blob: a50e054f9b28646c398a557d3964e53fe43aec59 [file] [log] [blame]
//===--- Type.h - C Language Family Type Representation ---------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
/// \file
/// \brief C Language Family Type Representation
///
/// This file defines the clang::Type interface and subclasses, used to
/// represent types for languages in the C family.
///
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_AST_TYPE_H
#define LLVM_CLANG_AST_TYPE_H
#include "clang/AST/NestedNameSpecifier.h"
#include "clang/AST/TemplateName.h"
#include "clang/Basic/AddressSpaces.h"
#include "clang/Basic/Diagnostic.h"
#include "clang/Basic/ExceptionSpecificationType.h"
#include "clang/Basic/LLVM.h"
#include "clang/Basic/Linkage.h"
#include "clang/Basic/PartialDiagnostic.h"
#include "clang/Basic/Specifiers.h"
#include "clang/Basic/Visibility.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/FoldingSet.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/PointerIntPair.h"
#include "llvm/ADT/PointerUnion.h"
#include "llvm/ADT/Twine.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/Support/ErrorHandling.h"
namespace clang {
enum {
TypeAlignmentInBits = 4,
TypeAlignment = 1 << TypeAlignmentInBits
};
class Type;
class ExtQuals;
class QualType;
}
namespace llvm {
template <typename T>
class PointerLikeTypeTraits;
template<>
class PointerLikeTypeTraits< ::clang::Type*> {
public:
static inline void *getAsVoidPointer(::clang::Type *P) { return P; }
static inline ::clang::Type *getFromVoidPointer(void *P) {
return static_cast< ::clang::Type*>(P);
}
enum { NumLowBitsAvailable = clang::TypeAlignmentInBits };
};
template<>
class PointerLikeTypeTraits< ::clang::ExtQuals*> {
public:
static inline void *getAsVoidPointer(::clang::ExtQuals *P) { return P; }
static inline ::clang::ExtQuals *getFromVoidPointer(void *P) {
return static_cast< ::clang::ExtQuals*>(P);
}
enum { NumLowBitsAvailable = clang::TypeAlignmentInBits };
};
template <>
struct isPodLike<clang::QualType> { static const bool value = true; };
}
namespace clang {
class ASTContext;
class TypedefNameDecl;
class TemplateDecl;
class TemplateTypeParmDecl;
class NonTypeTemplateParmDecl;
class TemplateTemplateParmDecl;
class TagDecl;
class RecordDecl;
class CXXRecordDecl;
class EnumDecl;
class FieldDecl;
class FunctionDecl;
class ObjCInterfaceDecl;
class ObjCProtocolDecl;
class ObjCMethodDecl;
class ObjCTypeParamDecl;
class UnresolvedUsingTypenameDecl;
class Expr;
class Stmt;
class SourceLocation;
class StmtIteratorBase;
class TemplateArgument;
class TemplateArgumentLoc;
class TemplateArgumentListInfo;
class ElaboratedType;
class ExtQuals;
class ExtQualsTypeCommonBase;
struct PrintingPolicy;
template <typename> class CanQual;
typedef CanQual<Type> CanQualType;
// Provide forward declarations for all of the *Type classes
#define TYPE(Class, Base) class Class##Type;
#include "clang/AST/TypeNodes.def"
/// The collection of all-type qualifiers we support.
/// Clang supports five independent qualifiers:
/// * C99: const, volatile, and restrict
/// * MS: __unaligned
/// * Embedded C (TR18037): address spaces
/// * Objective C: the GC attributes (none, weak, or strong)
class Qualifiers {
public:
enum TQ { // NOTE: These flags must be kept in sync with DeclSpec::TQ.
Const = 0x1,
Restrict = 0x2,
Volatile = 0x4,
CVRMask = Const | Volatile | Restrict
};
enum GC {
GCNone = 0,
Weak,
Strong
};
enum ObjCLifetime {
/// There is no lifetime qualification on this type.
OCL_None,
/// This object can be modified without requiring retains or
/// releases.
OCL_ExplicitNone,
/// Assigning into this object requires the old value to be
/// released and the new value to be retained. The timing of the
/// release of the old value is inexact: it may be moved to
/// immediately after the last known point where the value is
/// live.
OCL_Strong,
/// Reading or writing from this object requires a barrier call.
OCL_Weak,
/// Assigning into this object requires a lifetime extension.
OCL_Autoreleasing
};
enum {
/// The maximum supported address space number.
/// 23 bits should be enough for anyone.
MaxAddressSpace = 0x7fffffu,
/// The width of the "fast" qualifier mask.
FastWidth = 3,
/// The fast qualifier mask.
FastMask = (1 << FastWidth) - 1
};
Qualifiers() : Mask(0) {}
/// Returns the common set of qualifiers while removing them from
/// the given sets.
static Qualifiers removeCommonQualifiers(Qualifiers &L, Qualifiers &R) {
// If both are only CVR-qualified, bit operations are sufficient.
if (!(L.Mask & ~CVRMask) && !(R.Mask & ~CVRMask)) {
Qualifiers Q;
Q.Mask = L.Mask & R.Mask;
L.Mask &= ~Q.Mask;
R.Mask &= ~Q.Mask;
return Q;
}
Qualifiers Q;
unsigned CommonCRV = L.getCVRQualifiers() & R.getCVRQualifiers();
Q.addCVRQualifiers(CommonCRV);
L.removeCVRQualifiers(CommonCRV);
R.removeCVRQualifiers(CommonCRV);
if (L.getObjCGCAttr() == R.getObjCGCAttr()) {
Q.setObjCGCAttr(L.getObjCGCAttr());
L.removeObjCGCAttr();
R.removeObjCGCAttr();
}
if (L.getObjCLifetime() == R.getObjCLifetime()) {
Q.setObjCLifetime(L.getObjCLifetime());
L.removeObjCLifetime();
R.removeObjCLifetime();
}
if (L.getAddressSpace() == R.getAddressSpace()) {
Q.setAddressSpace(L.getAddressSpace());
L.removeAddressSpace();
R.removeAddressSpace();
}
return Q;
}
static Qualifiers fromFastMask(unsigned Mask) {
Qualifiers Qs;
Qs.addFastQualifiers(Mask);
return Qs;
}
static Qualifiers fromCVRMask(unsigned CVR) {
Qualifiers Qs;
Qs.addCVRQualifiers(CVR);
return Qs;
}
static Qualifiers fromCVRUMask(unsigned CVRU) {
Qualifiers Qs;
Qs.addCVRUQualifiers(CVRU);
return Qs;
}
// Deserialize qualifiers from an opaque representation.
