)
: SemaRef(SemaRef), Trap(SemaRef, true),
PrevDisableTypoCorrection(SemaRef.DisableTypoCorrection) {
SemaRef.DisableTypoCorrection = true;
}
~TentativeAnalysisScope() {
SemaRef.DisableTypoCorrection = PrevDisableTypoCorrection;
}
};
/// \brief The current instantiation scope used to store local
/// variables.
LocalInstantiationScope *CurrentInstantiationScope;
/// \brief Tracks whether we are in a context where typo correction is
/// disabled.
bool DisableTypoCorrection;
/// \brief The number of typos corrected by CorrectTypo.
unsigned TyposCorrected;
typedef llvm::SmallSet<SourceLocation, 2> SrcLocSet;
typedef llvm::DenseMap<IdentifierInfo *, SrcLocSet> IdentifierSourceLocations;
/// \brief A cache containing identifiers for which typo correction failed and
/// their locations, so that repeated attempts to correct an identifier in a
/// given location are ignored if typo correction already failed for it.
IdentifierSourceLocations TypoCorrectionFailures;
/// \brief Worker object for performing CFG-based warnings.
sema::AnalysisBasedWarnings AnalysisWarnings;
threadSafety::BeforeSet *ThreadSafetyDeclCache;
/// \brief An entity for which implicit template instantiation is required.
///
/// The source location associated with the declaration is the first place in
/// the source code where the declaration was "used". It is not necessarily
/// the point of instantiation (which will be either before or after the
/// namespace-scope declaration that triggered this implicit instantiation),
/// However, it is the location that diagnostics should generally refer to,
/// because users will need to know what code triggered the instantiation.
typedef std::pair<ValueDecl *, SourceLocation> PendingImplicitInstantiation;
/// \brief The queue of implicit template instantiations that are required
/// but have not yet been performed.
std::deque<PendingImplicitInstantiation> PendingInstantiations;
class SavePendingInstantiationsAndVTableUsesRAII {
public:
SavePendingInstantiationsAndVTableUsesRAII(Sema &S, bool Enabled)
: S(S), Enabled(Enabled) {
if (!Enabled) return;
SavedPendingInstantiations.swap(S.PendingInstantiations);
SavedVTableUses.swap(S.VTableUses);
}
~SavePendingInstantiationsAndVTableUsesRAII() {
if (!Enabled) return;
// Restore the set of pending vtables.
assert(S.VTableUses.empty() &&
"VTableUses should be empty before it is discarded.");
S.VTableUses.swap(SavedVTableUses);
// Restore the set of pending implicit instantiations.
assert(S.PendingInstantiations.empty() &&
"PendingInstantiations should be empty before it is discarded.");
S.PendingInstantiations.swap(SavedPendingInstantiations);
}
private:
Sema &S;
SmallVector<VTableUse, 16> SavedVTableUses;
std::deque<PendingImplicitInstantiation> SavedPendingInstantiations;
bool Enabled;
};
/// \brief The queue of implicit template instantiations that are required
/// and must be performed within the current local scope.
///
/// This queue is only used for member functions of local classes in
/// templates, which must be instantiated in the same scope as their
/// enclosing function, so that they can reference function-local
/// types, static variables, enumerators, etc.
std::deque<PendingImplicitInstantiation> PendingLocalImplicitInstantiations;
class SavePendingLocalImplicitInstantiationsRAII {
public:
SavePendingLocalImplicitInstantiationsRAII(Sema &S): S(S) {
SavedPendingLocalImplicitInstantiations.swap(
S.PendingLocalImplicitInstantiations);
}
~SavePendingLocalImplicitInstantiationsRAII() {
assert(S.PendingLocalImplicitInstantiations.empty() &&
"there shouldn't be any pending local implicit instantiations");
SavedPendingLocalImplicitInstantiations.swap(
S.PendingLocalImplicitInstantiations);
}
private:
Sema &S;
std::deque<PendingImplicitInstantiation>
SavedPendingLocalImplicitInstantiations;
};
/// A helper class for building up ExtParameterInfos.
class ExtParameterInfoBuilder {
SmallVector<FunctionProtoType::ExtParameterInfo, 16> Infos;
bool HasInteresting = false;
public:
/// Set the ExtParameterInfo for the parameter at the given index,
///
void set(unsigned index, FunctionProtoType::ExtParameterInfo info) {
assert(Infos.size() <= index);
Infos.resize(index);
Infos.push_back(info);
if (!HasInteresting)
HasInteresting = (info != FunctionProtoType::ExtParameterInfo());
}
/// Return a pointer (suitable for setting in an ExtProtoInfo) to the
/// ExtParameterInfo array we've built up.
const FunctionProtoType::ExtParameterInfo *
getPointerOrNull(unsigned numParams) {
if (!HasInteresting) return nullptr;
Infos.resize(numParams);
return Infos.data();
}
};
void PerformPendingInstantiations(bool LocalOnly = false);
TypeSourceInfo *SubstType(TypeSourceInfo *T,
const MultiLevelTemplateArgumentList &TemplateArgs,
SourceLocation Loc, DeclarationName Entity);
QualType SubstType(QualType T,
const MultiLevelTemplateArgumentList &TemplateArgs,
SourceLocation Loc, DeclarationName Entity);
TypeSourceInfo *SubstType(TypeLoc TL,
const MultiLevelTemplateArgumentList &TemplateArgs,
SourceLocation Loc, DeclarationName Entity);
TypeSourceInfo *SubstFunctionDeclType(TypeSourceInfo *T,
const MultiLevelTemplateArgumentList &TemplateArgs,
SourceLocation Loc,
DeclarationName Entity,
CXXRecordDecl *ThisContext,
unsigned ThisTypeQuals);
void SubstExceptionSpec(FunctionDecl *New, const FunctionProtoType *Proto,
const MultiLevelTemplateArgumentList &Args);
ParmVarDecl *SubstParmVarDecl(ParmVarDecl *D,
const MultiLevelTemplateArgumentList &TemplateArgs,
int indexAdjustment,
Optional<unsigned> NumExpansions,
bool ExpectParameterPack);
bool SubstParmTypes(SourceLocation Loc, ArrayRef<ParmVarDecl *> Params,
const FunctionProtoType::ExtParameterInfo *ExtParamInfos,
const MultiLevelTemplateArgumentList &TemplateArgs,
SmallVectorImpl<QualType> &ParamTypes,
SmallVectorImpl<ParmVarDecl *> *OutParams,
ExtParameterInfoBuilder &ParamInfos);
ExprResult SubstExpr(Expr *E,
const MultiLevelTemplateArgumentList &TemplateArgs);
/// \brief Substitute the given template arguments into a list of
/// expressions, expanding pack expansions if required.
///
/// \param Exprs The list of expressions to substitute into.
///
/// \param IsCall Whether this is some form of call, in which case
/// default arguments will be dropped.
///
/// \param TemplateArgs The set of template arguments to substitute.
///
/// \param Outputs Will receive all of the substituted arguments.
///
/// \returns true if an error occurred, false otherwise.
bool SubstExprs(ArrayRef<Expr *> Exprs, bool IsCall,
const MultiLevelTemplateArgumentList &TemplateArgs,
SmallVectorImpl<Expr *> &Outputs);
StmtResult SubstStmt(Stmt *S,
const MultiLevelTemplateArgumentList &TemplateArgs);
Decl *SubstDecl(Decl *D, DeclContext *Owner,
const MultiLevelTemplateArgumentList &TemplateArgs);
ExprResult SubstInitializer(Expr *E,
const MultiLevelTemplateArgumentList &TemplateArgs,
bool CXXDirectInit);
bool
SubstBaseSpecifiers(CXXRecordDecl *Instantiation,
CXXRecordDecl *Pattern,
const MultiLevelTemplateArgumentList &TemplateArgs);
bool
InstantiateClass(SourceLocation PointOfInstantiation,
CXXRecordDecl *Instantiation, CXXRecordDecl *Pattern,
const MultiLevelTemplateArgumentList &TemplateArgs,
TemplateSpecializationKind TSK,
bool Complain = true);
bool InstantiateEnum(SourceLocation PointOfInstantiation,
EnumDecl *Instantiation, EnumDecl *Pattern,
const MultiLevelTemplateArgumentList &TemplateArgs,
TemplateSpecializationKind TSK);
bool InstantiateInClassInitializer(
SourceLocation PointOfInstantiation, FieldDecl *Instantiation,
FieldDecl *Pattern, const MultiLevelTemplateArgumentList &TemplateArgs);
struct LateInstantiatedAttribute {
const Attr *TmplAttr;
LocalInstantiationScope *Scope;
Decl *NewDecl;
LateInstantiatedAttribute(const Attr *A, LocalInstantiationScope *S,
Decl *D)
: TmplAttr(A), Scope(S), NewDecl(D)
{ }
};
typedef SmallVector<LateInstantiatedAttribute, 16> LateInstantiatedAttrVec;
void InstantiateAttrs(const MultiLevelTemplateArgumentList &TemplateArgs,
const Decl *Pattern, Decl *Inst,
LateInstantiatedAttrVec *LateAttrs = nullptr,
LocalInstantiationScope *OuterMostScope = nullptr);
bool
InstantiateClassTemplateSpecialization(SourceLocation PointOfInstantiation,
ClassTemplateSpecializationDecl *ClassTemplateSpec,
TemplateSpecializationKind TSK,
bool Complain = true);
void InstantiateClassMembers(SourceLocation PointOfInstantiation,
CXXRecordDecl *Instantiation,
const MultiLevelTemplateArgumentList &TemplateArgs,
TemplateSpecializationKind TSK);
void InstantiateClassTemplateSpecializationMembers(
SourceLocation PointOfInstantiation,
ClassTemplateSpecializationDecl *ClassTemplateSpec,
TemplateSpecializationKind TSK);
NestedNameSpecifierLoc
SubstNestedNameSpecifierLoc(NestedNameSpecifierLoc NNS,
const MultiLevelTemplateArgumentList &TemplateArgs);
DeclarationNameInfo
SubstDeclarationNameInfo(const DeclarationNameInfo &NameInfo,
const MultiLevelTemplateArgumentList &TemplateArgs);
TemplateName
SubstTemplateName(NestedNameSpecifierLoc QualifierLoc, TemplateName Name,
SourceLocation Loc,
const MultiLevelTemplateArgumentList &TemplateArgs);
bool Subst(const TemplateArgumentLoc *Args, unsigned NumArgs,
TemplateArgumentListInfo &Result,
const MultiLevelTemplateArgumentList &TemplateArgs);
void InstantiateExceptionSpec(SourceLocation PointOfInstantiation,
FunctionDecl *Function);
void InstantiateFunctionDefinition(SourceLocation PointOfInstantiation,
FunctionDecl *Function,
bool Recursive = false,
bool DefinitionRequired = false,
bool AtEndOfTU = false);
VarTemplateSpecializationDecl *BuildVarTemplateInstantiation(
VarTemplateDecl *VarTemplate, VarDecl *FromVar,
const TemplateArgumentList &TemplateArgList,
const TemplateArgumentListInfo &TemplateArgsInfo,
SmallVectorImpl<TemplateArgument> &Converted,
SourceLocation PointOfInstantiation, void *InsertPos,
LateInstantiatedAttrVec *LateAttrs = nullptr,
LocalInstantiationScope *StartingScope = nullptr);
VarTemplateSpecializationDecl *CompleteVarTemplateSpecializationDecl(
VarTemplateSpecializationDecl *VarSpec, VarDecl *PatternDecl,
const MultiLevelTemplateArgumentList &TemplateArgs);
void
BuildVariableInstantiation(VarDecl *NewVar, VarDecl *OldVar,
const MultiLevelTemplateArgumentList &TemplateArgs,
LateInstantiatedAttrVec *LateAttrs,
DeclContext *Owner,
LocalInstantiationScope *StartingScope,
bool InstantiatingVarTemplate = false);
void InstantiateVariableInitializer(
VarDecl *Var, VarDecl *OldVar,
const MultiLevelTemplateArgumentList &TemplateArgs);
void InstantiateVariableDefinition(SourceLocation PointOfInstantiation,
VarDecl *Var, bool Recursive = false,
bool DefinitionRequired = false,
bool AtEndOfTU = false);
void InstantiateStaticDataMemberDefinition(
SourceLocation PointOfInstantiation,
VarDecl *Var,
bool Recursive = false,
bool DefinitionRequired = false);
void InstantiateMemInitializers(CXXConstructorDecl *New,
const CXXConstructorDecl *Tmpl,
const MultiLevelTemplateArgumentList &TemplateArgs);
NamedDecl *FindInstantiatedDecl(SourceLocation Loc, NamedDecl *D,
const MultiLevelTemplateArgumentList &TemplateArgs);
DeclContext *FindInstantiatedContext(SourceLocation Loc, DeclContext *DC,
const MultiLevelTemplateArgumentList &TemplateArgs);
// Objective-C declarations.