static Qualifiers fromOpaqueValue(unsigned opaque) {
Qualifiers Qs;
Qs.Mask = opaque;
return Qs;
}
// Serialize these qualifiers into an opaque representation.
unsigned getAsOpaqueValue() const {
return Mask;
}
bool hasConst() const { return Mask & Const; }
void setConst(bool flag) {
Mask = (Mask & ~Const) | (flag ? Const : 0);
}
void removeConst() { Mask &= ~Const; }
void addConst() { Mask |= Const; }
bool hasVolatile() const { return Mask & Volatile; }
void setVolatile(bool flag) {
Mask = (Mask & ~Volatile) | (flag ? Volatile : 0);
}
void removeVolatile() { Mask &= ~Volatile; }
void addVolatile() { Mask |= Volatile; }
bool hasRestrict() const { return Mask & Restrict; }
void setRestrict(bool flag) {
Mask = (Mask & ~Restrict) | (flag ? Restrict : 0);
}
void removeRestrict() { Mask &= ~Restrict; }
void addRestrict() { Mask |= Restrict; }
bool hasCVRQualifiers() const { return getCVRQualifiers(); }
unsigned getCVRQualifiers() const { return Mask & CVRMask; }
void setCVRQualifiers(unsigned mask) {
assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits");
Mask = (Mask & ~CVRMask) | mask;
}
void removeCVRQualifiers(unsigned mask) {
assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits");
Mask &= ~mask;
}
void removeCVRQualifiers() {
removeCVRQualifiers(CVRMask);
}
void addCVRQualifiers(unsigned mask) {
assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits");
Mask |= mask;
}
void addCVRUQualifiers(unsigned mask) {
assert(!(mask & ~CVRMask & ~UMask) && "bitmask contains non-CVRU bits");
Mask |= mask;
}
bool hasUnaligned() const { return Mask & UMask; }
void setUnaligned(bool flag) {
Mask = (Mask & ~UMask) | (flag ? UMask : 0);
}
void removeUnaligned() { Mask &= ~UMask; }
void addUnaligned() { Mask |= UMask; }
bool hasObjCGCAttr() const { return Mask & GCAttrMask; }
GC getObjCGCAttr() const { return GC((Mask & GCAttrMask) >> GCAttrShift); }
void setObjCGCAttr(GC type) {
Mask = (Mask & ~GCAttrMask) | (type << GCAttrShift);
}
void removeObjCGCAttr() { setObjCGCAttr(GCNone); }
void addObjCGCAttr(GC type) {
assert(type);
setObjCGCAttr(type);
}
Qualifiers withoutObjCGCAttr() const {
Qualifiers qs = *this;
qs.removeObjCGCAttr();
return qs;
}
Qualifiers withoutObjCLifetime() const {
Qualifiers qs = *this;
qs.removeObjCLifetime();
return qs;
}
bool hasObjCLifetime() const { return Mask & LifetimeMask; }
ObjCLifetime getObjCLifetime() const {
return ObjCLifetime((Mask & LifetimeMask) >> LifetimeShift);
}
void setObjCLifetime(ObjCLifetime type) {
Mask = (Mask & ~LifetimeMask) | (type << LifetimeShift);
}
void removeObjCLifetime() { setObjCLifetime(OCL_None); }
void addObjCLifetime(ObjCLifetime type) {
assert(type);
assert(!hasObjCLifetime());
Mask |= (type << LifetimeShift);
}
/// True if the lifetime is neither None or ExplicitNone.
bool hasNonTrivialObjCLifetime() const {
ObjCLifetime lifetime = getObjCLifetime();
return (lifetime > OCL_ExplicitNone);
}
/// True if the lifetime is either strong or weak.
bool hasStrongOrWeakObjCLifetime() const {
ObjCLifetime lifetime = getObjCLifetime();
return (lifetime == OCL_Strong || lifetime == OCL_Weak);
}
bool hasAddressSpace() const { return Mask & AddressSpaceMask; }
unsigned getAddressSpace() const { return Mask >> AddressSpaceShift; }
void setAddressSpace(unsigned space) {
assert(space <= MaxAddressSpace);
Mask = (Mask & ~AddressSpaceMask)
| (((uint32_t) space) << AddressSpaceShift);
}
void removeAddressSpace() { setAddressSpace(0); }
void addAddressSpace(unsigned space) {
assert(space);
setAddressSpace(space);
}
// Fast qualifiers are those that can be allocated directly
// on a QualType object.
bool hasFastQualifiers() const { return getFastQualifiers(); }
unsigned getFastQualifiers() const { return Mask & FastMask; }
void setFastQualifiers(unsigned mask) {
assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits");
Mask = (Mask & ~FastMask) | mask;
}
void removeFastQualifiers(unsigned mask) {
assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits");
Mask &= ~mask;
}
void removeFastQualifiers() {
removeFastQualifiers(FastMask);
}
void addFastQualifiers(unsigned mask) {
assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits");
Mask |= mask;
}
/// Return true if the set contains any qualifiers which require an ExtQuals
/// node to be allocated.
bool hasNonFastQualifiers() const { return Mask & ~FastMask; }
Qualifiers getNonFastQualifiers() const {
Qualifiers Quals = *this;
Quals.setFastQualifiers(0);
return Quals;
}
/// Return true if the set contains any qualifiers.
bool hasQualifiers() const { return Mask; }
bool empty() const { return !Mask; }
/// Add the qualifiers from the given set to this set.
void addQualifiers(Qualifiers Q) {
// If the other set doesn't have any non-boolean qualifiers, just
// bit-or it in.
if (!(Q.Mask & ~CVRMask))
Mask |= Q.Mask;
else {
Mask |= (Q.Mask & CVRMask);
if (Q.hasAddressSpace())
addAddressSpace(Q.getAddressSpace());
if (Q.hasObjCGCAttr())
addObjCGCAttr(Q.getObjCGCAttr());
if (Q.hasObjCLifetime())
addObjCLifetime(Q.getObjCLifetime());
}
}
/// \brief Remove the qualifiers from the given set from this set.
void removeQualifiers(Qualifiers Q) {
// If the other set doesn't have any non-boolean qualifiers, just
// bit-and the inverse in.
if (!(Q.Mask & ~CVRMask))
Mask &= ~Q.Mask;
else {
Mask &= ~(Q.Mask & CVRMask);
if (getObjCGCAttr() == Q.getObjCGCAttr())
removeObjCGCAttr();
if (getObjCLifetime() == Q.getObjCLifetime())
removeObjCLifetime();
if (getAddressSpace() == Q.getAddressSpace())
removeAddressSpace();
}
}
/// Add the qualifiers from the given set to this set, given that
/// they don't conflict.
void addConsistentQualifiers(Qualifiers qs) {
assert(getAddressSpace() == qs.getAddressSpace() ||
!hasAddressSpace() || !qs.hasAddressSpace());
assert(getObjCGCAttr() == qs.getObjCGCAttr() ||
!hasObjCGCAttr() || !qs.hasObjCGCAttr());
assert(getObjCLifetime() == qs.getObjCLifetime() ||
!hasObjCLifetime() || !qs.hasObjCLifetime());
Mask |= qs.Mask;
}
/// Returns true if this address space is a superset of the other one.
/// OpenCL v2.0 defines conversion rules (OpenCLC v2.0 s6.5.5) and notion of
/// overlapping address spaces.
/// CL1.1 or CL1.2:
/// every address space is a superset of itself.
/// CL2.0 adds:
/// __generic is a superset of any address space except for __constant.
bool isAddressSpaceSupersetOf(Qualifiers other) const {
return
// Address spaces must match exactly.
getAddressSpace() == other.getAddressSpace() ||
// Otherwise in OpenCLC v2.0 s6.5.5: every address space except
// for __constant can be used as __generic.
(getAddressSpace() == LangAS::opencl_generic &&
other.getAddressSpace() != LangAS::opencl_constant);
}
/// Determines if these qualifiers compatibly include another set.
/// Generally this answers the question of whether an object with the other
/// qualifiers can be safely used as an object with these qualifiers.
bool compatiblyIncludes(Qualifiers other) const {
return isAddressSpaceSupersetOf(other) &&
// ObjC GC qualifiers can match, be added, or be removed, but can't
// be changed.
(getObjCGCAttr() == other.getObjCGCAttr() || !hasObjCGCAttr() ||
!other.hasObjCGCAttr()) &&
// ObjC lifetime qualifiers must match exactly.
getObjCLifetime() == other.getObjCLifetime() &&
// CVR qualifiers may subset.
(((Mask & CVRMask) | (other.Mask & CVRMask)) == (Mask & CVRMask)) &&
// U qualifier may superset.
(!other.hasUnaligned() || hasUnaligned());
}
/// \brief Determines if these qualifiers compatibly include another set of
/// qualifiers from the narrow perspective of Objective-C ARC lifetime.
///
/// One set of Objective-C lifetime qualifiers compatibly includes the other
/// if the lifetime qualifiers match, or if both are non-__weak and the
/// including set also contains the 'const' qualifier, or both are non-__weak
/// and one is None (which can only happen in non-ARC modes).
bool compatiblyIncludesObjCLifetime(Qualifiers other) const {
if (getObjCLifetime() == other.getObjCLifetime())
return true;
if (getObjCLifetime() == OCL_Weak || other.getObjCLifetime() == OCL_Weak)
return false;
if (getObjCLifetime() == OCL_None || other.getObjCLifetime() == OCL_None)
return true;
return hasConst();
}
/// \brief Determine whether this set of qualifiers is a strict superset of
/// another set of qualifiers, not considering qualifier compatibility.
bool isStrictSupersetOf(Qualifiers Other) const;
bool operator==(Qualifiers Other) const { return Mask == Other.Mask; }
bool operator!=(Qualifiers Other) const { return Mask != Other.Mask; }
explicit operator bool() const { return hasQualifiers(); }
Qualifiers &operator+=(Qualifiers R) {
addQualifiers(R);
return *this;
}
// Union two qualifier sets. If an enumerated qualifier appears
// in both sets, use the one from the right.
friend Qualifiers operator+(Qualifiers L, Qualifiers R) {
L += R;
return L;
}
Qualifiers &operator-=(Qualifiers R) {
removeQualifiers(R);
return *this;
}
/// \brief Compute the difference between two qualifier sets.
friend Qualifiers operator-(Qualifiers L, Qualifiers R) {
L -= R;
return L;
}
std::string getAsString() const;
std::string getAsString(const PrintingPolicy &Policy) const;
bool isEmptyWhenPrinted(const PrintingPolicy &Policy) const;
void print(raw_ostream &OS, const PrintingPolicy &Policy,
bool appendSpaceIfNonEmpty = false) const;
void Profile(llvm::FoldingSetNodeID &ID) const {
ID.AddInteger(Mask);
}
private:
// bits: |0 1 2|3|4 .. 5|6 .. 8|9 ... 31|
// |C R V|U|GCAttr|Lifetime|AddressSpace|
uint32_t Mask;
static const uint32_t UMask = 0x8;
static const uint32_t UShift = 3;
static const uint32_t GCAttrMask = 0x30;
static const uint32_t GCAttrShift = 4;
static const uint32_t LifetimeMask = 0x1C0;
static const uint32_t LifetimeShift = 6;
static const uint32_t AddressSpaceMask =
~(CVRMask | UMask | GCAttrMask | LifetimeMask);
static const uint32_t AddressSpaceShift = 9;
};
/// A std::pair-like structure for storing a qualified type split
/// into its local qualifiers and its locally-unqualified type.
struct SplitQualType {
/// The locally-unqualified type.
const Type *Ty;
/// The local qualifiers.
Qualifiers Quals;
SplitQualType() : Ty(nullptr), Quals() {}
SplitQualType(const Type *ty, Qualifiers qs) : Ty(ty), Quals(qs) {}
SplitQualType getSingleStepDesugaredType() const; // end of this file
// Make std::tie work.
std::pair<const Type *,Qualifiers> asPair() const {
return std::pair<const Type *, Qualifiers>(Ty, Quals);
}
friend bool operator==(SplitQualType a, SplitQualType b) {
return a.Ty == b.Ty && a.Quals == b.Quals;
}
friend bool operator!=(SplitQualType a, SplitQualType b) {
return a.Ty != b.Ty || a.Quals != b.Quals;
}
};
/// The kind of type we are substituting Objective-C type arguments into.
///
/// The kind of substitution affects the replacement of type parameters when
/// no concrete type information is provided, e.g., when dealing with an
/// unspecialized type.
enum class ObjCSubstitutionContext {
/// An ordinary type.
Ordinary,
/// The result type of a method or function.
Result,
/// The parameter type of a method or function.
Parameter,
/// The type of a property.
Property,
/// The superclass of a type.
Superclass,
};
/// A (possibly-)qualified type.