enum ObjCContainerKind {
OCK_None = -1,
OCK_Interface = 0,
OCK_Protocol,
OCK_Category,
OCK_ClassExtension,
OCK_Implementation,
OCK_CategoryImplementation
};
ObjCContainerKind getObjCContainerKind() const;
DeclResult actOnObjCTypeParam(Scope *S,
ObjCTypeParamVariance variance,
SourceLocation varianceLoc,
unsigned index,
IdentifierInfo *paramName,
SourceLocation paramLoc,
SourceLocation colonLoc,
ParsedType typeBound);
ObjCTypeParamList *actOnObjCTypeParamList(Scope *S, SourceLocation lAngleLoc,
ArrayRef<Decl *> typeParams,
SourceLocation rAngleLoc);
void popObjCTypeParamList(Scope *S, ObjCTypeParamList *typeParamList);
Decl *ActOnStartClassInterface(Scope *S,
SourceLocation AtInterfaceLoc,
IdentifierInfo *ClassName,
SourceLocation ClassLoc,
ObjCTypeParamList *typeParamList,
IdentifierInfo *SuperName,
SourceLocation SuperLoc,
ArrayRef<ParsedType> SuperTypeArgs,
SourceRange SuperTypeArgsRange,
Decl * const *ProtoRefs,
unsigned NumProtoRefs,
const SourceLocation *ProtoLocs,
SourceLocation EndProtoLoc,
AttributeList *AttrList);
void ActOnSuperClassOfClassInterface(Scope *S,
SourceLocation AtInterfaceLoc,
ObjCInterfaceDecl *IDecl,
IdentifierInfo *ClassName,
SourceLocation ClassLoc,
IdentifierInfo *SuperName,
SourceLocation SuperLoc,
ArrayRef<ParsedType> SuperTypeArgs,
SourceRange SuperTypeArgsRange);
void ActOnTypedefedProtocols(SmallVectorImpl<Decl *> &ProtocolRefs,
SmallVectorImpl<SourceLocation> &ProtocolLocs,
IdentifierInfo *SuperName,
SourceLocation SuperLoc);
Decl *ActOnCompatibilityAlias(
SourceLocation AtCompatibilityAliasLoc,
IdentifierInfo *AliasName, SourceLocation AliasLocation,
IdentifierInfo *ClassName, SourceLocation ClassLocation);
bool CheckForwardProtocolDeclarationForCircularDependency(
IdentifierInfo *PName,
SourceLocation &PLoc, SourceLocation PrevLoc,
const ObjCList<ObjCProtocolDecl> &PList);
Decl *ActOnStartProtocolInterface(
SourceLocation AtProtoInterfaceLoc,
IdentifierInfo *ProtocolName, SourceLocation ProtocolLoc,
Decl * const *ProtoRefNames, unsigned NumProtoRefs,
const SourceLocation *ProtoLocs,
SourceLocation EndProtoLoc,
AttributeList *AttrList);
Decl *ActOnStartCategoryInterface(SourceLocation AtInterfaceLoc,
IdentifierInfo *ClassName,
SourceLocation ClassLoc,
ObjCTypeParamList *typeParamList,
IdentifierInfo *CategoryName,
SourceLocation CategoryLoc,
Decl * const *ProtoRefs,
unsigned NumProtoRefs,
const SourceLocation *ProtoLocs,
SourceLocation EndProtoLoc);
Decl *ActOnStartClassImplementation(
SourceLocation AtClassImplLoc,
IdentifierInfo *ClassName, SourceLocation ClassLoc,
IdentifierInfo *SuperClassname,
SourceLocation SuperClassLoc);
Decl *ActOnStartCategoryImplementation(SourceLocation AtCatImplLoc,
IdentifierInfo *ClassName,
SourceLocation ClassLoc,
IdentifierInfo *CatName,
SourceLocation CatLoc);
DeclGroupPtrTy ActOnFinishObjCImplementation(Decl *ObjCImpDecl,
ArrayRef<Decl *> Decls);
DeclGroupPtrTy ActOnForwardClassDeclaration(SourceLocation Loc,
IdentifierInfo **IdentList,
SourceLocation *IdentLocs,
ArrayRef<ObjCTypeParamList *> TypeParamLists,
unsigned NumElts);
DeclGroupPtrTy ActOnForwardProtocolDeclaration(SourceLocation AtProtoclLoc,
ArrayRef<IdentifierLocPair> IdentList,
AttributeList *attrList);
void FindProtocolDeclaration(bool WarnOnDeclarations, bool ForObjCContainer,
ArrayRef<IdentifierLocPair> ProtocolId,
SmallVectorImpl<Decl *> &Protocols);
void DiagnoseTypeArgsAndProtocols(IdentifierInfo *ProtocolId,
SourceLocation ProtocolLoc,
IdentifierInfo *TypeArgId,
SourceLocation TypeArgLoc,
bool SelectProtocolFirst = false);
/// Given a list of identifiers (and their locations), resolve the
/// names to either Objective-C protocol qualifiers or type
/// arguments, as appropriate.
void actOnObjCTypeArgsOrProtocolQualifiers(
Scope *S,
ParsedType baseType,
SourceLocation lAngleLoc,
ArrayRef<IdentifierInfo *> identifiers,
ArrayRef<SourceLocation> identifierLocs,
SourceLocation rAngleLoc,
SourceLocation &typeArgsLAngleLoc,
SmallVectorImpl<ParsedType> &typeArgs,
SourceLocation &typeArgsRAngleLoc,
SourceLocation &protocolLAngleLoc,
SmallVectorImpl<Decl *> &protocols,
SourceLocation &protocolRAngleLoc,
bool warnOnIncompleteProtocols);
/// Build a an Objective-C protocol-qualified 'id' type where no
/// base type was specified.
TypeResult actOnObjCProtocolQualifierType(
SourceLocation lAngleLoc,
ArrayRef<Decl *> protocols,
ArrayRef<SourceLocation> protocolLocs,
SourceLocation rAngleLoc);
/// Build a specialized and/or protocol-qualified Objective-C type.
TypeResult actOnObjCTypeArgsAndProtocolQualifiers(
Scope *S,
SourceLocation Loc,
ParsedType BaseType,
SourceLocation TypeArgsLAngleLoc,
ArrayRef<ParsedType> TypeArgs,
SourceLocation TypeArgsRAngleLoc,
SourceLocation ProtocolLAngleLoc,
ArrayRef<Decl *> Protocols,
ArrayRef<SourceLocation> ProtocolLocs,
SourceLocation ProtocolRAngleLoc);
/// Build an Objective-C type parameter type.
QualType BuildObjCTypeParamType(const ObjCTypeParamDecl *Decl,
SourceLocation ProtocolLAngleLoc,
ArrayRef<ObjCProtocolDecl *> Protocols,
ArrayRef<SourceLocation> ProtocolLocs,
SourceLocation ProtocolRAngleLoc,
bool FailOnError = false);
/// Build an Objective-C object pointer type.
QualType BuildObjCObjectType(QualType BaseType,
SourceLocation Loc,
SourceLocation TypeArgsLAngleLoc,
ArrayRef<TypeSourceInfo *> TypeArgs,
SourceLocation TypeArgsRAngleLoc,
SourceLocation ProtocolLAngleLoc,
ArrayRef<ObjCProtocolDecl *> Protocols,
ArrayRef<SourceLocation> ProtocolLocs,
SourceLocation ProtocolRAngleLoc,
bool FailOnError = false);
/// Check the application of the Objective-C '__kindof' qualifier to
/// the given type.
bool checkObjCKindOfType(QualType &type, SourceLocation loc);
/// Ensure attributes are consistent with type.
/// \param [in, out] Attributes The attributes to check; they will
/// be modified to be consistent with \p PropertyTy.
void CheckObjCPropertyAttributes(Decl *PropertyPtrTy,
SourceLocation Loc,
unsigned &Attributes,
bool propertyInPrimaryClass);
/// Process the specified property declaration and create decls for the
/// setters and getters as needed.
/// \param property The property declaration being processed
void ProcessPropertyDecl(ObjCPropertyDecl *property);
void DiagnosePropertyMismatch(ObjCPropertyDecl *Property,
ObjCPropertyDecl *SuperProperty,
const IdentifierInfo *Name,
bool OverridingProtocolProperty);
void DiagnoseClassExtensionDupMethods(ObjCCategoryDecl *CAT,
ObjCInterfaceDecl *ID);
Decl *ActOnAtEnd(Scope *S, SourceRange AtEnd,
ArrayRef<Decl *> allMethods = None,
ArrayRef<DeclGroupPtrTy> allTUVars = None);
Decl *ActOnProperty(Scope *S, SourceLocation AtLoc,
SourceLocation LParenLoc,
FieldDeclarator &FD, ObjCDeclSpec &ODS,
Selector GetterSel, Selector SetterSel,
tok::ObjCKeywordKind MethodImplKind,
DeclContext *lexicalDC = nullptr);
Decl *ActOnPropertyImplDecl(Scope *S,
SourceLocation AtLoc,
SourceLocation PropertyLoc,
bool ImplKind,
IdentifierInfo *PropertyId,
IdentifierInfo *PropertyIvar,
SourceLocation PropertyIvarLoc,
ObjCPropertyQueryKind QueryKind);
enum ObjCSpecialMethodKind {
OSMK_None,
OSMK_Alloc,
OSMK_New,
OSMK_Copy,
OSMK_RetainingInit,
OSMK_NonRetainingInit
};
struct ObjCArgInfo {
IdentifierInfo *Name;
SourceLocation NameLoc;
// The Type is null if no type was specified, and the DeclSpec is invalid
// in this case.
ParsedType Type;
ObjCDeclSpec DeclSpec;
/// ArgAttrs - Attribute list for this argument.
AttributeList *ArgAttrs;
};
Decl *ActOnMethodDeclaration(
Scope *S,
SourceLocation BeginLoc, // location of the + or -.
SourceLocation EndLoc, // location of the ; or {.
tok::TokenKind MethodType,
ObjCDeclSpec &ReturnQT, ParsedType ReturnType,
ArrayRef<SourceLocation> SelectorLocs, Selector Sel,
// optional arguments. The number of types/arguments is obtained
// from the Sel.getNumArgs().
ObjCArgInfo *ArgInfo,
DeclaratorChunk::ParamInfo *CParamInfo, unsigned CNumArgs, // c-style args
AttributeList *AttrList, tok::ObjCKeywordKind MethodImplKind,
bool isVariadic, bool MethodDefinition);
ObjCMethodDecl *LookupMethodInQualifiedType(Selector Sel,
const ObjCObjectPointerType *OPT,
bool IsInstance);
ObjCMethodDecl *LookupMethodInObjectType(Selector Sel, QualType Ty,
bool IsInstance);
bool CheckARCMethodDecl(ObjCMethodDecl *method);
bool inferObjCARCLifetime(ValueDecl *decl);
ExprResult
HandleExprPropertyRefExpr(const ObjCObjectPointerType *OPT,
Expr *BaseExpr,
SourceLocation OpLoc,
DeclarationName MemberName,
SourceLocation MemberLoc,
SourceLocation SuperLoc, QualType SuperType,
bool Super);
ExprResult
ActOnClassPropertyRefExpr(IdentifierInfo &receiverName,
IdentifierInfo &propertyName,
SourceLocation receiverNameLoc,
SourceLocation propertyNameLoc);
ObjCMethodDecl *tryCaptureObjCSelf(SourceLocation Loc);
/// \brief Describes the kind of message expression indicated by a message
/// send that starts with an identifier.
enum ObjCMessageKind {
/// \brief The message is sent to 'super'.
ObjCSuperMessage,
/// \brief The message is an instance message.
ObjCInstanceMessage,
/// \brief The message is a class message, and the identifier is a type
/// name.
ObjCClassMessage
};
ObjCMessageKind getObjCMessageKind(Scope *S,
IdentifierInfo *Name,
SourceLocation NameLoc,
bool IsSuper,
bool HasTrailingDot,
ParsedType &ReceiverType);
ExprResult ActOnSuperMessage(Scope *S, SourceLocation SuperLoc,
Selector Sel,
SourceLocation LBracLoc,
ArrayRef<SourceLocation> SelectorLocs,
SourceLocation RBracLoc,
MultiExprArg Args);
ExprResult BuildClassMessage(TypeSourceInfo *ReceiverTypeInfo,
QualType ReceiverType,
SourceLocation SuperLoc,
Selector Sel,
ObjCMethodDecl *Method,
SourceLocation LBracLoc,
ArrayRef<SourceLocation> SelectorLocs,
SourceLocation RBracLoc,
MultiExprArg Args,
bool isImplicit = false);
ExprResult BuildClassMessageImplicit(QualType ReceiverType,
bool isSuperReceiver,
SourceLocation Loc,
Selector Sel,
ObjCMethodDecl *Method,
MultiExprArg Args);
ExprResult ActOnClassMessage(Scope *S,
ParsedType Receiver,
Selector Sel,
SourceLocation LBracLoc,
ArrayRef<SourceLocation> SelectorLocs,
SourceLocation RBracLoc,
MultiExprArg Args);
ExprResult BuildInstanceMessage(Expr *Receiver,
QualType ReceiverType,
SourceLocation SuperLoc,
Selector Sel,
ObjCMethodDecl *Method,
SourceLocation LBracLoc,
ArrayRef<SourceLocation> SelectorLocs,
SourceLocation RBracLoc,
MultiExprArg Args,
bool isImplicit = false);
ExprResult BuildInstanceMessageImplicit(Expr *Receiver,
QualType ReceiverType,
SourceLocation Loc,
Selector Sel,
ObjCMethodDecl *Method,
MultiExprArg Args);
ExprResult ActOnInstanceMessage(Scope *S,
Expr *Receiver,
Selector Sel,
SourceLocation LBracLoc,
ArrayRef<SourceLocation> SelectorLocs,
SourceLocation RBracLoc,
MultiExprArg Args);
ExprResult BuildObjCBridgedCast(SourceLocation LParenLoc,
ObjCBridgeCastKind Kind,
SourceLocation BridgeKeywordLoc,
TypeSourceInfo *TSInfo,
Expr *SubExpr);
ExprResult ActOnObjCBridgedCast(Scope *S,
SourceLocation LParenLoc,
ObjCBridgeCastKind Kind,
SourceLocation BridgeKeywordLoc,
ParsedType Type,
SourceLocation RParenLoc,
Expr *SubExpr);
void CheckTollFreeBridgeCast(QualType castType, Expr *castExpr);
void CheckObjCBridgeRelatedCast(QualType castType, Expr *castExpr);
bool CheckTollFreeBridgeStaticCast(QualType castType, Expr *castExpr,
CastKind &Kind);
bool checkObjCBridgeRelatedComponents(SourceLocation Loc,
QualType DestType, QualType SrcType,
ObjCInterfaceDecl *&RelatedClass,
ObjCMethodDecl *&ClassMethod,
ObjCMethodDecl *&InstanceMethod,
TypedefNameDecl *&TDNDecl,
bool CfToNs, bool Diagnose = true);
bool CheckObjCBridgeRelatedConversions(SourceLocation Loc,
QualType DestType, QualType SrcType,
Expr *&SrcExpr, bool Diagnose = true);
bool ConversionToObjCStringLiteralCheck(QualType DstType, Expr *&SrcExpr,
bool Diagnose = true);
bool checkInitMethod(ObjCMethodDecl *method, QualType receiverTypeIfCall);
/// \brief Check whether the given new method is a valid override of the
/// given overridden method, and set any properties that should be inherited.
void CheckObjCMethodOverride(ObjCMethodDecl *NewMethod,
const ObjCMethodDecl *Overridden);
/// \brief Describes the compatibility of a result type with its method.
enum ResultTypeCompatibilityKind {
RTC_Compatible,
RTC_Incompatible,
RTC_Unknown
};
/// Check whether the declared result type of the given Objective-C
/// method declaration is compatible with the method's class.