///
/// For efficiency, we don't store CV-qualified types as nodes on their
/// own: instead each reference to a type stores the qualifiers. This
/// greatly reduces the number of nodes we need to allocate for types (for
/// example we only need one for 'int', 'const int', 'volatile int',
/// 'const volatile int', etc).
///
/// As an added efficiency bonus, instead of making this a pair, we
/// just store the two bits we care about in the low bits of the
/// pointer. To handle the packing/unpacking, we make QualType be a
/// simple wrapper class that acts like a smart pointer. A third bit
/// indicates whether there are extended qualifiers present, in which
/// case the pointer points to a special structure.
class QualType {
// Thankfully, these are efficiently composable.
llvm::PointerIntPair<llvm::PointerUnion<const Type*,const ExtQuals*>,
Qualifiers::FastWidth> Value;
const ExtQuals *getExtQualsUnsafe() const {
return Value.getPointer().get<const ExtQuals*>();
}
const Type *getTypePtrUnsafe() const {
return Value.getPointer().get<const Type*>();
}
const ExtQualsTypeCommonBase *getCommonPtr() const {
assert(!isNull() && "Cannot retrieve a NULL type pointer");
uintptr_t CommonPtrVal
= reinterpret_cast<uintptr_t>(Value.getOpaqueValue());
CommonPtrVal &= ~(uintptr_t)((1 << TypeAlignmentInBits) - 1);
return reinterpret_cast<ExtQualsTypeCommonBase*>(CommonPtrVal);
}
friend class QualifierCollector;
public:
QualType() {}
QualType(const Type *Ptr, unsigned Quals)
: Value(Ptr, Quals) {}
QualType(const ExtQuals *Ptr, unsigned Quals)
: Value(Ptr, Quals) {}
unsigned getLocalFastQualifiers() const { return Value.getInt(); }
void setLocalFastQualifiers(unsigned Quals) { Value.setInt(Quals); }
/// Retrieves a pointer to the underlying (unqualified) type.
///
/// This function requires that the type not be NULL. If the type might be
/// NULL, use the (slightly less efficient) \c getTypePtrOrNull().
const Type *getTypePtr() const;
const Type *getTypePtrOrNull() const;
/// Retrieves a pointer to the name of the base type.
const IdentifierInfo *getBaseTypeIdentifier() const;
/// Divides a QualType into its unqualified type and a set of local
/// qualifiers.
SplitQualType split() const;
void *getAsOpaquePtr() const { return Value.getOpaqueValue(); }
static QualType getFromOpaquePtr(const void *Ptr) {
QualType T;
T.Value.setFromOpaqueValue(const_cast<void*>(Ptr));
return T;
}
const Type &operator*() const {
return *getTypePtr();
}
const Type *operator->() const {
return getTypePtr();
}
bool isCanonical() const;
bool isCanonicalAsParam() const;
/// Return true if this QualType doesn't point to a type yet.
bool isNull() const {
return Value.getPointer().isNull();
}
/// \brief Determine whether this particular QualType instance has the
/// "const" qualifier set, without looking through typedefs that may have
/// added "const" at a different level.
bool isLocalConstQualified() const {
return (getLocalFastQualifiers() & Qualifiers::Const);
}
/// \brief Determine whether this type is const-qualified.
bool isConstQualified() const;
/// \brief Determine whether this particular QualType instance has the
/// "restrict" qualifier set, without looking through typedefs that may have
/// added "restrict" at a different level.
bool isLocalRestrictQualified() const {
return (getLocalFastQualifiers() & Qualifiers::Restrict);
}
/// \brief Determine whether this type is restrict-qualified.
bool isRestrictQualified() const;
/// \brief Determine whether this particular QualType instance has the
/// "volatile" qualifier set, without looking through typedefs that may have
/// added "volatile" at a different level.
bool isLocalVolatileQualified() const {
return (getLocalFastQualifiers() & Qualifiers::Volatile);
}
/// \brief Determine whether this type is volatile-qualified.
bool isVolatileQualified() const;
/// \brief Determine whether this particular QualType instance has any
/// qualifiers, without looking through any typedefs that might add
/// qualifiers at a different level.
bool hasLocalQualifiers() const {
return getLocalFastQualifiers() || hasLocalNonFastQualifiers();
}
/// \brief Determine whether this type has any qualifiers.
bool hasQualifiers() const;
/// \brief Determine whether this particular QualType instance has any
/// "non-fast" qualifiers, e.g., those that are stored in an ExtQualType
/// instance.
bool hasLocalNonFastQualifiers() const {
return Value.getPointer().is<const ExtQuals*>();
}
/// \brief Retrieve the set of qualifiers local to this particular QualType
/// instance, not including any qualifiers acquired through typedefs or
/// other sugar.
Qualifiers getLocalQualifiers() const;
/// \brief Retrieve the set of qualifiers applied to this type.
Qualifiers getQualifiers() const;
/// \brief Retrieve the set of CVR (const-volatile-restrict) qualifiers
/// local to this particular QualType instance, not including any qualifiers
/// acquired through typedefs or other sugar.
unsigned getLocalCVRQualifiers() const {
return getLocalFastQualifiers();
}
/// \brief Retrieve the set of CVR (const-volatile-restrict) qualifiers
/// applied to this type.
unsigned getCVRQualifiers() const;
bool isConstant(const ASTContext& Ctx) const {
return QualType::isConstant(*this, Ctx);
}
/// \brief Determine whether this is a Plain Old Data (POD) type (C++ 3.9p10).
bool isPODType(const ASTContext &Context) const;
/// Return true if this is a POD type according to the rules of the C++98
/// standard, regardless of the current compilation's language.
bool isCXX98PODType(const ASTContext &Context) const;
/// Return true if this is a POD type according to the more relaxed rules
/// of the C++11 standard, regardless of the current compilation's language.
/// (C++0x [basic.types]p9)
bool isCXX11PODType(const ASTContext &Context) const;
/// Return true if this is a trivial type per (C++0x [basic.types]p9)
bool isTrivialType(const ASTContext &Context) const;
/// Return true if this is a trivially copyable type (C++0x [basic.types]p9)
bool isTriviallyCopyableType(const ASTContext &Context) const;
// Don't promise in the API that anything besides 'const' can be
// easily added.
/// Add the `const` type qualifier to this QualType.
void addConst() {
addFastQualifiers(Qualifiers::Const);
}
QualType withConst() const {
return withFastQualifiers(Qualifiers::Const);
}
/// Add the `volatile` type qualifier to this QualType.
void addVolatile() {
addFastQualifiers(Qualifiers::Volatile);
}
QualType withVolatile() const {
return withFastQualifiers(Qualifiers::Volatile);
}
/// Add the `restrict` qualifier to this QualType.
void addRestrict() {
addFastQualifiers(Qualifiers::Restrict);
}
QualType withRestrict() const {
return withFastQualifiers(Qualifiers::Restrict);
}
QualType withCVRQualifiers(unsigned CVR) const {
return withFastQualifiers(CVR);
}
void addFastQualifiers(unsigned TQs) {
assert(!(TQs & ~Qualifiers::FastMask)
&& "non-fast qualifier bits set in mask!");
Value.setInt(Value.getInt() | TQs);
}
void removeLocalConst();
void removeLocalVolatile();
void removeLocalRestrict();
void removeLocalCVRQualifiers(unsigned Mask);
void removeLocalFastQualifiers() { Value.setInt(0); }
void removeLocalFastQualifiers(unsigned Mask) {
assert(!(Mask & ~Qualifiers::FastMask) && "mask has non-fast qualifiers");
Value.setInt(Value.getInt() & ~Mask);
}
// Creates a type with the given qualifiers in addition to any
// qualifiers already on this type.
QualType withFastQualifiers(unsigned TQs) const {
QualType T = *this;
T.addFastQualifiers(TQs);
return T;
}
// Creates a type with exactly the given fast qualifiers, removing
// any existing fast qualifiers.
QualType withExactLocalFastQualifiers(unsigned TQs) const {
return withoutLocalFastQualifiers().withFastQualifiers(TQs);
}
// Removes fast qualifiers, but leaves any extended qualifiers in place.
QualType withoutLocalFastQualifiers() const {
QualType T = *this;
T.removeLocalFastQualifiers();
return T;
}
QualType getCanonicalType() const;
/// \brief Return this type with all of the instance-specific qualifiers
/// removed, but without removing any qualifiers that may have been applied
/// through typedefs.
QualType getLocalUnqualifiedType() const { return QualType(getTypePtr(), 0); }
/// \brief Retrieve the unqualified variant of the given type,
/// removing as little sugar as possible.
///
/// This routine looks through various kinds of sugar to find the
/// least-desugared type that is unqualified. For example, given:
///
/// \code
/// typedef int Integer;
/// typedef const Integer CInteger;
/// typedef CInteger DifferenceType;
/// \endcode
///
/// Executing \c getUnqualifiedType() on the type \c DifferenceType will
/// desugar until we hit the type \c Integer, which has no qualifiers on it.
///
/// The resulting type might still be qualified if it's sugar for an array
/// type. To strip qualifiers even from within a sugared array type, use
/// ASTContext::getUnqualifiedArrayType.
inline QualType getUnqualifiedType() const;
/// Retrieve the unqualified variant of the given type, removing as little
/// sugar as possible.
///
/// Like getUnqualifiedType(), but also returns the set of
/// qualifiers that were built up.
///
/// The resulting type might still be qualified if it's sugar for an array
/// type. To strip qualifiers even from within a sugared array type, use
/// ASTContext::getUnqualifiedArrayType.
inline SplitQualType getSplitUnqualifiedType() const;
/// \brief Determine whether this type is more qualified than the other
/// given type, requiring exact equality for non-CVR qualifiers.
bool isMoreQualifiedThan(QualType Other) const;
/// \brief Determine whether this type is at least as qualified as the other
/// given type, requiring exact equality for non-CVR qualifiers.
bool isAtLeastAsQualifiedAs(QualType Other) const;
QualType getNonReferenceType() const;
/// \brief Determine the type of a (typically non-lvalue) expression with the
/// specified result type.
///
/// This routine should be used for expressions for which the return type is
/// explicitly specified (e.g., in a cast or call) and isn't necessarily
/// an lvalue. It removes a top-level reference (since there are no
/// expressions of reference type) and deletes top-level cvr-qualifiers
/// from non-class types (in C++) or all types (in C).
QualType getNonLValueExprType(const ASTContext &Context) const;
/// Return the specified type with any "sugar" removed from
/// the type. This takes off typedefs, typeof's etc. If the outer level of
/// the type is already concrete, it returns it unmodified. This is similar
/// to getting the canonical type, but it doesn't remove *all* typedefs. For
/// example, it returns "T*" as "T*", (not as "int*"), because the pointer is
/// concrete.
///
/// Qualifiers are left in place.
QualType getDesugaredType(const ASTContext &Context) const {
return getDesugaredType(*this, Context);
}
SplitQualType getSplitDesugaredType() const {
return getSplitDesugaredType(*this);
}
/// \brief Return the specified type with one level of "sugar" removed from
/// the type.
///
/// This routine takes off the first typedef, typeof, etc. If the outer level
/// of the type is already concrete, it returns it unmodified.
QualType getSingleStepDesugaredType(const ASTContext &Context) const {
return getSingleStepDesugaredTypeImpl(*this, Context);
}
/// Returns the specified type after dropping any
/// outer-level parentheses.
QualType IgnoreParens() const {
if (isa<ParenType>(*this))
return QualType::IgnoreParens(*this);
return *this;
}
/// Indicate whether the specified types and qualifiers are identical.
friend bool operator==(const QualType &LHS, const QualType &RHS) {
return LHS.Value == RHS.Value;
}
friend bool operator!=(const QualType &LHS, const QualType &RHS) {
return LHS.Value != RHS.Value;
}
std::string getAsString() const {
return getAsString(split());
}
static std::string getAsString(SplitQualType split) {
return getAsString(split.Ty, split.Quals);
}
static std::string getAsString(const Type *ty, Qualifiers qs);
std::string getAsString(const PrintingPolicy &Policy) const;
void print(raw_ostream &OS, const PrintingPolicy &Policy,
const Twine &PlaceHolder = Twine(),
unsigned Indentation = 0) const {
print(split(), OS, Policy, PlaceHolder, Indentation);
}
static void print(SplitQualType split, raw_ostream &OS,
const PrintingPolicy &policy, const Twine &PlaceHolder,
unsigned Indentation = 0) {
return print(split.Ty, split.Quals, OS, policy, PlaceHolder, Indentation);
}
static void print(const Type *ty, Qualifiers qs,
raw_ostream &OS, const PrintingPolicy &policy,
const Twine &PlaceHolder,
unsigned Indentation = 0);
void getAsStringInternal(std::string &Str,
const PrintingPolicy &Policy) const {
return getAsStringInternal(split(), Str, Policy);
}
static void getAsStringInternal(SplitQualType split, std::string &out,
const PrintingPolicy &policy) {
return getAsStringInternal(split.Ty, split.Quals, out, policy);
}
static void getAsStringInternal(const Type *ty, Qualifiers qs,
std::string &out,
const PrintingPolicy &policy);
class StreamedQualTypeHelper {
const QualType &T;
const PrintingPolicy &Policy;
const Twine &PlaceHolder;
unsigned Indentation;
public:
StreamedQualTypeHelper(const QualType &T, const PrintingPolicy &Policy,
const Twine &PlaceHolder, unsigned Indentation)
: T(T), Policy(Policy), PlaceHolder(PlaceHolder),
Indentation(Indentation) { }
friend raw_ostream &operator<<(raw_ostream &OS,
const StreamedQualTypeHelper &SQT) {
SQT.T.print(OS, SQT.Policy, SQT.PlaceHolder, SQT.Indentation);
return OS;
}
};
StreamedQualTypeHelper stream(const PrintingPolicy &Policy,
const Twine &PlaceHolder = Twine(),
unsigned Indentation = 0) const {
return StreamedQualTypeHelper(*this, Policy, PlaceHolder, Indentation);
}
void dump(const char *s) const;
void dump() const;
void dump(llvm::raw_ostream &OS) const;
void Profile(llvm::FoldingSetNodeID &ID) const {
ID.AddPointer(getAsOpaquePtr());
}
/// Return the address space of this type.