ResultTypeCompatibilityKind
checkRelatedResultTypeCompatibility(const ObjCMethodDecl *Method,
const ObjCInterfaceDecl *CurrentClass);
void CheckObjCMethodOverrides(ObjCMethodDecl *ObjCMethod,
ObjCInterfaceDecl *CurrentClass,
ResultTypeCompatibilityKind RTC);
enum PragmaOptionsAlignKind {
POAK_Native, // #pragma options align=native
POAK_Natural, // #pragma options align=natural
POAK_Packed, // #pragma options align=packed
POAK_Power, // #pragma options align=power
POAK_Mac68k, // #pragma options align=mac68k
POAK_Reset // #pragma options align=reset
};
/// ActOnPragmaOptionsAlign - Called on well formed \#pragma options align.
void ActOnPragmaOptionsAlign(PragmaOptionsAlignKind Kind,
SourceLocation PragmaLoc);
/// ActOnPragmaPack - Called on well formed \#pragma pack(...).
void ActOnPragmaPack(SourceLocation PragmaLoc, PragmaMsStackAction Action,
StringRef SlotLabel, Expr *Alignment);
/// ActOnPragmaMSStruct - Called on well formed \#pragma ms_struct [on|off].
void ActOnPragmaMSStruct(PragmaMSStructKind Kind);
/// ActOnPragmaMSComment - Called on well formed
/// \#pragma comment(kind, "arg").
void ActOnPragmaMSComment(SourceLocation CommentLoc, PragmaMSCommentKind Kind,
StringRef Arg);
/// ActOnPragmaMSPointersToMembers - called on well formed \#pragma
/// pointers_to_members(representation method[, general purpose
/// representation]).
void ActOnPragmaMSPointersToMembers(
LangOptions::PragmaMSPointersToMembersKind Kind,
SourceLocation PragmaLoc);
/// \brief Called on well formed \#pragma vtordisp().
void ActOnPragmaMSVtorDisp(PragmaMsStackAction Action,
SourceLocation PragmaLoc,
MSVtorDispAttr::Mode Value);
enum PragmaSectionKind {
PSK_DataSeg,
PSK_BSSSeg,
PSK_ConstSeg,
PSK_CodeSeg,
};
bool UnifySection(StringRef SectionName,
int SectionFlags,
DeclaratorDecl *TheDecl);
bool UnifySection(StringRef SectionName,
int SectionFlags,
SourceLocation PragmaSectionLocation);
/// \brief Called on well formed \#pragma bss_seg/data_seg/const_seg/code_seg.
void ActOnPragmaMSSeg(SourceLocation PragmaLocation,
PragmaMsStackAction Action,
llvm::StringRef StackSlotLabel,
StringLiteral *SegmentName,
llvm::StringRef PragmaName);
/// \brief Called on well formed \#pragma section().
void ActOnPragmaMSSection(SourceLocation PragmaLocation,
int SectionFlags, StringLiteral *SegmentName);
/// \brief Called on well-formed \#pragma init_seg().
void ActOnPragmaMSInitSeg(SourceLocation PragmaLocation,
StringLiteral *SegmentName);
/// \brief Called on #pragma clang __debug dump II
void ActOnPragmaDump(Scope *S, SourceLocation Loc, IdentifierInfo *II);
/// ActOnPragmaDetectMismatch - Call on well-formed \#pragma detect_mismatch
void ActOnPragmaDetectMismatch(SourceLocation Loc, StringRef Name,
StringRef Value);
/// ActOnPragmaUnused - Called on well-formed '\#pragma unused'.
void ActOnPragmaUnused(const Token &Identifier,
Scope *curScope,
SourceLocation PragmaLoc);
/// ActOnPragmaVisibility - Called on well formed \#pragma GCC visibility... .
void ActOnPragmaVisibility(const IdentifierInfo* VisType,
SourceLocation PragmaLoc);
NamedDecl *DeclClonePragmaWeak(NamedDecl *ND, IdentifierInfo *II,
SourceLocation Loc);
void DeclApplyPragmaWeak(Scope *S, NamedDecl *ND, WeakInfo &W);
/// ActOnPragmaWeakID - Called on well formed \#pragma weak ident.
void ActOnPragmaWeakID(IdentifierInfo* WeakName,
SourceLocation PragmaLoc,
SourceLocation WeakNameLoc);
/// ActOnPragmaRedefineExtname - Called on well formed
/// \#pragma redefine_extname oldname newname.
void ActOnPragmaRedefineExtname(IdentifierInfo* WeakName,
IdentifierInfo* AliasName,
SourceLocation PragmaLoc,
SourceLocation WeakNameLoc,
SourceLocation AliasNameLoc);
/// ActOnPragmaWeakAlias - Called on well formed \#pragma weak ident = ident.
void ActOnPragmaWeakAlias(IdentifierInfo* WeakName,
IdentifierInfo* AliasName,
SourceLocation PragmaLoc,
SourceLocation WeakNameLoc,
SourceLocation AliasNameLoc);
/// ActOnPragmaFPContract - Called on well formed
/// \#pragma {STDC,OPENCL} FP_CONTRACT
void ActOnPragmaFPContract(tok::OnOffSwitch OOS);
/// AddAlignmentAttributesForRecord - Adds any needed alignment attributes to
/// a the record decl, to handle '\#pragma pack' and '\#pragma options align'.
void AddAlignmentAttributesForRecord(RecordDecl *RD);
/// AddMsStructLayoutForRecord - Adds ms_struct layout attribute to record.
void AddMsStructLayoutForRecord(RecordDecl *RD);
/// FreePackedContext - Deallocate and null out PackContext.
void FreePackedContext();
/// PushNamespaceVisibilityAttr - Note that we've entered a
/// namespace with a visibility attribute.
void PushNamespaceVisibilityAttr(const VisibilityAttr *Attr,
SourceLocation Loc);
/// AddPushedVisibilityAttribute - If '\#pragma GCC visibility' was used,
/// add an appropriate visibility attribute.
void AddPushedVisibilityAttribute(Decl *RD);
/// PopPragmaVisibility - Pop the top element of the visibility stack; used
/// for '\#pragma GCC visibility' and visibility attributes on namespaces.
void PopPragmaVisibility(bool IsNamespaceEnd, SourceLocation EndLoc);
/// FreeVisContext - Deallocate and null out VisContext.
void FreeVisContext();
/// AddCFAuditedAttribute - Check whether we're currently within
/// '\#pragma clang arc_cf_code_audited' and, if so, consider adding
/// the appropriate attribute.
void AddCFAuditedAttribute(Decl *D);
/// \brief Called on well formed \#pragma clang optimize.
void ActOnPragmaOptimize(bool On, SourceLocation PragmaLoc);
/// \brief Get the location for the currently active "\#pragma clang optimize
/// off". If this location is invalid, then the state of the pragma is "on".
SourceLocation getOptimizeOffPragmaLocation() const {
return OptimizeOffPragmaLocation;
}
/// \brief Only called on function definitions; if there is a pragma in scope
/// with the effect of a range-based optnone, consider marking the function
/// with attribute optnone.
void AddRangeBasedOptnone(FunctionDecl *FD);
/// \brief Adds the 'optnone' attribute to the function declaration if there
/// are no conflicts; Loc represents the location causing the 'optnone'
/// attribute to be added (usually because of a pragma).
void AddOptnoneAttributeIfNoConflicts(FunctionDecl *FD, SourceLocation Loc);
/// AddAlignedAttr - Adds an aligned attribute to a particular declaration.
void AddAlignedAttr(SourceRange AttrRange, Decl *D, Expr *E,
unsigned SpellingListIndex, bool IsPackExpansion);
void AddAlignedAttr(SourceRange AttrRange, Decl *D, TypeSourceInfo *T,
unsigned SpellingListIndex, bool IsPackExpansion);
/// AddAssumeAlignedAttr - Adds an assume_aligned attribute to a particular
/// declaration.
void AddAssumeAlignedAttr(SourceRange AttrRange, Decl *D, Expr *E, Expr *OE,
unsigned SpellingListIndex);
/// AddAlignValueAttr - Adds an align_value attribute to a particular
/// declaration.
void AddAlignValueAttr(SourceRange AttrRange, Decl *D, Expr *E,
unsigned SpellingListIndex);
/// AddLaunchBoundsAttr - Adds a launch_bounds attribute to a particular
/// declaration.
void AddLaunchBoundsAttr(SourceRange AttrRange, Decl *D, Expr *MaxThreads,
Expr *MinBlocks, unsigned SpellingListIndex);
/// AddModeAttr - Adds a mode attribute to a particular declaration.
void AddModeAttr(SourceRange AttrRange, Decl *D, IdentifierInfo *Name,
unsigned SpellingListIndex, bool InInstantiation = false);
void AddParameterABIAttr(SourceRange AttrRange, Decl *D,
ParameterABI ABI, unsigned SpellingListIndex);
void AddNSConsumedAttr(SourceRange AttrRange, Decl *D,
unsigned SpellingListIndex, bool isNSConsumed,
bool isTemplateInstantiation);
//===--------------------------------------------------------------------===//
// C++ Coroutines TS
//
ExprResult ActOnCoawaitExpr(Scope *S, SourceLocation KwLoc, Expr *E);
ExprResult ActOnCoyieldExpr(Scope *S, SourceLocation KwLoc, Expr *E);
StmtResult ActOnCoreturnStmt(SourceLocation KwLoc, Expr *E);
ExprResult BuildCoawaitExpr(SourceLocation KwLoc, Expr *E);
ExprResult BuildCoyieldExpr(SourceLocation KwLoc, Expr *E);
StmtResult BuildCoreturnStmt(SourceLocation KwLoc, Expr *E);
void CheckCompletedCoroutineBody(FunctionDecl *FD, Stmt *&Body);
//===--------------------------------------------------------------------===//
// OpenMP directives and clauses.
//
private:
void *VarDataSharingAttributesStack;
/// Set to true inside '#pragma omp declare target' region.
bool IsInOpenMPDeclareTargetContext = false;
/// \brief Initialization of data-sharing attributes stack.
void InitDataSharingAttributesStack();
void DestroyDataSharingAttributesStack();
ExprResult
VerifyPositiveIntegerConstantInClause(Expr *Op, OpenMPClauseKind CKind,
bool StrictlyPositive = true);
/// Returns OpenMP nesting level for current directive.
unsigned getOpenMPNestingLevel() const;
public:
/// \brief Return true if the provided declaration \a VD should be captured by
/// reference.
/// \param Level Relative level of nested OpenMP construct for that the check
/// is performed.
bool IsOpenMPCapturedByRef(ValueDecl *D, unsigned Level);
/// \brief Check if the specified variable is used in one of the private
/// clauses (private, firstprivate, lastprivate, reduction etc.) in OpenMP
/// constructs.
VarDecl *IsOpenMPCapturedDecl(ValueDecl *D);
ExprResult getOpenMPCapturedExpr(VarDecl *Capture, ExprValueKind VK,
ExprObjectKind OK, SourceLocation Loc);
/// \brief Check if the specified variable is used in 'private' clause.
/// \param Level Relative level of nested OpenMP construct for that the check
/// is performed.
bool isOpenMPPrivateDecl(ValueDecl *D, unsigned Level);
/// \brief Check if the specified variable is captured by 'target' directive.
/// \param Level Relative level of nested OpenMP construct for that the check
/// is performed.
bool isOpenMPTargetCapturedDecl(ValueDecl *D, unsigned Level);
ExprResult PerformOpenMPImplicitIntegerConversion(SourceLocation OpLoc,
Expr *Op);
/// \brief Called on start of new data sharing attribute block.
void StartOpenMPDSABlock(OpenMPDirectiveKind K,
const DeclarationNameInfo &DirName, Scope *CurScope,
SourceLocation Loc);
/// \brief Start analysis of clauses.
void StartOpenMPClause(OpenMPClauseKind K);
/// \brief End analysis of clauses.
void EndOpenMPClause();
/// \brief Called on end of data sharing attribute block.
void EndOpenMPDSABlock(Stmt *CurDirective);
/// \brief Check if the current region is an OpenMP loop region and if it is,
/// mark loop control variable, used in \p Init for loop initialization, as
/// private by default.
/// \param Init First part of the for loop.
void ActOnOpenMPLoopInitialization(SourceLocation ForLoc, Stmt *Init);
// OpenMP directives and clauses.
/// \brief Called on correct id-expression from the '#pragma omp
/// threadprivate'.
ExprResult ActOnOpenMPIdExpression(Scope *CurScope,
CXXScopeSpec &ScopeSpec,
const DeclarationNameInfo &Id);
/// \brief Called on well-formed '#pragma omp threadprivate'.
DeclGroupPtrTy ActOnOpenMPThreadprivateDirective(
SourceLocation Loc,
ArrayRef<Expr *> VarList);
/// \brief Builds a new OpenMPThreadPrivateDecl and checks its correctness.
OMPThreadPrivateDecl *CheckOMPThreadPrivateDecl(
SourceLocation Loc,
ArrayRef<Expr *> VarList);
/// \brief Check if the specified type is allowed to be used in 'omp declare
/// reduction' construct.
QualType ActOnOpenMPDeclareReductionType(SourceLocation TyLoc,
TypeResult ParsedType);
/// \brief Called on start of '#pragma omp declare reduction'.
DeclGroupPtrTy ActOnOpenMPDeclareReductionDirectiveStart(
Scope *S, DeclContext *DC, DeclarationName Name,
ArrayRef<std::pair<QualType, SourceLocation>> ReductionTypes,
AccessSpecifier AS, Decl *PrevDeclInScope = nullptr);
/// \brief Initialize declare reduction construct initializer.
void ActOnOpenMPDeclareReductionCombinerStart(Scope *S, Decl *D);
/// \brief Finish current declare reduction construct initializer.
void ActOnOpenMPDeclareReductionCombinerEnd(Decl *D, Expr *Combiner);
/// \brief Initialize declare reduction construct initializer.
void ActOnOpenMPDeclareReductionInitializerStart(Scope *S, Decl *D);
/// \brief Finish current declare reduction construct initializer.
void ActOnOpenMPDeclareReductionInitializerEnd(Decl *D, Expr *Initializer);
/// \brief Called at the end of '#pragma omp declare reduction'.
DeclGroupPtrTy ActOnOpenMPDeclareReductionDirectiveEnd(
Scope *S, DeclGroupPtrTy DeclReductions, bool IsValid);
/// Called on the start of target region i.e. '#pragma omp declare target'.
bool ActOnStartOpenMPDeclareTargetDirective(SourceLocation Loc);
/// Called at the end of target region i.e. '#pragme omp end declare target'.
void ActOnFinishOpenMPDeclareTargetDirective();
/// Called on correct id-expression from the '#pragma omp declare target'.
void ActOnOpenMPDeclareTargetName(Scope *CurScope, CXXScopeSpec &ScopeSpec,
const DeclarationNameInfo &Id,
OMPDeclareTargetDeclAttr::MapTypeTy MT,
NamedDeclSetType &SameDirectiveDecls);
/// Check declaration inside target region.
void checkDeclIsAllowedInOpenMPTarget(Expr *E, Decl *D);
/// Return true inside OpenMP target region.
bool isInOpenMPDeclareTargetContext() const {
return IsInOpenMPDeclareTargetContext;
}
/// \brief Initialization of captured region for OpenMP region.
void ActOnOpenMPRegionStart(OpenMPDirectiveKind DKind, Scope *CurScope);
/// \brief End of OpenMP region.
///
/// \param S Statement associated with the current OpenMP region.
/// \param Clauses List of clauses for the current OpenMP region.
///
/// \returns Statement for finished OpenMP region.
StmtResult ActOnOpenMPRegionEnd(StmtResult S, ArrayRef<OMPClause *> Clauses);
StmtResult ActOnOpenMPExecutableDirective(
OpenMPDirectiveKind Kind, const DeclarationNameInfo &DirName,
OpenMPDirectiveKind CancelRegion, ArrayRef<OMPClause *> Clauses,
Stmt *AStmt, SourceLocation StartLoc, SourceLocation EndLoc);
/// \brief Called on well-formed '\#pragma omp parallel' after parsing
/// of the associated statement.
StmtResult ActOnOpenMPParallelDirective(ArrayRef<OMPClause *> Clauses,
Stmt *AStmt,
SourceLocation StartLoc,
SourceLocation EndLoc);
/// \brief Called on well-formed '\#pragma omp simd' after parsing
/// of the associated statement.
StmtResult ActOnOpenMPSimdDirective(
ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
SourceLocation EndLoc,
llvm::DenseMap<ValueDecl *, Expr *> &VarsWithImplicitDSA);
/// \brief Called on well-formed '\#pragma omp for' after parsing
/// of the associated statement.