inline unsigned getAddressSpace() const;
/// Returns gc attribute of this type.
inline Qualifiers::GC getObjCGCAttr() const;
/// true when Type is objc's weak.
bool isObjCGCWeak() const {
return getObjCGCAttr() == Qualifiers::Weak;
}
/// true when Type is objc's strong.
bool isObjCGCStrong() const {
return getObjCGCAttr() == Qualifiers::Strong;
}
/// Returns lifetime attribute of this type.
Qualifiers::ObjCLifetime getObjCLifetime() const {
return getQualifiers().getObjCLifetime();
}
bool hasNonTrivialObjCLifetime() const {
return getQualifiers().hasNonTrivialObjCLifetime();
}
bool hasStrongOrWeakObjCLifetime() const {
return getQualifiers().hasStrongOrWeakObjCLifetime();
}
enum DestructionKind {
DK_none,
DK_cxx_destructor,
DK_objc_strong_lifetime,
DK_objc_weak_lifetime
};
/// Returns a nonzero value if objects of this type require
/// non-trivial work to clean up after. Non-zero because it's
/// conceivable that qualifiers (objc_gc(weak)?) could make
/// something require destruction.
DestructionKind isDestructedType() const {
return isDestructedTypeImpl(*this);
}
/// Determine whether expressions of the given type are forbidden
/// from being lvalues in C.
///
/// The expression types that are forbidden to be lvalues are:
/// - 'void', but not qualified void
/// - function types
///
/// The exact rule here is C99 6.3.2.1:
/// An lvalue is an expression with an object type or an incomplete
/// type other than void.
bool isCForbiddenLValueType() const;
/// Substitute type arguments for the Objective-C type parameters used in the
/// subject type.
///
/// \param ctx ASTContext in which the type exists.
///
/// \param typeArgs The type arguments that will be substituted for the
/// Objective-C type parameters in the subject type, which are generally
/// computed via \c Type::getObjCSubstitutions. If empty, the type
/// parameters will be replaced with their bounds or id/Class, as appropriate
/// for the context.
///
/// \param context The context in which the subject type was written.
///
/// \returns the resulting type.
QualType substObjCTypeArgs(ASTContext &ctx,
ArrayRef<QualType> typeArgs,
ObjCSubstitutionContext context) const;
/// Substitute type arguments from an object type for the Objective-C type
/// parameters used in the subject type.
///
/// This operation combines the computation of type arguments for
/// substitution (\c Type::getObjCSubstitutions) with the actual process of
/// substitution (\c QualType::substObjCTypeArgs) for the convenience of
/// callers that need to perform a single substitution in isolation.
///
/// \param objectType The type of the object whose member type we're
/// substituting into. For example, this might be the receiver of a message
/// or the base of a property access.
///
/// \param dc The declaration context from which the subject type was
/// retrieved, which indicates (for example) which type parameters should
/// be substituted.
///
/// \param context The context in which the subject type was written.
///
/// \returns the subject type after replacing all of the Objective-C type
/// parameters with their corresponding arguments.
QualType substObjCMemberType(QualType objectType,
const DeclContext *dc,
ObjCSubstitutionContext context) const;
/// Strip Objective-C "__kindof" types from the given type.
QualType stripObjCKindOfType(const ASTContext &ctx) const;
/// Remove all qualifiers including _Atomic.
QualType getAtomicUnqualifiedType() const;
private:
// These methods are implemented in a separate translation unit;
// "static"-ize them to avoid creating temporary QualTypes in the
// caller.
static bool isConstant(QualType T, const ASTContext& Ctx);
static QualType getDesugaredType(QualType T, const ASTContext &Context);
static SplitQualType getSplitDesugaredType(QualType T);
static SplitQualType getSplitUnqualifiedTypeImpl(QualType type);
static QualType getSingleStepDesugaredTypeImpl(QualType type,
const ASTContext &C);
static QualType IgnoreParens(QualType T);
static DestructionKind isDestructedTypeImpl(QualType type);
};
} // end clang.
namespace llvm {
/// Implement simplify_type for QualType, so that we can dyn_cast from QualType
/// to a specific Type class.
template<> struct simplify_type< ::clang::QualType> {
typedef const ::clang::Type *SimpleType;
static SimpleType getSimplifiedValue(::clang::QualType Val) {
return Val.getTypePtr();
}
};
// Teach SmallPtrSet that QualType is "basically a pointer".
template<>
class PointerLikeTypeTraits<clang::QualType> {
public:
static inline void *getAsVoidPointer(clang::QualType P) {
return P.getAsOpaquePtr();
}
static inline clang::QualType getFromVoidPointer(void *P) {
return clang::QualType::getFromOpaquePtr(P);
}
// Various qualifiers go in low bits.
enum { NumLowBitsAvailable = 0 };
};
} // end namespace llvm
namespace clang {
/// \brief Base class that is common to both the \c ExtQuals and \c Type
/// classes, which allows \c QualType to access the common fields between the
/// two.
///
class ExtQualsTypeCommonBase {
ExtQualsTypeCommonBase(const Type *baseType, QualType canon)
: BaseType(baseType), CanonicalType(canon) {}
/// \brief The "base" type of an extended qualifiers type (\c ExtQuals) or
/// a self-referential pointer (for \c Type).
///
/// This pointer allows an efficient mapping from a QualType to its
/// underlying type pointer.
const Type *const BaseType;
/// \brief The canonical type of this type. A QualType.
QualType CanonicalType;
friend class QualType;
friend class Type;
friend class ExtQuals;
};
/// We can encode up to four bits in the low bits of a
/// type pointer, but there are many more type qualifiers that we want
/// to be able to apply to an arbitrary type. Therefore we have this
/// struct, intended to be heap-allocated and used by QualType to
/// store qualifiers.
///
/// The current design tags the 'const', 'restrict', and 'volatile' qualifiers
/// in three low bits on the QualType pointer; a fourth bit records whether
/// the pointer is an ExtQuals node. The extended qualifiers (address spaces,
/// Objective-C GC attributes) are much more rare.
class ExtQuals : public ExtQualsTypeCommonBase, public llvm::FoldingSetNode {
// NOTE: changing the fast qualifiers should be straightforward as
// long as you don't make 'const' non-fast.
// 1. Qualifiers:
// a) Modify the bitmasks (Qualifiers::TQ and DeclSpec::TQ).
// Fast qualifiers must occupy the low-order bits.
// b) Update Qualifiers::FastWidth and FastMask.
// 2. QualType:
// a) Update is{Volatile,Restrict}Qualified(), defined inline.
// b) Update remove{Volatile,Restrict}, defined near the end of
// this header.
// 3. ASTContext:
// a) Update get{Volatile,Restrict}Type.
/// The immutable set of qualifiers applied by this node. Always contains
/// extended qualifiers.
Qualifiers Quals;
ExtQuals *this_() { return this; }
public:
ExtQuals(const Type *baseType, QualType canon, Qualifiers quals)
: ExtQualsTypeCommonBase(baseType,
canon.isNull() ? QualType(this_(), 0) : canon),
Quals(quals)
{
assert(Quals.hasNonFastQualifiers()
&& "ExtQuals created with no fast qualifiers");
assert(!Quals.hasFastQualifiers()
&& "ExtQuals created with fast qualifiers");
}
Qualifiers getQualifiers() const { return Quals; }
bool hasObjCGCAttr() const { return Quals.hasObjCGCAttr(); }
Qualifiers::GC getObjCGCAttr() const { return Quals.getObjCGCAttr(); }
bool hasObjCLifetime() const { return Quals.hasObjCLifetime(); }
Qualifiers::ObjCLifetime getObjCLifetime() const {
return Quals.getObjCLifetime();
}
bool hasAddressSpace() const { return Quals.hasAddressSpace(); }
unsigned getAddressSpace() const { return Quals.getAddressSpace(); }
const Type *getBaseType() const { return BaseType; }
public:
void Profile(llvm::FoldingSetNodeID &ID) const {
Profile(ID, getBaseType(), Quals);
}
static void Profile(llvm::FoldingSetNodeID &ID,
const Type *BaseType,
Qualifiers Quals) {
assert(!Quals.hasFastQualifiers() && "fast qualifiers in ExtQuals hash!");
ID.AddPointer(BaseType);
Quals.Profile(ID);
}
};
/// The kind of C++11 ref-qualifier associated with a function type.
/// This determines whether a member function's "this" object can be an
/// lvalue, rvalue, or neither.
enum RefQualifierKind {
/// \brief No ref-qualifier was provided.
RQ_None = 0,
/// \brief An lvalue ref-qualifier was provided (\c &).
RQ_LValue,
/// \brief An rvalue ref-qualifier was provided (\c &&).
RQ_RValue
};
/// Which keyword(s) were used to create an AutoType.
enum class AutoTypeKeyword {
/// \brief auto
Auto,
/// \brief decltype(auto)
DecltypeAuto,
/// \brief __auto_type (GNU extension)
GNUAutoType
};
/// The base class of the type hierarchy.
///
/// A central concept with types is that each type always has a canonical
/// type. A canonical type is the type with any typedef names stripped out
/// of it or the types it references. For example, consider:
///
/// typedef int foo;
/// typedef foo* bar;
/// 'int *' 'foo *' 'bar'
///
/// There will be a Type object created for 'int'. Since int is canonical, its
/// CanonicalType pointer points to itself. There is also a Type for 'foo' (a
/// TypedefType). Its CanonicalType pointer points to the 'int' Type. Next
/// there is a PointerType that represents 'int*', which, like 'int', is
/// canonical. Finally, there is a PointerType type for 'foo*' whose canonical
/// type is 'int*', and there is a TypedefType for 'bar', whose canonical type
/// is also 'int*'.
///
/// Non-canonical types are useful for emitting diagnostics, without losing
/// information about typedefs being used. Canonical types are useful for type
/// comparisons (they allow by-pointer equality tests) and useful for reasoning
/// about whether something has a particular form (e.g. is a function type),
/// because they implicitly, recursively, strip all typedefs out of a type.
///
/// Types, once created, are immutable.
///
class Type : public ExtQualsTypeCommonBase {
public:
enum TypeClass {
#define TYPE(Class, Base) Class,
#define LAST_TYPE(Class) TypeLast = Class,
#define ABSTRACT_TYPE(Class, Base)
#include "clang/AST/TypeNodes.def"
TagFirst = Record, TagLast = Enum
};
private:
Type(const Type &) = delete;
void operator=(const Type &) = delete;
/// Bitfields required by the Type class.
class TypeBitfields {
friend class Type;
template <class T> friend class TypePropertyCache;
/// TypeClass bitfield - Enum that specifies what subclass this belongs to.
unsigned TC : 8;
/// Whether this type is a dependent type (C++ [temp.dep.type]).
unsigned Dependent : 1;
/// Whether this type somehow involves a template parameter, even
/// if the resolution of the type does not depend on a template parameter.
unsigned InstantiationDependent : 1;
/// Whether this type is a variably-modified type (C99 6.7.5).
unsigned VariablyModified : 1;
/// \brief Whether this type contains an unexpanded parameter pack
/// (for C++11 variadic templates).
unsigned ContainsUnexpandedParameterPack : 1;
/// \brief True if the cache (i.e. the bitfields here starting with
/// 'Cache') is valid.
mutable unsigned CacheValid : 1;
/// \brief Linkage of this type.
mutable unsigned CachedLinkage : 3;
/// \brief Whether this type involves and local or unnamed types.
mutable unsigned CachedLocalOrUnnamed : 1;
/// \brief Whether this type comes from an AST file.
mutable unsigned FromAST : 1;
bool isCacheValid() const {
return CacheValid;
}
Linkage getLinkage() const {
assert(isCacheValid() && "getting linkage from invalid cache");
return static_cast<Linkage>(CachedLinkage);
}
bool hasLocalOrUnnamedType() const {
assert(isCacheValid() && "getting linkage from invalid cache");
return CachedLocalOrUnnamed;
}
};
enum { NumTypeBits = 18 };
protected:
// These classes allow subclasses to somewhat cleanly pack bitfields
// into Type.
class ArrayTypeBitfields {
friend class ArrayType;
unsigned : NumTypeBits;
/// CVR qualifiers from declarations like
/// 'int X[static restrict 4]'. For function parameters only.
unsigned IndexTypeQuals : 3;
/// Storage class qualifiers from declarations like
/// 'int X[static restrict 4]'. For function parameters only.