StmtResult ActOnOpenMPForDirective(
ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
SourceLocation EndLoc,
llvm::DenseMap<ValueDecl *, Expr *> &VarsWithImplicitDSA);
/// \brief Called on well-formed '\#pragma omp for simd' after parsing
/// of the associated statement.
StmtResult ActOnOpenMPForSimdDirective(
ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
SourceLocation EndLoc,
llvm::DenseMap<ValueDecl *, Expr *> &VarsWithImplicitDSA);
/// \brief Called on well-formed '\#pragma omp sections' after parsing
/// of the associated statement.
StmtResult ActOnOpenMPSectionsDirective(ArrayRef<OMPClause *> Clauses,
Stmt *AStmt, SourceLocation StartLoc,
SourceLocation EndLoc);
/// \brief Called on well-formed '\#pragma omp section' after parsing of the
/// associated statement.
StmtResult ActOnOpenMPSectionDirective(Stmt *AStmt, SourceLocation StartLoc,
SourceLocation EndLoc);
/// \brief Called on well-formed '\#pragma omp single' after parsing of the
/// associated statement.
StmtResult ActOnOpenMPSingleDirective(ArrayRef<OMPClause *> Clauses,
Stmt *AStmt, SourceLocation StartLoc,
SourceLocation EndLoc);
/// \brief Called on well-formed '\#pragma omp master' after parsing of the
/// associated statement.
StmtResult ActOnOpenMPMasterDirective(Stmt *AStmt, SourceLocation StartLoc,
SourceLocation EndLoc);
/// \brief Called on well-formed '\#pragma omp critical' after parsing of the
/// associated statement.
StmtResult ActOnOpenMPCriticalDirective(const DeclarationNameInfo &DirName,
ArrayRef<OMPClause *> Clauses,
Stmt *AStmt, SourceLocation StartLoc,
SourceLocation EndLoc);
/// \brief Called on well-formed '\#pragma omp parallel for' after parsing
/// of the associated statement.
StmtResult ActOnOpenMPParallelForDirective(
ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
SourceLocation EndLoc,
llvm::DenseMap<ValueDecl *, Expr *> &VarsWithImplicitDSA);
/// \brief Called on well-formed '\#pragma omp parallel for simd' after
/// parsing of the associated statement.
StmtResult ActOnOpenMPParallelForSimdDirective(
ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
SourceLocation EndLoc,
llvm::DenseMap<ValueDecl *, Expr *> &VarsWithImplicitDSA);
/// \brief Called on well-formed '\#pragma omp parallel sections' after
/// parsing of the associated statement.
StmtResult ActOnOpenMPParallelSectionsDirective(ArrayRef<OMPClause *> Clauses,
Stmt *AStmt,
SourceLocation StartLoc,
SourceLocation EndLoc);
/// \brief Called on well-formed '\#pragma omp task' after parsing of the
/// associated statement.
StmtResult ActOnOpenMPTaskDirective(ArrayRef<OMPClause *> Clauses,
Stmt *AStmt, SourceLocation StartLoc,
SourceLocation EndLoc);
/// \brief Called on well-formed '\#pragma omp taskyield'.
StmtResult ActOnOpenMPTaskyieldDirective(SourceLocation StartLoc,
SourceLocation EndLoc);
/// \brief Called on well-formed '\#pragma omp barrier'.
StmtResult ActOnOpenMPBarrierDirective(SourceLocation StartLoc,
SourceLocation EndLoc);
/// \brief Called on well-formed '\#pragma omp taskwait'.
StmtResult ActOnOpenMPTaskwaitDirective(SourceLocation StartLoc,
SourceLocation EndLoc);
/// \brief Called on well-formed '\#pragma omp taskgroup'.
StmtResult ActOnOpenMPTaskgroupDirective(Stmt *AStmt, SourceLocation StartLoc,
SourceLocation EndLoc);
/// \brief Called on well-formed '\#pragma omp flush'.
StmtResult ActOnOpenMPFlushDirective(ArrayRef<OMPClause *> Clauses,
SourceLocation StartLoc,
SourceLocation EndLoc);
/// \brief Called on well-formed '\#pragma omp ordered' after parsing of the
/// associated statement.
StmtResult ActOnOpenMPOrderedDirective(ArrayRef<OMPClause *> Clauses,
Stmt *AStmt, SourceLocation StartLoc,
SourceLocation EndLoc);
/// \brief Called on well-formed '\#pragma omp atomic' after parsing of the
/// associated statement.
StmtResult ActOnOpenMPAtomicDirective(ArrayRef<OMPClause *> Clauses,
Stmt *AStmt, SourceLocation StartLoc,
SourceLocation EndLoc);
/// \brief Called on well-formed '\#pragma omp target' after parsing of the
/// associated statement.
StmtResult ActOnOpenMPTargetDirective(ArrayRef<OMPClause *> Clauses,
Stmt *AStmt, SourceLocation StartLoc,
SourceLocation EndLoc);
/// \brief Called on well-formed '\#pragma omp target data' after parsing of
/// the associated statement.
StmtResult ActOnOpenMPTargetDataDirective(ArrayRef<OMPClause *> Clauses,
Stmt *AStmt, SourceLocation StartLoc,
SourceLocation EndLoc);
/// \brief Called on well-formed '\#pragma omp target enter data' after
/// parsing of the associated statement.
StmtResult ActOnOpenMPTargetEnterDataDirective(ArrayRef<OMPClause *> Clauses,
SourceLocation StartLoc,
SourceLocation EndLoc);
/// \brief Called on well-formed '\#pragma omp target exit data' after
/// parsing of the associated statement.
StmtResult ActOnOpenMPTargetExitDataDirective(ArrayRef<OMPClause *> Clauses,
SourceLocation StartLoc,
SourceLocation EndLoc);
/// \brief Called on well-formed '\#pragma omp target parallel' after
/// parsing of the associated statement.
StmtResult ActOnOpenMPTargetParallelDirective(ArrayRef<OMPClause *> Clauses,
Stmt *AStmt,
SourceLocation StartLoc,
SourceLocation EndLoc);
/// \brief Called on well-formed '\#pragma omp target parallel for' after
/// parsing of the associated statement.
StmtResult ActOnOpenMPTargetParallelForDirective(
ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
SourceLocation EndLoc,
llvm::DenseMap<ValueDecl *, Expr *> &VarsWithImplicitDSA);
/// \brief Called on well-formed '\#pragma omp teams' after parsing of the
/// associated statement.
StmtResult ActOnOpenMPTeamsDirective(ArrayRef<OMPClause *> Clauses,
Stmt *AStmt, SourceLocation StartLoc,
SourceLocation EndLoc);
/// \brief Called on well-formed '\#pragma omp cancellation point'.
StmtResult
ActOnOpenMPCancellationPointDirective(SourceLocation StartLoc,
SourceLocation EndLoc,
OpenMPDirectiveKind CancelRegion);
/// \brief Called on well-formed '\#pragma omp cancel'.
StmtResult ActOnOpenMPCancelDirective(ArrayRef<OMPClause *> Clauses,
SourceLocation StartLoc,
SourceLocation EndLoc,
OpenMPDirectiveKind CancelRegion);
/// \brief Called on well-formed '\#pragma omp taskloop' after parsing of the
/// associated statement.
StmtResult ActOnOpenMPTaskLoopDirective(
ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
SourceLocation EndLoc,
llvm::DenseMap<ValueDecl *, Expr *> &VarsWithImplicitDSA);
/// \brief Called on well-formed '\#pragma omp taskloop simd' after parsing of
/// the associated statement.
StmtResult ActOnOpenMPTaskLoopSimdDirective(
ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
SourceLocation EndLoc,
llvm::DenseMap<ValueDecl *, Expr *> &VarsWithImplicitDSA);
/// \brief Called on well-formed '\#pragma omp distribute' after parsing
/// of the associated statement.
StmtResult ActOnOpenMPDistributeDirective(
ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
SourceLocation EndLoc,
llvm::DenseMap<ValueDecl *, Expr *> &VarsWithImplicitDSA);
/// \brief Called on well-formed '\#pragma omp target update'.
StmtResult ActOnOpenMPTargetUpdateDirective(ArrayRef<OMPClause *> Clauses,
SourceLocation StartLoc,
SourceLocation EndLoc);
/// \brief Called on well-formed '\#pragma omp distribute parallel for' after
/// parsing of the associated statement.
StmtResult ActOnOpenMPDistributeParallelForDirective(
ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
SourceLocation EndLoc,
llvm::DenseMap<ValueDecl *, Expr *> &VarsWithImplicitDSA);
/// \brief Called on well-formed '\#pragma omp distribute parallel for simd'
/// after parsing of the associated statement.
StmtResult ActOnOpenMPDistributeParallelForSimdDirective(
ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
SourceLocation EndLoc,
llvm::DenseMap<ValueDecl *, Expr *> &VarsWithImplicitDSA);
/// \brief Called on well-formed '\#pragma omp distribute simd' after
/// parsing of the associated statement.
StmtResult ActOnOpenMPDistributeSimdDirective(
ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
SourceLocation EndLoc,
llvm::DenseMap<ValueDecl *, Expr *> &VarsWithImplicitDSA);
/// \brief Called on well-formed '\#pragma omp target parallel for simd' after
/// parsing of the associated statement.
StmtResult ActOnOpenMPTargetParallelForSimdDirective(
ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
SourceLocation EndLoc,
llvm::DenseMap<ValueDecl *, Expr *> &VarsWithImplicitDSA);
/// \brief Called on well-formed '\#pragma omp target simd' after parsing of
/// the associated statement.
StmtResult ActOnOpenMPTargetSimdDirective(
ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
SourceLocation EndLoc,
llvm::DenseMap<ValueDecl *, Expr *> &VarsWithImplicitDSA);
/// Called on well-formed '\#pragma omp teams distribute' after parsing of
/// the associated statement.
StmtResult ActOnOpenMPTeamsDistributeDirective(
ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
SourceLocation EndLoc,
llvm::DenseMap<ValueDecl *, Expr *> &VarsWithImplicitDSA);
/// Checks correctness of linear modifiers.
bool CheckOpenMPLinearModifier(OpenMPLinearClauseKind LinKind,
SourceLocation LinLoc);
/// Checks that the specified declaration matches requirements for the linear
/// decls.
bool CheckOpenMPLinearDecl(ValueDecl *D, SourceLocation ELoc,
OpenMPLinearClauseKind LinKind, QualType Type);
/// \brief Called on well-formed '\#pragma omp declare simd' after parsing of
/// the associated method/function.
DeclGroupPtrTy ActOnOpenMPDeclareSimdDirective(
DeclGroupPtrTy DG, OMPDeclareSimdDeclAttr::BranchStateTy BS,
Expr *Simdlen, ArrayRef<Expr *> Uniforms, ArrayRef<Expr *> Aligneds,
ArrayRef<Expr *> Alignments, ArrayRef<Expr *> Linears,
ArrayRef<unsigned> LinModifiers, ArrayRef<Expr *> Steps, SourceRange SR);
OMPClause *ActOnOpenMPSingleExprClause(OpenMPClauseKind Kind,
Expr *Expr,
SourceLocation StartLoc,
SourceLocation LParenLoc,
SourceLocation EndLoc);
/// \brief Called on well-formed 'if' clause.
OMPClause *ActOnOpenMPIfClause(OpenMPDirectiveKind NameModifier,
Expr *Condition, SourceLocation StartLoc,
SourceLocation LParenLoc,
SourceLocation NameModifierLoc,
SourceLocation ColonLoc,
SourceLocation EndLoc);
/// \brief Called on well-formed 'final' clause.
OMPClause *ActOnOpenMPFinalClause(Expr *Condition, SourceLocation StartLoc,
SourceLocation LParenLoc,
SourceLocation EndLoc);
/// \brief Called on well-formed 'num_threads' clause.
OMPClause *ActOnOpenMPNumThreadsClause(Expr *NumThreads,
SourceLocation StartLoc,
SourceLocation LParenLoc,
SourceLocation EndLoc);
/// \brief Called on well-formed 'safelen' clause.
OMPClause *ActOnOpenMPSafelenClause(Expr *Length,
SourceLocation StartLoc,
SourceLocation LParenLoc,
SourceLocation EndLoc);
/// \brief Called on well-formed 'simdlen' clause.
OMPClause *ActOnOpenMPSimdlenClause(Expr *Length, SourceLocation StartLoc,
SourceLocation LParenLoc,
SourceLocation EndLoc);
/// \brief Called on well-formed 'collapse' clause.
OMPClause *ActOnOpenMPCollapseClause(Expr *NumForLoops,
SourceLocation StartLoc,
SourceLocation LParenLoc,
SourceLocation EndLoc);
/// \brief Called on well-formed 'ordered' clause.
OMPClause *
ActOnOpenMPOrderedClause(SourceLocation StartLoc, SourceLocation EndLoc,
SourceLocation LParenLoc = SourceLocation(),
Expr *NumForLoops = nullptr);
/// \brief Called on well-formed 'grainsize' clause.
OMPClause *ActOnOpenMPGrainsizeClause(Expr *Size, SourceLocation StartLoc,
SourceLocation LParenLoc,
SourceLocation EndLoc);
/// \brief Called on well-formed 'num_tasks' clause.
OMPClause *ActOnOpenMPNumTasksClause(Expr *NumTasks, SourceLocation StartLoc,
SourceLocation LParenLoc,
SourceLocation EndLoc);
/// \brief Called on well-formed 'hint' clause.
OMPClause *ActOnOpenMPHintClause(Expr *Hint, SourceLocation StartLoc,
SourceLocation LParenLoc,
SourceLocation EndLoc);
OMPClause *ActOnOpenMPSimpleClause(OpenMPClauseKind Kind,
unsigned Argument,
SourceLocation ArgumentLoc,
SourceLocation StartLoc,
SourceLocation LParenLoc,
SourceLocation EndLoc);
/// \brief Called on well-formed 'default' clause.
OMPClause *ActOnOpenMPDefaultClause(OpenMPDefaultClauseKind Kind,
SourceLocation KindLoc,
SourceLocation StartLoc,
SourceLocation LParenLoc,
SourceLocation EndLoc);
/// \brief Called on well-formed 'proc_bind' clause.
OMPClause *ActOnOpenMPProcBindClause(OpenMPProcBindClauseKind Kind,
SourceLocation KindLoc,
SourceLocation StartLoc,
SourceLocation LParenLoc,
SourceLocation EndLoc);
OMPClause *ActOnOpenMPSingleExprWithArgClause(
OpenMPClauseKind Kind, ArrayRef<unsigned> Arguments, Expr *Expr,
SourceLocation StartLoc, SourceLocation LParenLoc,
ArrayRef<SourceLocation> ArgumentsLoc, SourceLocation DelimLoc,
SourceLocation EndLoc);
/// \brief Called on well-formed 'schedule' clause.
OMPClause *ActOnOpenMPScheduleClause(
OpenMPScheduleClauseModifier M1, OpenMPScheduleClauseModifier M2,
OpenMPScheduleClauseKind Kind, Expr *ChunkSize, SourceLocation StartLoc,
SourceLocation LParenLoc, SourceLocation M1Loc, SourceLocation M2Loc,
SourceLocation KindLoc, SourceLocation CommaLoc, SourceLocation EndLoc);
OMPClause *ActOnOpenMPClause(OpenMPClauseKind Kind, SourceLocation StartLoc,
SourceLocation EndLoc);
/// \brief Called on well-formed 'nowait' clause.
OMPClause *ActOnOpenMPNowaitClause(SourceLocation StartLoc,
SourceLocation EndLoc);
/// \brief Called on well-formed 'untied' clause.
OMPClause *ActOnOpenMPUntiedClause(SourceLocation StartLoc,
SourceLocation EndLoc);
/// \brief Called on well-formed 'mergeable' clause.
OMPClause *ActOnOpenMPMergeableClause(SourceLocation StartLoc,
SourceLocation EndLoc);
/// \brief Called on well-formed 'read' clause.
OMPClause *ActOnOpenMPReadClause(SourceLocation StartLoc,
SourceLocation EndLoc);
/// \brief Called on well-formed 'write' clause.
OMPClause *ActOnOpenMPWriteClause(SourceLocation StartLoc,
SourceLocation EndLoc);
/// \brief Called on well-formed 'update' clause.
OMPClause *ActOnOpenMPUpdateClause(SourceLocation StartLoc,
SourceLocation EndLoc);
/// \brief Called on well-formed 'capture' clause.
OMPClause *ActOnOpenMPCaptureClause(SourceLocation StartLoc,
SourceLocation EndLoc);
/// \brief Called on well-formed 'seq_cst' clause.
OMPClause *ActOnOpenMPSeqCstClause(SourceLocation StartLoc,
SourceLocation EndLoc);
/// \brief Called on well-formed 'threads' clause.
OMPClause *ActOnOpenMPThreadsClause(SourceLocation StartLoc,
SourceLocation EndLoc);
/// \brief Called on well-formed 'simd' clause.
OMPClause *ActOnOpenMPSIMDClause(SourceLocation StartLoc,
SourceLocation EndLoc);
/// \brief Called on well-formed 'nogroup' clause.
OMPClause *ActOnOpenMPNogroupClause(SourceLocation StartLoc,
SourceLocation EndLoc);
OMPClause *ActOnOpenMPVarListClause(
OpenMPClauseKind Kind, ArrayRef<Expr *> Vars, Expr *TailExpr,
SourceLocation StartLoc, SourceLocation LParenLoc,
SourceLocation ColonLoc, SourceLocation EndLoc,
CXXScopeSpec &ReductionIdScopeSpec,
const DeclarationNameInfo &ReductionId, OpenMPDependClauseKind DepKind,
OpenMPLinearClauseKind LinKind, OpenMPMapClauseKind MapTypeModifier,
OpenMPMapClauseKind MapType, bool IsMapTypeImplicit,
SourceLocation DepLinMapLoc);
/// \brief Called on well-formed 'private' clause.
OMPClause *ActOnOpenMPPrivateClause(ArrayRef<Expr *> VarList,
SourceLocation StartLoc,
SourceLocation LParenLoc,
SourceLocation EndLoc);
/// \brief Called on well-formed 'firstprivate' clause.
OMPClause *ActOnOpenMPFirstprivateClause(ArrayRef<Expr *> VarList,
SourceLocation StartLoc,
SourceLocation LParenLoc,
SourceLocation EndLoc);
/// \brief Called on well-formed 'lastprivate' clause.
OMPClause *ActOnOpenMPLastprivateClause(ArrayRef<Expr *> VarList,
SourceLocation StartLoc,
SourceLocation LParenLoc,
SourceLocation EndLoc);
/// \brief Called on well-formed 'shared' clause.
OMPClause *ActOnOpenMPSharedClause(ArrayRef<Expr *> VarList,
SourceLocation StartLoc,
SourceLocation LParenLoc,
SourceLocation EndLoc);
/// \brief Called on well-formed 'reduction' clause.
OMPClause *ActOnOpenMPReductionClause(
ArrayRef<Expr *> VarList, SourceLocation StartLoc,
SourceLocation LParenLoc, SourceLocation ColonLoc, SourceLocation EndLoc,
CXXScopeSpec &ReductionIdScopeSpec,
const DeclarationNameInfo &ReductionId,
ArrayRef<Expr *> UnresolvedReductions = llvm::None);
/// \brief Called on well-formed 'linear' clause.
OMPClause *
ActOnOpenMPLinearClause(ArrayRef<Expr *> VarList, Expr *Step,
SourceLocation StartLoc, SourceLocation LParenLoc,
OpenMPLinearClauseKind LinKind, SourceLocation LinLoc,
SourceLocation ColonLoc, SourceLocation EndLoc);
/// \brief Called on well-formed 'aligned' clause.
OMPClause *ActOnOpenMPAlignedClause(ArrayRef<Expr *> VarList,
Expr *Alignment,
SourceLocation StartLoc,
SourceLocation LParenLoc,
SourceLocation ColonLoc,
SourceLocation EndLoc);
/// \brief Called on well-formed 'copyin' clause.
OMPClause *ActOnOpenMPCopyinClause(ArrayRef<Expr *> VarList,
SourceLocation StartLoc,
SourceLocation LParenLoc,
SourceLocation EndLoc);
/// \brief Called on well-formed 'copyprivate' clause.
OMPClause *ActOnOpenMPCopyprivateClause(ArrayRef<Expr *> VarList,
SourceLocation StartLoc,
SourceLocation LParenLoc,
SourceLocation EndLoc);
/// \brief Called on well-formed 'flush' pseudo clause.
OMPClause *ActOnOpenMPFlushClause(ArrayRef<Expr *> VarList,
SourceLocation StartLoc,
SourceLocation LParenLoc,
SourceLocation EndLoc);
/// \brief Called on well-formed 'depend' clause.
OMPClause *
ActOnOpenMPDependClause(OpenMPDependClauseKind DepKind, SourceLocation DepLoc,
SourceLocation ColonLoc, ArrayRef<Expr *> VarList,
SourceLocation StartLoc, SourceLocation LParenLoc,
SourceLocation EndLoc);
/// \brief Called on well-formed 'device' clause.
OMPClause *ActOnOpenMPDeviceClause(Expr *Device, SourceLocation StartLoc,
SourceLocation LParenLoc,
SourceLocation EndLoc);
/// \brief Called on well-formed 'map' clause.
OMPClause *
ActOnOpenMPMapClause(OpenMPMapClauseKind MapTypeModifier,
OpenMPMapClauseKind MapType, bool IsMapTypeImplicit,
SourceLocation MapLoc, SourceLocation ColonLoc,
ArrayRef<Expr *> VarList, SourceLocation StartLoc,
SourceLocation LParenLoc, SourceLocation EndLoc);
/// \brief Called on well-formed 'num_teams' clause.
OMPClause *ActOnOpenMPNumTeamsClause(Expr *NumTeams, SourceLocation StartLoc,
SourceLocation LParenLoc,
SourceLocation EndLoc);
/// \brief Called on well-formed 'thread_limit' clause.
OMPClause *ActOnOpenMPThreadLimitClause(Expr *ThreadLimit,
SourceLocation StartLoc,
SourceLocation LParenLoc,
SourceLocation EndLoc);
/// \brief Called on well-formed 'priority' clause.
OMPClause *ActOnOpenMPPriorityClause(Expr *Priority, SourceLocation StartLoc,
SourceLocation LParenLoc,
SourceLocation EndLoc);
/// \brief Called on well-formed 'dist_schedule' clause.
OMPClause *ActOnOpenMPDistScheduleClause(
OpenMPDistScheduleClauseKind Kind, Expr *ChunkSize,
SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation KindLoc,
SourceLocation CommaLoc, SourceLocation EndLoc);
/// \brief Called on well-formed 'defaultmap' clause.
OMPClause *ActOnOpenMPDefaultmapClause(
OpenMPDefaultmapClauseModifier M, OpenMPDefaultmapClauseKind Kind,
SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation MLoc,
SourceLocation KindLoc, SourceLocation EndLoc);
/// \brief Called on well-formed 'to' clause.
OMPClause *ActOnOpenMPToClause(ArrayRef<Expr *> VarList,
SourceLocation StartLoc,
SourceLocation LParenLoc,
SourceLocation EndLoc);
/// \brief Called on well-formed 'from' clause.
OMPClause *ActOnOpenMPFromClause(ArrayRef<Expr *> VarList,
SourceLocation StartLoc,
SourceLocation LParenLoc,
SourceLocation EndLoc);
/// Called on well-formed 'use_device_ptr' clause.
OMPClause *ActOnOpenMPUseDevicePtrClause(ArrayRef<Expr *> VarList,
SourceLocation StartLoc,
SourceLocation LParenLoc,
SourceLocation EndLoc);
/// Called on well-formed 'is_device_ptr' clause.
OMPClause *ActOnOpenMPIsDevicePtrClause(ArrayRef<Expr *> VarList,
SourceLocation StartLoc,
SourceLocation LParenLoc,
SourceLocation EndLoc);
/// \brief The kind of conversion being performed.
enum CheckedConversionKind {
/// \brief An implicit conversion.
CCK_ImplicitConversion,
/// \brief A C-style cast.
CCK_CStyleCast,
/// \brief A functional-style cast.
CCK_FunctionalCast,
/// \brief A cast other than a C-style cast.
CCK_OtherCast
};
/// ImpCastExprToType - If Expr is not of type 'Type', insert an implicit
/// cast. If there is already an implicit cast, merge into the existing one.
/// If isLvalue, the result of the cast is an lvalue.
ExprResult ImpCastExprToType(Expr *E, QualType Type, CastKind CK,
ExprValueKind VK = VK_RValue,
const CXXCastPath *BasePath = nullptr,
CheckedConversionKind CCK
= CCK_ImplicitConversion);
/// ScalarTypeToBooleanCastKind - Returns the cast kind corresponding
/// to the conversion from scalar type ScalarTy to the Boolean type.
static CastKind ScalarTypeToBooleanCastKind(QualType ScalarTy);
/// IgnoredValueConversions - Given that an expression's result is
/// syntactically ignored, perform any conversions that are
/// required.
ExprResult IgnoredValueConversions(Expr *E);
// UsualUnaryConversions - promotes integers (C99 6.3.1.1p2) and converts
// functions and arrays to their respective pointers (C99 6.3.2.1).
ExprResult UsualUnaryConversions(Expr *E);
/// CallExprUnaryConversions - a special case of an unary conversion
/// performed on a function designator of a call expression.
ExprResult CallExprUnaryConversions(Expr *E);
// DefaultFunctionArrayConversion - converts functions and arrays
// to their respective pointers (C99 6.3.2.1).
ExprResult DefaultFunctionArrayConversion(Expr *E, bool Diagnose = true);
// DefaultFunctionArrayLvalueConversion - converts functions and
// arrays to their respective pointers and performs the
// lvalue-to-rvalue conversion.
ExprResult DefaultFunctionArrayLvalueConversion(Expr *E,
bool Diagnose = true);
// DefaultLvalueConversion - performs lvalue-to-rvalue conversion on
// the operand. This is DefaultFunctionArrayLvalueConversion,
// except that it assumes the operand isn't of function or array
// type.
ExprResult DefaultLvalueConversion(Expr *E);
// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that
// do not have a prototype. Integer promotions are performed on each
// argument, and arguments that have type float are promoted to double.
ExprResult DefaultArgumentPromotion(Expr *E);
// Used for emitting the right warning by DefaultVariadicArgumentPromotion
enum VariadicCallType {
VariadicFunction,
VariadicBlock,
VariadicMethod,
VariadicConstructor,
VariadicDoesNotApply
};
VariadicCallType getVariadicCallType(FunctionDecl *FDecl,
const FunctionProtoType *Proto,
Expr *Fn);
// Used for determining in which context a type is allowed to be passed to a
// vararg function.
enum VarArgKind {
VAK_Valid,
VAK_ValidInCXX11,
VAK_Undefined,
VAK_MSVCUndefined,
VAK_Invalid
};
// Determines which VarArgKind fits an expression.
VarArgKind isValidVarArgType(const QualType &Ty);
/// Check to see if the given expression is a valid argument to a variadic
/// function, issuing a diagnostic if not.
void checkVariadicArgument(const Expr *E, VariadicCallType CT);
/// Check to see if a given expression could have '.c_str()' called on it.
bool hasCStrMethod(const Expr *E);
/// GatherArgumentsForCall - Collector argument expressions for various
/// form of call prototypes.
bool GatherArgumentsForCall(SourceLocation CallLoc, FunctionDecl *FDecl,
const FunctionProtoType *Proto,
unsigned FirstParam, ArrayRef<Expr *> Args,
SmallVectorImpl<Expr *> &AllArgs,
VariadicCallType CallType = VariadicDoesNotApply,
bool AllowExplicit = false,
bool IsListInitialization = false);
// DefaultVariadicArgumentPromotion - Like DefaultArgumentPromotion, but
// will create a runtime trap if the resulting type is not a POD type.
ExprResult DefaultVariadicArgumentPromotion(Expr *E, VariadicCallType CT,
FunctionDecl *FDecl);
// UsualArithmeticConversions - performs the UsualUnaryConversions on it's
// operands and then handles various conversions that are common to binary
// operators (C99 6.3.1.8). If both operands aren't arithmetic, this
// routine returns the first non-arithmetic type found. The client is
// responsible for emitting appropriate error diagnostics.
QualType UsualArithmeticConversions(ExprResult &LHS, ExprResult &RHS,
bool IsCompAssign = false);
/// AssignConvertType - All of the 'assignment' semantic checks return this
/// enum to indicate whether the assignment was allowed. These checks are
/// done for simple assignments, as well as initialization, return from
/// function, argument passing, etc. The query is phrased in terms of a
/// source and destination type.
enum AssignConvertType {
/// Compatible - the types are compatible according to the standard.
Compatible,
/// PointerToInt - The assignment converts a pointer to an int, which we
/// accept as an extension.
PointerToInt,
/// IntToPointer - The assignment converts an int to a pointer, which we
/// accept as an extension.
IntToPointer,
/// FunctionVoidPointer - The assignment is between a function pointer and
/// void*, which the standard doesn't allow, but we accept as an extension.
FunctionVoidPointer,
/// IncompatiblePointer - The assignment is between two pointers types that
/// are not compatible, but we accept them as an extension.
IncompatiblePointer,
/// IncompatiblePointer - The assignment is between two pointers types which
/// point to integers which have a different sign, but are otherwise
/// identical. This is a subset of the above, but broken out because it's by
/// far the most common case of incompatible pointers.
IncompatiblePointerSign,
/// CompatiblePointerDiscardsQualifiers - The assignment discards
/// c/v/r qualifiers, which we accept as an extension.
CompatiblePointerDiscardsQualifiers,
/// IncompatiblePointerDiscardsQualifiers - The assignment
/// discards qualifiers that we don't permit to be discarded,
/// like address spaces.
IncompatiblePointerDiscardsQualifiers,
/// IncompatibleNestedPointerQualifiers - The assignment is between two
/// nested pointer types, and the qualifiers other than the first two
/// levels differ e.g. char ** -> const char **, but we accept them as an
/// extension.
IncompatibleNestedPointerQualifiers,
/// IncompatibleVectors - The assignment is between two vector types that
/// have the same size, which we accept as an extension.
IncompatibleVectors,
/// IntToBlockPointer - The assignment converts an int to a block
/// pointer. We disallow this.
IntToBlockPointer,
/// IncompatibleBlockPointer - The assignment is between two block
/// pointers types that are not compatible.
IncompatibleBlockPointer,
/// IncompatibleObjCQualifiedId - The assignment is between a qualified
/// id type and something else (that is incompatible with it). For example,
/// "id <XXX>" = "Foo *", where "Foo *" doesn't implement the XXX protocol.
IncompatibleObjCQualifiedId,
/// IncompatibleObjCWeakRef - Assigning a weak-unavailable object to an
/// object with __weak qualifier.
IncompatibleObjCWeakRef,
/// Incompatible - We reject this conversion outright, it is invalid to
/// represent it in the AST.
Incompatible
};
/// DiagnoseAssignmentResult - Emit a diagnostic, if required, for the
/// assignment conversion type specified by ConvTy. This returns true if the
/// conversion was invalid or false if the conversion was accepted.
bool DiagnoseAssignmentResult(AssignConvertType ConvTy,
SourceLocation Loc,
QualType DstType, QualType SrcType,
Expr *SrcExpr, AssignmentAction Action,
bool *Complained = nullptr);
/// IsValueInFlagEnum - Determine if a value is allowed as part of a flag
/// enum. If AllowMask is true, then we also allow the complement of a valid
/// value, to be used as a mask.
bool IsValueInFlagEnum(const EnumDecl *ED, const llvm::APInt &Val,
bool AllowMask) const;
/// DiagnoseAssignmentEnum - Warn if assignment to enum is a constant
/// integer not in the range of enum values.
void DiagnoseAssignmentEnum(QualType DstType, QualType SrcType,
Expr *SrcExpr);
/// CheckAssignmentConstraints - Perform type checking for assignment,
/// argument passing, variable initialization, and function return values.
/// C99 6.5.16.
AssignConvertType CheckAssignmentConstraints(SourceLocation Loc,
QualType LHSType,
QualType RHSType);
/// Check assignment constraints and optionally prepare for a conversion of
/// the RHS to the LHS type. The conversion is prepared for if ConvertRHS
/// is true.
AssignConvertType CheckAssignmentConstraints(QualType LHSType,
ExprResult &RHS,
CastKind &Kind,
bool ConvertRHS = true);
// CheckSingleAssignmentConstraints - Currently used by
// CheckAssignmentOperands, and ActOnReturnStmt. Prior to type checking,
// this routine performs the default function/array converions, if ConvertRHS
// is true.
AssignConvertType CheckSingleAssignmentConstraints(QualType LHSType,
ExprResult &RHS,
bool Diagnose = true,
bool DiagnoseCFAudited = false,
bool ConvertRHS = true);
// \brief If the lhs type is a transparent union, check whether we
// can initialize the transparent union with the given expression.
AssignConvertType CheckTransparentUnionArgumentConstraints(QualType ArgType,
ExprResult &RHS);
bool IsStringLiteralToNonConstPointerConversion(Expr *From, QualType ToType);
bool CheckExceptionSpecCompatibility(Expr *From, QualType ToType);
ExprResult PerformImplicitConversion(Expr *From, QualType ToType,
AssignmentAction Action,
bool AllowExplicit = false);
ExprResult PerformImplicitConversion(Expr *From, QualType ToType,
AssignmentAction Action,
bool AllowExplicit,
ImplicitConversionSequence& ICS);
ExprResult PerformImplicitConversion(Expr *From, QualType ToType,
const ImplicitConversionSequence& ICS,
AssignmentAction Action,
CheckedConversionKind CCK
= CCK_ImplicitConversion);
ExprResult PerformImplicitConversion(Expr *From, QualType ToType,
const StandardConversionSequence& SCS,
AssignmentAction Action,
CheckedConversionKind CCK);
/// the following "Check" methods will return a valid/converted QualType
/// or a null QualType (indicating an error diagnostic was issued).
/// type checking binary operators (subroutines of CreateBuiltinBinOp).
QualType InvalidOperands(SourceLocation Loc, ExprResult &LHS,
ExprResult &RHS);
QualType CheckPointerToMemberOperands( // C++ 5.5
ExprResult &LHS, ExprResult &RHS, ExprValueKind &VK,
SourceLocation OpLoc, bool isIndirect);
QualType CheckMultiplyDivideOperands( // C99 6.5.5
ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, bool IsCompAssign,
bool IsDivide);
QualType CheckRemainderOperands( // C99 6.5.5
ExprResult &LHS, ExprResult &RHS, SourceLocation Loc,
bool IsCompAssign = false);
QualType CheckAdditionOperands( // C99 6.5.6
ExprResult &LHS, ExprResult &RHS, SourceLocation Loc,
BinaryOperatorKind Opc, QualType* CompLHSTy = nullptr);
QualType CheckSubtractionOperands( // C99 6.5.6
ExprResult &LHS, ExprResult &RHS, SourceLocation Loc,
QualType* CompLHSTy = nullptr);
QualType CheckShiftOperands( // C99 6.5.7
ExprResult &LHS, ExprResult &RHS, SourceLocation Loc,
BinaryOperatorKind Opc, bool IsCompAssign = false);
QualType CheckCompareOperands( // C99 6.5.8/9
ExprResult &LHS, ExprResult &RHS, SourceLocation Loc,
BinaryOperatorKind Opc, bool isRelational);
QualType CheckBitwiseOperands( // C99 6.5.[10...12]
ExprResult &LHS, ExprResult &RHS, SourceLocation Loc,
bool IsCompAssign = false);
QualType CheckLogicalOperands( // C99 6.5.[13,14]
ExprResult &LHS, ExprResult &RHS, SourceLocation Loc,
BinaryOperatorKind Opc);
// CheckAssignmentOperands is used for both simple and compound assignment.
// For simple assignment, pass both expressions and a null converted type.
// For compound assignment, pass both expressions and the converted type.
QualType CheckAssignmentOperands( // C99 6.5.16.[1,2]
Expr *LHSExpr, ExprResult &RHS, SourceLocation Loc, QualType CompoundType);
ExprResult checkPseudoObjectIncDec(Scope *S, SourceLocation OpLoc,
UnaryOperatorKind Opcode, Expr *Op);
ExprResult checkPseudoObjectAssignment(Scope *S, SourceLocation OpLoc,
BinaryOperatorKind Opcode,
Expr *LHS, Expr *RHS);
ExprResult checkPseudoObjectRValue(Expr *E);
Expr *recreateSyntacticForm(PseudoObjectExpr *E);
QualType CheckConditionalOperands( // C99 6.5.15
ExprResult &Cond, ExprResult &LHS, ExprResult &RHS,
ExprValueKind &VK, ExprObjectKind &OK, SourceLocation QuestionLoc);
QualType CXXCheckConditionalOperands( // C++ 5.16
ExprResult &cond, ExprResult &lhs, ExprResult &rhs,
ExprValueKind &VK, ExprObjectKind &OK, SourceLocation questionLoc);
QualType FindCompositePointerType(SourceLocation Loc, Expr *&E1, Expr *&E2,
bool *NonStandardCompositeType = nullptr);
QualType FindCompositePointerType(SourceLocation Loc,
ExprResult &E1, ExprResult &E2,
bool *NonStandardCompositeType = nullptr) {
Expr *E1Tmp = E1.get(), *E2Tmp = E2.get();
QualType Composite = FindCompositePointerType(Loc, E1Tmp, E2Tmp,
NonStandardCompositeType);
E1 = E1Tmp;
E2 = E2Tmp;
return Composite;
}
QualType FindCompositeObjCPointerType(ExprResult &LHS, ExprResult &RHS,
SourceLocation QuestionLoc);
bool DiagnoseConditionalForNull(Expr *LHSExpr, Expr *RHSExpr,
SourceLocation QuestionLoc);
void DiagnoseAlwaysNonNullPointer(Expr *E,
Expr::NullPointerConstantKind NullType,
bool IsEqual, SourceRange Range);
/// type checking for vector binary operators.
QualType CheckVectorOperands(ExprResult &LHS, ExprResult &RHS,
SourceLocation Loc, bool IsCompAssign,
bool AllowBothBool, bool AllowBoolConversion);
QualType GetSignedVectorType(QualType V);
QualType CheckVectorCompareOperands(ExprResult &LHS, ExprResult &RHS,
SourceLocation Loc, bool isRelational);
QualType CheckVectorLogicalOperands(ExprResult &LHS, ExprResult &RHS,
SourceLocation Loc);
bool areLaxCompatibleVectorTypes(QualType srcType, QualType destType);
bool isLaxVectorConversion(QualType srcType, QualType destType);
/// type checking declaration initializers (C99 6.7.8)
bool CheckForConstantInitializer(Expr *e, QualType t);
// type checking C++ declaration initializers (C++ [dcl.init]).
/// ReferenceCompareResult - Expresses the result of comparing two
/// types (cv1 T1 and cv2 T2) to determine their compatibility for the
/// purposes of initialization by reference (C++ [dcl.init.ref]p4).
enum ReferenceCompareResult {
/// Ref_Incompatible - The two types are incompatible, so direct
/// reference binding is not possible.
Ref_Incompatible = 0,
/// Ref_Related - The two types are reference-related, which means
/// that their unqualified forms (T1 and T2) are either the same
/// or T1 is a base class of T2.
Ref_Related,
/// Ref_Compatible_With_Added_Qualification - The two types are
/// reference-compatible with added qualification, meaning that
/// they are reference-compatible and the qualifiers on T1 (cv1)
/// are greater than the qualifiers on T2 (cv2).
Ref_Compatible_With_Added_Qualification,
/// Ref_Compatible - The two types are reference-compatible and
/// have equivalent qualifiers (cv1 == cv2).
Ref_Compatible
};
ReferenceCompareResult CompareReferenceRelationship(SourceLocation Loc,
QualType T1, QualType T2,
bool &DerivedToBase,
bool &ObjCConversion,
bool &ObjCLifetimeConversion);
ExprResult checkUnknownAnyCast(SourceRange TypeRange, QualType CastType,
Expr *CastExpr, CastKind &CastKind,
ExprValueKind &VK, CXXCastPath &Path);
/// \brief Force an expression with unknown-type to an expression of the
/// given type.
ExprResult forceUnknownAnyToType(Expr *E, QualType ToType);
/// \brief Type-check an expression that's being passed to an
/// __unknown_anytype parameter.
ExprResult checkUnknownAnyArg(SourceLocation callLoc,
Expr *result, QualType &paramType);
// CheckVectorCast - check type constraints for vectors.
// Since vectors are an extension, there are no C standard reference for this.
// We allow casting between vectors and integer datatypes of the same size.
// returns true if the cast is invalid
bool CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty,
CastKind &Kind);
/// \brief Prepare `SplattedExpr` for a vector splat operation, adding
/// implicit casts if necessary.
ExprResult prepareVectorSplat(QualType VectorTy, Expr *SplattedExpr);
// CheckExtVectorCast - check type constraints for extended vectors.
// Since vectors are an extension, there are no C standard reference for this.
// We allow casting between vectors and integer datatypes of the same size,
// or vectors and the element type of that vector.
// returns the cast expr
ExprResult CheckExtVectorCast(SourceRange R, QualType DestTy, Expr *CastExpr,
CastKind &Kind);
ExprResult BuildCXXFunctionalCastExpr(TypeSourceInfo *TInfo,
SourceLocation LParenLoc,
Expr *CastExpr,
SourceLocation RParenLoc);
enum ARCConversionResult { ACR_okay, ACR_unbridged, ACR_error };
/// \brief Checks for invalid conversions and casts between
/// retainable pointers and other pointer kinds.
ARCConversionResult CheckObjCARCConversion(SourceRange castRange,
QualType castType, Expr *&op,
CheckedConversionKind CCK,
bool Diagnose = true,
bool DiagnoseCFAudited = false,
BinaryOperatorKind Opc = BO_PtrMemD
);
Expr *stripARCUnbridgedCast(Expr *e);
void diagnoseARCUnbridgedCast(Expr *e);
bool CheckObjCARCUnavailableWeakConversion(QualType castType,
QualType ExprType);
/// checkRetainCycles - Check whether an Objective-C message send
/// might create an obvious retain cycle.
void checkRetainCycles(ObjCMessageExpr *msg);
void checkRetainCycles(Expr *receiver, Expr *argument);
void checkRetainCycles(VarDecl *Var, Expr *Init);
/// checkUnsafeAssigns - Check whether +1 expr is being assigned
/// to weak/__unsafe_unretained type.
bool checkUnsafeAssigns(SourceLocation Loc, QualType LHS, Expr *RHS);
/// checkUnsafeExprAssigns - Check whether +1 expr is being assigned
/// to weak/__unsafe_unretained expression.
void checkUnsafeExprAssigns(SourceLocation Loc, Expr *LHS, Expr *RHS);
/// CheckMessageArgumentTypes - Check types in an Obj-C message send.
/// \param Method - May be null.
/// \param [out] ReturnType - The return type of the send.
/// \return true iff there were any incompatible types.
bool CheckMessageArgumentTypes(QualType ReceiverType,
MultiExprArg Args, Selector Sel,
ArrayRef<SourceLocation> SelectorLocs,
ObjCMethodDecl *Method, bool isClassMessage,
bool isSuperMessage,
SourceLocation lbrac, SourceLocation rbrac,
SourceRange RecRange,
QualType &ReturnType, ExprValueKind &VK);
/// \brief Determine the result of a message send expression based on
/// the type of the receiver, the method expected to receive the message,
/// and the form of the message send.
QualType getMessageSendResultType(QualType ReceiverType,
ObjCMethodDecl *Method,
bool isClassMessage, bool isSuperMessage);
/// \brief If the given expression involves a message send to a method
/// with a related result type, emit a note describing what happened.
void EmitRelatedResultTypeNote(const Expr *E);
/// \brief Given that we had incompatible pointer types in a return
/// statement, check whether we're in a method with a related result
/// type, and if so, emit a note describing what happened.
void EmitRelatedResultTypeNoteForReturn(QualType destType);
class ConditionResult {
Decl *ConditionVar;
FullExprArg Condition;
bool Invalid;
bool HasKnownValue;
bool KnownValue;
friend class Sema;
ConditionResult(Sema &S, Decl *ConditionVar, FullExprArg Condition,
bool IsConstexpr)
: ConditionVar(ConditionVar), Condition(Condition), Invalid(false),
HasKnownValue(IsConstexpr && Condition.get() &&
!Condition.get()->isValueDependent()),
KnownValue(HasKnownValue &&
!!Condition.get()->EvaluateKnownConstInt(S.Context)) {}
explicit ConditionResult(bool Invalid)
: ConditionVar(nullptr), Condition(nullptr), Invalid(Invalid),
HasKnownValue(false), KnownValue(false) {}
public:
ConditionResult() : ConditionResult(false) {}
bool isInvalid() const { return Invalid; }
std::pair<VarDecl *, Expr *> get() const {
return std::make_pair(cast_or_null<VarDecl>(ConditionVar),
Condition.get());
}
llvm::Optional<bool> getKnownValue() const {
if (!HasKnownValue)
return None;
return KnownValue;
}
};
static ConditionResult ConditionError() { return ConditionResult(true); }
enum class ConditionKind {
Boolean, ///< A boolean condition, from 'if', 'while', 'for', or 'do'.
ConstexprIf, ///< A constant boolean condition from 'if constexpr'.
Switch ///< An integral condition for a 'switch' statement.
};
ConditionResult ActOnCondition(Scope *S, SourceLocation Loc,
Expr *SubExpr, ConditionKind CK);
ConditionResult ActOnConditionVariable(Decl *ConditionVar,
SourceLocation StmtLoc,
ConditionKind CK);
DeclResult ActOnCXXConditionDeclaration(Scope *S, Declarator &D);
ExprResult CheckConditionVariable(VarDecl *ConditionVar,
SourceLocation StmtLoc,
ConditionKind CK);
ExprResult CheckSwitchCondition(SourceLocation SwitchLoc, Expr *Cond);
/// CheckBooleanCondition - Diagnose problems involving the use of
/// the given expression as a boolean condition (e.g. in an if
/// statement). Also performs the standard function and array
/// decays, possibly changing the input variable.
///
/// \param Loc - A location associated with the condition, e.g. the
/// 'if' keyword.
/// \return true iff there were any errors
ExprResult CheckBooleanCondition(SourceLocation Loc, Expr *E,
bool IsConstexpr = false);
/// DiagnoseAssignmentAsCondition - Given that an expression is
/// being used as a boolean condition, warn if it's an assignment.
void DiagnoseAssignmentAsCondition(Expr *E);
/// \brief Redundant parentheses over an equality comparison can indicate
/// that the user intended an assignment used as condition.
void DiagnoseEqualityWithExtraParens(ParenExpr *ParenE);
/// CheckCXXBooleanCondition - Returns true if conversion to bool is invalid.
ExprResult CheckCXXBooleanCondition(Expr *CondExpr, bool IsConstexpr = false);
/// ConvertIntegerToTypeWarnOnOverflow - Convert the specified APInt to have
/// the specified width and sign. If an overflow occurs, detect it and emit
/// the specified diagnostic.
void ConvertIntegerToTypeWarnOnOverflow(llvm::APSInt &OldVal,
unsigned NewWidth, bool NewSign,
SourceLocation Loc, unsigned DiagID);
/// Checks that the Objective-C declaration is declared in the global scope.
/// Emits an error and marks the declaration as invalid if it's not declared
/// in the global scope.
bool CheckObjCDeclScope(Decl *D);
/// \brief Abstract base class used for diagnosing integer constant
/// expression violations.
class VerifyICEDiagnoser {
public:
bool Suppress;
VerifyICEDiagnoser(bool Suppress = false) : Suppress(Suppress) { }
virtual void diagnoseNotICE(Sema &S, SourceLocation Loc, SourceRange SR) =0;
virtual void diagnoseFold(Sema &S, SourceLocation Loc, SourceRange SR);
virtual ~VerifyICEDiagnoser() { }
};
/// VerifyIntegerConstantExpression - Verifies that an expression is an ICE,
/// and reports the appropriate diagnostics. Returns false on success.
/// Can optionally return the value of the expression.
ExprResult VerifyIntegerConstantExpression(Expr *E, llvm::APSInt *Result,
VerifyICEDiagnoser &Diagnoser,
bool AllowFold = true);
ExprResult VerifyIntegerConstantExpression(Expr *E, llvm::APSInt *Result,
unsigned DiagID,
bool AllowFold = true);
ExprResult VerifyIntegerConstantExpression(Expr *E,
llvm::APSInt *Result = nullptr);
/// VerifyBitField - verifies that a bit field expression is an ICE and has
/// the correct width, and that the field type is valid.
/// Returns false on success.
/// Can optionally return whether the bit-field is of width 0
ExprResult VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
QualType FieldTy, bool IsMsStruct,
Expr *BitWidth, bool *ZeroWidth = nullptr);
enum CUDAFunctionTarget {
CFT_Device,
CFT_Global,
CFT_Host,
CFT_HostDevice,
CFT_InvalidTarget
};
CUDAFunctionTarget IdentifyCUDATarget(const FunctionDecl *D);
// CUDA function call preference. Must be ordered numerically from
// worst to best.
enum CUDAFunctionPreference {
CFP_Never, // Invalid caller/callee combination.
CFP_WrongSide, // Calls from host-device to host or device
// function that do not match current compilation
// mode.
CFP_HostDevice, // Any calls to host/device functions.
CFP_SameSide, // Calls from host-device to host or device
// function matching current compilation mode.
CFP_Native, // host-to-host or device-to-device calls.
};
/// Identifies relative preference of a given Caller/Callee
/// combination, based on their host/device attributes.
/// \param Caller function which needs address of \p Callee.
/// nullptr in case of global context.
/// \param Callee target function
///
/// \returns preference value for particular Caller/Callee combination.
CUDAFunctionPreference IdentifyCUDAPreference(const FunctionDecl *Caller,
const FunctionDecl *Callee);
/// Determines whether Caller may invoke Callee, based on their CUDA
/// host/device attributes. Returns false if the call is not allowed.
///
/// Note: Will return true for CFP_WrongSide calls. These may appear in
/// semantically correct CUDA programs, but only if they're never codegen'ed.
bool IsAllowedCUDACall(const FunctionDecl *Caller,
const FunctionDecl *Callee) {
return IdentifyCUDAPreference(Caller, Callee) != CFP_Never;
}
/// May add implicit CUDAHostAttr and CUDADeviceAttr attributes to FD,
/// depending on FD and the current compilation settings.
void maybeAddCUDAHostDeviceAttrs(Scope *S, FunctionDecl *FD,
const LookupResult &Previous);
/// Check whether we're allowed to call Callee from the current context.
///
/// If the call is never allowed in a semantically-correct program
/// (CFP_Never), emits an error and returns false.
///
/// If the call is allowed in semantically-correct programs, but only if it's
/// never codegen'ed (CFP_WrongSide), creates a deferred diagnostic to be
/// emitted if and when the caller is codegen'ed, and returns true.
///
/// Otherwise, returns true without emitting any diagnostics.
bool CheckCUDACall(SourceLocation Loc, FunctionDecl *Callee);
/// Finds a function in \p Matches with highest calling priority
/// from \p Caller context and erases all functions with lower
/// calling priority.
void EraseUnwantedCUDAMatches(const FunctionDecl *Caller,
SmallVectorImpl<FunctionDecl *> &Matches);
void EraseUnwantedCUDAMatches(const FunctionDecl *Caller,
SmallVectorImpl<DeclAccessPair> &Matches);
void EraseUnwantedCUDAMatches(
const FunctionDecl *Caller,
SmallVectorImpl<std::pair<DeclAccessPair, FunctionDecl *>> &Matches);
/// Given a implicit special member, infer its CUDA target from the
/// calls it needs to make to underlying base/field special members.
/// \param ClassDecl the class for which the member is being created.
/// \param CSM the kind of special member.
/// \param MemberDecl the special member itself.
/// \param ConstRHS true if this is a copy operation with a const object on
/// its RHS.
/// \param Diagnose true if this call should emit diagnostics.
/// \return true if there was an error inferring.
/// The result of this call is implicit CUDA target attribute(s) attached to
/// the member declaration.
bool inferCUDATargetForImplicitSpecialMember(CXXRecordDecl *ClassDecl,
CXXSpecialMember CSM,
CXXMethodDecl *MemberDecl,
bool ConstRHS,
bool Diagnose);
/// \return true if \p CD can be considered empty according to CUDA
/// (E.2.3.1 in CUDA 7.5 Programming guide).
bool isEmptyCudaConstructor(SourceLocation Loc, CXXConstructorDecl *CD);
bool isEmptyCudaDestructor(SourceLocation Loc, CXXDestructorDecl *CD);
/// \name Code completion
//@{
/// \brief Describes the context in which code completion occurs.
enum ParserCompletionContext {
/// \brief Code completion occurs at top-level or namespace context.
PCC_Namespace,
/// \brief Code completion occurs within a class, struct, or union.
PCC_Class,
/// \brief Code completion occurs within an Objective-C interface, protocol,
/// or category.
PCC_ObjCInterface,
/// \brief Code completion occurs within an Objective-C implementation or
/// category implementation
PCC_ObjCImplementation,
/// \brief Code completion occurs within the list of instance variables
/// in an Objective-C interface, protocol, category, or implementation.
PCC_ObjCInstanceVariableList,
/// \brief Code completion occurs following one or more template
/// headers.
PCC_Template,
/// \brief Code completion occurs following one or more template
/// headers within a class.
PCC_MemberTemplate,
/// \brief Code completion occurs within an expression.
PCC_Expression,
/// \brief Code completion occurs within a statement, which may
/// also be an expression or a declaration.
PCC_Statement,
/// \brief Code completion occurs at the beginning of the
/// initialization statement (or expression) in a for loop.
PCC_ForInit,
/// \brief Code completion occurs within the condition of an if,
/// while, switch, or for statement.
PCC_Condition,
/// \brief Code completion occurs within the body of a function on a
/// recovery path, where we do not have a specific handle on our position
/// in the grammar.
PCC_RecoveryInFunction,
/// \brief Code completion occurs where only a type is permitted.
PCC_Type,
/// \brief Code completion occurs in a parenthesized expression, which
/// might also be a type cast.
PCC_ParenthesizedExpression,
/// \brief Code completion occurs within a sequence of declaration
/// specifiers within a function, method, or block.
PCC_LocalDeclarationSpecifiers
};
void CodeCompleteModuleImport(SourceLocation ImportLoc, ModuleIdPath Path);
void CodeCompleteOrdinaryName(Scope *S,
ParserCompletionContext CompletionContext);
void CodeCompleteDeclSpec(Scope *S, DeclSpec &DS,
bool AllowNonIdentifiers,
bool AllowNestedNameSpecifiers);
struct CodeCompleteExpressionData;
void CodeCompleteExpression(Scope *S,
const CodeCompleteExpressionData &Data);
void CodeCompleteMemberReferenceExpr(Scope *S, Expr *Base,
SourceLocation OpLoc, bool IsArrow,
bool IsBaseExprStatement);
void CodeCompletePostfixExpression(Scope *S, ExprResult LHS);
void CodeCompleteTag(Scope *S, unsigned TagSpec);
void CodeCompleteTypeQualifiers(DeclSpec &DS);
void CodeCompleteBracketDeclarator(Scope *S);
void CodeCompleteCase(Scope *S);
void CodeCompleteCall(Scope *S, Expr *Fn, ArrayRef<Expr *> Args);
void CodeCompleteConstructor(Scope *S, QualType Type, SourceLocation Loc,
ArrayRef<Expr *> Args);
void CodeCompleteInitializer(Scope *S, Decl *D);
void CodeCompleteReturn(Scope *S);
void CodeCompleteAfterIf(Scope *S);
void CodeCompleteAssignmentRHS(Scope *S, Expr *LHS);
void CodeCompleteQualifiedId(Scope *S, CXXScopeSpec &SS,
bool EnteringContext);
void CodeCompleteUsing(Scope *S);
void CodeCompleteUsingDirective(Scope *S);
void CodeCompleteNamespaceDecl(Scope *S);
void CodeCompleteNamespaceAliasDecl(Scope *S);
void CodeCompleteOperatorName(Scope *S);
void CodeCompleteConstructorInitializer(
Decl *Constructor,
ArrayRef<CXXCtorInitializer *> Initializers);
void CodeCompleteLambdaIntroducer(Scope *S, LambdaIntroducer &Intro,
bool AfterAmpersand);
void CodeCompleteObjCAtDirective(Scope *S);
void CodeCompleteObjCAtVisibility(Scope *S);
void CodeCompleteObjCAtStatement(Scope *S);
void CodeCompleteObjCAtExpression(Scope *S);
void CodeCompleteObjCPropertyFlags(Scope *S, ObjCDeclSpec &ODS);
void CodeCompleteObjCPropertyGetter(Scope *S);
void CodeCompleteObjCPropertySetter(Scope *S);
void CodeCompleteObjCPassingType(Scope *S, ObjCDeclSpec &DS,
bool IsParameter);
void CodeCompleteObjCMessageReceiver(Scope *S);
void CodeCompleteObjCSuperMessage(Scope *S, SourceLocation SuperLoc,
ArrayRef<IdentifierInfo *> SelIdents,
bool AtArgumentExpression);
void CodeCompleteObjCClassMessage(Scope *S, ParsedType Receiver,
ArrayRef<IdentifierInfo *> SelIdents,
bool AtArgumentExpression,
bool IsSuper = false);
void CodeCompleteObjCInstanceMessage(Scope *S, Expr *Receiver,
ArrayRef<IdentifierInfo *> SelIdents,
bool AtArgumentExpression,
ObjCInterfaceDecl *Super = nullptr);
void CodeCompleteObjCForCollection(Scope *S,
DeclGroupPtrTy IterationVar);
void CodeCompleteObjCSelector(Scope *S,
ArrayRef<IdentifierInfo *> SelIdents);
void CodeCompleteObjCProtocolReferences(
ArrayRef<IdentifierLocPair> Protocols);
void CodeCompleteObjCProtocolDecl(Scope *S);
void CodeCompleteObjCInterfaceDecl(Scope *S);
void CodeCompleteObjCSuperclass(Scope *S,
IdentifierInfo *ClassName,
SourceLocation ClassNameLoc);
void CodeCompleteObjCImplementationDecl(Scope *S);
void CodeCompleteObjCInterfaceCategory(Scope *S,
IdentifierInfo *ClassName,
SourceLocation ClassNameLoc);
void CodeCompleteObjCImplementationCategory(Scope *S,
IdentifierInfo *ClassName,
SourceLocation ClassNameLoc);
void CodeCompleteObjCPropertyDefinition(Scope *S);
void CodeCompleteObjCPropertySynthesizeIvar(Scope *S,
IdentifierInfo *PropertyName);
void CodeCompleteObjCMethodDecl(Scope *S,
bool IsInstanceMethod,
ParsedType ReturnType);
void CodeCompleteObjCMethodDeclSelector(Scope *S,
bool IsInstanceMethod,
bool AtParameterName,
ParsedType ReturnType,
ArrayRef<IdentifierInfo *> SelIdents);
void CodeCompleteObjCClassPropertyRefExpr(Scope *S, IdentifierInfo &ClassName,
SourceLocation ClassNameLoc,
bool IsBaseExprStatement);
void CodeCompletePreprocessorDirective(bool InConditional);
void CodeCompleteInPreprocessorConditionalExclusion(Scope *S);
void CodeCompletePreprocessorMacroName(bool IsDefinition);
void CodeCompletePreprocessorExpression();
void CodeCompletePreprocessorMacroArgument(Scope *S,
IdentifierInfo *Macro,
MacroInfo *MacroInfo,
unsigned Argument);
void CodeCompleteNaturalLanguage();
void GatherGlobalCodeCompletions(CodeCompletionAllocator &Allocator,
CodeCompletionTUInfo &CCTUInfo,
SmallVectorImpl<CodeCompletionResult> &Results);
//@}
//===--------------------------------------------------------------------===//
// Extra semantic analysis beyond the C type system
public:
SourceLocation getLocationOfStringLiteralByte(const StringLiteral *SL,
unsigned ByteNo) const;
private:
void CheckArrayAccess(const Expr *BaseExpr, const Expr *IndexExpr,
const ArraySubscriptExpr *ASE=nullptr,
bool AllowOnePastEnd=true, bool IndexNegated=false);
void CheckArrayAccess(const Expr *E);
// Used to grab the relevant information from a FormatAttr and a
// FunctionDeclaration.
struct FormatStringInfo {
unsigned FormatIdx;
unsigned FirstDataArg;
bool HasVAListArg;
};
static bool getFormatStringInfo(const FormatAttr *Format, bool IsCXXMember,
FormatStringInfo *FSI);
bool CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall,
const FunctionProtoType *Proto);
bool CheckObjCMethodCall(ObjCMethodDecl *Method, SourceLocation loc,
ArrayRef<const Expr *> Args);
bool CheckPointerCall(NamedDecl *NDecl, CallExpr *TheCall,
const FunctionProtoType *Proto);
bool CheckOtherCall(CallExpr *TheCall, const FunctionProtoType *Proto);
void CheckConstructorCall(FunctionDecl *FDecl,
ArrayRef<const Expr *> Args,
const FunctionProtoType *Proto,
SourceLocation Loc);
void checkCall(NamedDecl *FDecl, const FunctionProtoType *Proto,
ArrayRef<const Expr *> Args, bool IsMemberFunction,
SourceLocation Loc, SourceRange Range,
VariadicCallType CallType);
bool CheckObjCString(Expr *Arg);
ExprResult CheckOSLogFormatStringArg(Expr *Arg);
ExprResult CheckBuiltinFunctionCall(FunctionDecl *FDecl,
unsigned BuiltinID, CallExpr *TheCall);
bool CheckARMBuiltinExclusiveCall(unsigned BuiltinID, CallExpr *TheCall,
unsigned MaxWidth);
bool CheckNeonBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall);
bool CheckARMBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall);
bool CheckAArch64BuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall);
bool CheckMipsBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall);
bool CheckSystemZBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall);
bool CheckX86BuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall);
bool CheckPPCBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall);
bool SemaBuiltinVAStartImpl(CallExpr *TheCall);
bool SemaBuiltinVAStart(CallExpr *TheCall);
bool SemaBuiltinMSVAStart(CallExpr *TheCall);
bool SemaBuiltinVAStartARM(CallExpr *Call);
bool SemaBuiltinUnorderedCompare(CallExpr *TheCall);
bool SemaBuiltinFPClassification(CallExpr *TheCall, unsigned NumArgs);
bool SemaBuiltinOSLogFormat(CallExpr *TheCall);
public:
// Used by C++ template instantiation.
ExprResult SemaBuiltinShuffleVector(CallExpr *TheCall);
ExprResult SemaConvertVectorExpr(Expr *E, TypeSourceInfo *TInfo,
SourceLocation BuiltinLoc,
SourceLocation RParenLoc);
private:
bool SemaBuiltinPrefetch(CallExpr *TheCall);
bool SemaBuiltinAssume(CallExpr *TheCall);
bool SemaBuiltinAssumeAligned(CallExpr *TheCall);
bool SemaBuiltinLongjmp(CallExpr *TheCall);
bool SemaBuiltinSetjmp(CallExpr *TheCall);
ExprResult SemaBuiltinAtomicOverloaded(ExprResult TheCallResult);
ExprResult SemaBuiltinNontemporalOverloaded(ExprResult TheCallResult);
ExprResult SemaAtomicOpsOverloaded(ExprResult TheCallResult,
AtomicExpr::AtomicOp Op);
bool SemaBuiltinConstantArg(CallExpr *TheCall, int ArgNum,
llvm::APSInt &Result);
bool SemaBuiltinConstantArgRange(CallExpr *TheCall, int ArgNum,
int Low, int High);
bool SemaBuiltinARMSpecialReg(unsigned BuiltinID, CallExpr *TheCall,
int ArgNum, unsigned ExpectedFieldNum,
bool AllowName);
public:
enum FormatStringType {
FST_Scanf,
FST_Printf,
FST_NSString,
FST_Strftime,
FST_Strfmon,
FST_Kprintf,
FST_FreeBSDKPrintf,
FST_OSTrace,
FST_OSLog,
FST_Unknown
};
static FormatStringType GetFormatStringType(const FormatAttr *Format);
bool FormatStringHasSArg(const StringLiteral *FExpr);
static bool GetFormatNSStringIdx(const FormatAttr *Format, unsigned &Idx);
private:
bool CheckFormatArguments(const FormatAttr *Format,
ArrayRef<const Expr *> Args,
bool IsCXXMember,
VariadicCallType CallType,
SourceLocation Loc, SourceRange Range,
llvm::SmallBitVector &CheckedVarArgs);
bool CheckFormatArguments(ArrayRef<const Expr *> Args,
bool HasVAListArg, unsigned format_idx,
unsigned firstDataArg, FormatStringType Type,
VariadicCallType CallType,
SourceLocation Loc, SourceRange range,
llvm::SmallBitVector &CheckedVarArgs);
void CheckAbsoluteValueFunction(const CallExpr *Call,
const FunctionDecl *FDecl,
IdentifierInfo *FnInfo);
void CheckMemaccessArguments(const CallExpr *Call,
unsigned BId,
IdentifierInfo *FnName);
void CheckStrlcpycatArguments(const CallExpr *Call,
IdentifierInfo *FnName);
void CheckStrncatArguments(const CallExpr *Call,
IdentifierInfo *FnName);
void CheckReturnValExpr(Expr *RetValExp, QualType lhsType,
SourceLocation ReturnLoc,
bool isObjCMethod = false,
const AttrVec *Attrs = nullptr,
const FunctionDecl *FD = nullptr);
void CheckFloatComparison(SourceLocation Loc, Expr* LHS, Expr* RHS);
void CheckImplicitConversions(Expr *E, SourceLocation CC = SourceLocation());
void CheckBoolLikeConversion(Expr *E, SourceLocation CC);
void CheckForIntOverflow(Expr *E);
void CheckUnsequencedOperations(Expr *E);
/// \brief Perform semantic checks on a completed expression. This will either
/// be a full-expression or a default argument expression.
void CheckCompletedExpr(Expr *E, SourceLocation CheckLoc = SourceLocation(),
bool IsConstexpr = false);
void CheckBitFieldInitialization(SourceLocation InitLoc, FieldDecl *Field,
Expr *Init);
/// \brief Check if the given expression contains 'break' or 'continue'
/// statement that produces control flow different from GCC.
void CheckBreakContinueBinding(Expr *E);
/// \brief Check whether receiver is mutable ObjC container which
/// attempts to add itself into the container
void CheckObjCCircularContainer(ObjCMessageExpr *Message);
void AnalyzeDeleteExprMismatch(const CXXDeleteExpr *DE);
void AnalyzeDeleteExprMismatch(FieldDecl *Field, SourceLocation DeleteLoc,
bool DeleteWasArrayForm);
public:
/// \brief Register a magic integral constant to be used as a type tag.
void RegisterTypeTagForDatatype(const IdentifierInfo *ArgumentKind,
uint64_t MagicValue, QualType Type,
bool LayoutCompatible, bool MustBeNull);
struct TypeTagData {
TypeTagData() {}
TypeTagData(QualType Type, bool LayoutCompatible, bool MustBeNull) :
Type(Type), LayoutCompatible(LayoutCompatible),
MustBeNull(MustBeNull)
{}
QualType Type;
/// If true, \c Type should be compared with other expression's types for
/// layout-compatibility.
unsigned LayoutCompatible : 1;
unsigned MustBeNull : 1;
};
/// A pair of ArgumentKind identifier and magic value. This uniquely
/// identifies the magic value.
typedef std::pair<const IdentifierInfo *, uint64_t> TypeTagMagicValue;
private:
/// \brief A map from magic value to type information.
std::unique_ptr<llvm::DenseMap<TypeTagMagicValue, TypeTagData>>
TypeTagForDatatypeMagicValues;
/// \brief Peform checks on a call of a function with argument_with_type_tag
/// or pointer_with_type_tag attributes.
void CheckArgumentWithTypeTag(const ArgumentWithTypeTagAttr *Attr,
const Expr * const *ExprArgs);
/// \brief Check if we are taking the address of a packed field
/// as this may be a problem if the pointer value is dereferenced.
void CheckAddressOfPackedMember(Expr *rhs);
/// \brief The parser's current scope.
///
/// The parser maintains this state here.
Scope *CurScope;
mutable IdentifierInfo *Ident_super;
mutable IdentifierInfo *Ident___float128;
/// Nullability type specifiers.
IdentifierInfo *Ident__Nonnull = nullptr;
IdentifierInfo *Ident__Nullable = nullptr;
IdentifierInfo *Ident__Null_unspecified = nullptr;
IdentifierInfo *Ident_NSError = nullptr;
protected:
friend class Parser;
friend class InitializationSequence;
friend class ASTReader;
friend class ASTDeclReader;
friend class ASTWriter;
public:
/// Retrieve the keyword associated
IdentifierInfo *getNullabilityKeyword(NullabilityKind nullability);
/// The struct behind the CFErrorRef pointer.
RecordDecl *CFError = nullptr;
bool isCFError(RecordDecl *D);
/// Retrieve the identifier "NSError".
IdentifierInfo *getNSErrorIdent();
/// \brief Retrieve the parser's current scope.
///
/// This routine must only be used when it is certain that semantic analysis
/// and the parser are in precisely the same context, which is not the case
/// when, e.g., we are performing any kind of template instantiation.
/// Therefore, the only safe places to use this scope are in the parser
/// itself and in routines directly invoked from the parser and *never* from
/// template substitution or instantiation.
Scope *getCurScope() const { return CurScope; }
void incrementMSManglingNumber() const {
return CurScope->incrementMSManglingNumber();
}
IdentifierInfo *getSuperIdentifier() const;
IdentifierInfo *getFloat128Identifier() const;
Decl *getObjCDeclContext() const;
DeclContext *getCurLexicalContext() const {
return OriginalLexicalContext ? OriginalLexicalContext : CurContext;
}
AvailabilityResult getCurContextAvailability() const;
/// \brief Get the verison that this context implies.
/// For instance, a method in an interface that is annotated with an
/// availability attribuite effectively has the availability of the interface.
VersionTuple getVersionForDecl(const Decl *Ctx) const;
/// \brief The diagnostic we should emit for \c D, or \c AR_Available.
///
/// \param D The declaration to check. Note that this may be altered to point
/// to another declaration that \c D gets it's availability from. i.e., we
/// walk the list of typedefs to find an availability attribute.
///
/// \param ContextVersion The version to compare availability against.
AvailabilityResult
ShouldDiagnoseAvailabilityOfDecl(NamedDecl *&D, VersionTuple ContextVersion,
std::string *Message);
const DeclContext *getCurObjCLexicalContext() const {
const DeclContext *DC = getCurLexicalContext();
// A category implicitly has the attribute of the interface.
if (const ObjCCategoryDecl *CatD = dyn_cast<ObjCCategoryDecl>(DC))
DC = CatD->getClassInterface();
return DC;
}
/// \brief To be used for checking whether the arguments being passed to
/// function exceeds the number of parameters expected for it.
static bool TooManyArguments(size_t NumParams, size_t NumArgs,
bool PartialOverloading = false) {
// We check whether we're just after a comma in code-completion.
if (NumArgs > 0 && PartialOverloading)
return NumArgs + 1 > NumParams; // If so, we view as an extra argument.
return NumArgs > NumParams;
}
// Emitting members of dllexported classes is delayed until the class
// (including field initializers) is fully parsed.
SmallVector<CXXRecordDecl*, 4> DelayedDllExportClasses;
private:
/// \brief Helper class that collects misaligned member designations and
/// their location info for delayed diagnostics.
struct MisalignedMember {
Expr *E;
RecordDecl *RD;
ValueDecl *MD;
CharUnits Alignment;
MisalignedMember() : E(), RD(), MD(), Alignment() {}
MisalignedMember(Expr *E, RecordDecl *RD, ValueDecl *MD,
CharUnits Alignment)
: E(E), RD(RD), MD(MD), Alignment(Alignment) {}
explicit MisalignedMember(Expr *E)
: MisalignedMember(E, nullptr, nullptr, CharUnits()) {}
bool operator==(const MisalignedMember &m) { return this->E == m.E; }
};
/// \brief Small set of gathered accesses to potentially misaligned members
/// due to the packed attribute.
SmallVector<MisalignedMember, 4> MisalignedMembers;
/// \brief Adds an expression to the set of gathered misaligned members.
void AddPotentialMisalignedMembers(Expr *E, RecordDecl *RD, ValueDecl *MD,
CharUnits Alignment);
public:
/// \brief Diagnoses the current set of gathered accesses. This typically
/// happens at full expression level. The set is cleared after emitting the
/// diagnostics.
void DiagnoseMisalignedMembers();
/// \brief This function checks if the expression is in the sef of potentially
/// misaligned members and it is converted to some pointer type T with lower
/// or equal alignment requirements. If so it removes it. This is used when
/// we do not want to diagnose such misaligned access (e.g. in conversions to void*).
void DiscardMisalignedMemberAddress(const Type *T, Expr *E);
/// \brief This function calls Action when it determines that E designates a
/// misaligned member due to the packed attribute. This is used to emit
/// local diagnostics like in reference binding.
void RefersToMemberWithReducedAlignment(
Expr *E,
std::function<void(Expr *, RecordDecl *, FieldDecl *, CharUnits)> Action);
};
/// \brief RAII object that enters a new expression evaluation context.
class EnterExpressionEvaluationContext {
Sema &Actions;
bool Entered = true;
public:
EnterExpressionEvaluationContext(Sema &Actions,
Sema::ExpressionEvaluationContext NewContext,
Decl *LambdaContextDecl = nullptr,
bool IsDecltype = false,
bool ShouldEnter = true)
: Actions(Actions), Entered(ShouldEnter) {
if (Entered)
Actions.PushExpressionEvaluationContext(NewContext, LambdaContextDecl,
IsDecltype);
}
EnterExpressionEvaluationContext(Sema &Actions,
Sema::ExpressionEvaluationContext NewContext,
Sema::ReuseLambdaContextDecl_t,
bool IsDecltype = false)
: Actions(Actions) {
Actions.PushExpressionEvaluationContext(NewContext,
Sema::ReuseLambdaContextDecl,
IsDecltype);
}
~EnterExpressionEvaluationContext() {
if (Entered)
Actions.PopExpressionEvaluationContext();
}
};
DeductionFailureInfo
MakeDeductionFailureInfo(ASTContext &Context, Sema::TemplateDeductionResult TDK,
sema::TemplateDeductionInfo &Info);
/// \brief Contains a late templated function.
/// Will be parsed at the end of the translation unit, used by Sema & Parser.
struct LateParsedTemplate {
CachedTokens Toks;
/// \brief The template function declaration to be late parsed.
Decl *D;
};
} // end namespace clang
#endif