/// Actually an ArrayType::ArraySizeModifier.
unsigned SizeModifier : 3;
};
class BuiltinTypeBitfields {
friend class BuiltinType;
unsigned : NumTypeBits;
/// The kind (BuiltinType::Kind) of builtin type this is.
unsigned Kind : 8;
};
class FunctionTypeBitfields {
friend class FunctionType;
friend class FunctionProtoType;
unsigned : NumTypeBits;
/// Extra information which affects how the function is called, like
/// regparm and the calling convention.
unsigned ExtInfo : 10;
/// Used only by FunctionProtoType, put here to pack with the
/// other bitfields.
/// The qualifiers are part of FunctionProtoType because...
///
/// C++ 8.3.5p4: The return type, the parameter type list and the
/// cv-qualifier-seq, [...], are part of the function type.
unsigned TypeQuals : 4;
/// \brief The ref-qualifier associated with a \c FunctionProtoType.
///
/// This is a value of type \c RefQualifierKind.
unsigned RefQualifier : 2;
};
class ObjCObjectTypeBitfields {
friend class ObjCObjectType;
unsigned : NumTypeBits;
/// The number of type arguments stored directly on this object type.
unsigned NumTypeArgs : 7;
/// The number of protocols stored directly on this object type.
unsigned NumProtocols : 6;
/// Whether this is a "kindof" type.
unsigned IsKindOf : 1;
};
static_assert(NumTypeBits + 7 + 6 + 1 <= 32, "Does not fit in an unsigned");
class ReferenceTypeBitfields {
friend class ReferenceType;
unsigned : NumTypeBits;
/// True if the type was originally spelled with an lvalue sigil.
/// This is never true of rvalue references but can also be false
/// on lvalue references because of C++0x [dcl.typedef]p9,
/// as follows:
///
/// typedef int &ref; // lvalue, spelled lvalue
/// typedef int &&rvref; // rvalue
/// ref &a; // lvalue, inner ref, spelled lvalue
/// ref &&a; // lvalue, inner ref
/// rvref &a; // lvalue, inner ref, spelled lvalue
/// rvref &&a; // rvalue, inner ref
unsigned SpelledAsLValue : 1;
/// True if the inner type is a reference type. This only happens
/// in non-canonical forms.
unsigned InnerRef : 1;
};
class TypeWithKeywordBitfields {
friend class TypeWithKeyword;
unsigned : NumTypeBits;
/// An ElaboratedTypeKeyword. 8 bits for efficient access.
unsigned Keyword : 8;
};
class VectorTypeBitfields {
friend class VectorType;
unsigned : NumTypeBits;
/// The kind of vector, either a generic vector type or some
/// target-specific vector type such as for AltiVec or Neon.
unsigned VecKind : 3;
/// The number of elements in the vector.
unsigned NumElements : 29 - NumTypeBits;
enum { MaxNumElements = (1 << (29 - NumTypeBits)) - 1 };
};
class AttributedTypeBitfields {
friend class AttributedType;
unsigned : NumTypeBits;
/// An AttributedType::Kind
unsigned AttrKind : 32 - NumTypeBits;
};
class AutoTypeBitfields {
friend class AutoType;
unsigned : NumTypeBits;
/// Was this placeholder type spelled as 'auto', 'decltype(auto)',
/// or '__auto_type'? AutoTypeKeyword value.
unsigned Keyword : 2;
};
union {
TypeBitfields TypeBits;
ArrayTypeBitfields ArrayTypeBits;
AttributedTypeBitfields AttributedTypeBits;
AutoTypeBitfields AutoTypeBits;
BuiltinTypeBitfields BuiltinTypeBits;
FunctionTypeBitfields FunctionTypeBits;
ObjCObjectTypeBitfields ObjCObjectTypeBits;
ReferenceTypeBitfields ReferenceTypeBits;
TypeWithKeywordBitfields TypeWithKeywordBits;
VectorTypeBitfields VectorTypeBits;
};
private:
/// \brief Set whether this type comes from an AST file.
void setFromAST(bool V = true) const {
TypeBits.FromAST = V;
}
template <class T> friend class TypePropertyCache;
protected:
// silence VC++ warning C4355: 'this' : used in base member initializer list
Type *this_() { return this; }
Type(TypeClass tc, QualType canon, bool Dependent,
bool InstantiationDependent, bool VariablyModified,
bool ContainsUnexpandedParameterPack)
: ExtQualsTypeCommonBase(this,
canon.isNull() ? QualType(this_(), 0) : canon) {
TypeBits.TC = tc;
TypeBits.Dependent = Dependent;
TypeBits.InstantiationDependent = Dependent || InstantiationDependent;
TypeBits.VariablyModified = VariablyModified;
TypeBits.ContainsUnexpandedParameterPack = ContainsUnexpandedParameterPack;
TypeBits.CacheValid = false;
TypeBits.CachedLocalOrUnnamed = false;
TypeBits.CachedLinkage = NoLinkage;
TypeBits.FromAST = false;
}
friend class ASTContext;
void setDependent(bool D = true) {
TypeBits.Dependent = D;
if (D)
TypeBits.InstantiationDependent = true;
}
void setInstantiationDependent(bool D = true) {
TypeBits.InstantiationDependent = D; }
void setVariablyModified(bool VM = true) { TypeBits.VariablyModified = VM;
}
void setContainsUnexpandedParameterPack(bool PP = true) {
TypeBits.ContainsUnexpandedParameterPack = PP;
}
public:
TypeClass getTypeClass() const { return static_cast<TypeClass>(TypeBits.TC); }
/// \brief Whether this type comes from an AST file.
bool isFromAST() const { return TypeBits.FromAST; }
/// \brief Whether this type is or contains an unexpanded parameter
/// pack, used to support C++0x variadic templates.
///
/// A type that contains a parameter pack shall be expanded by the
/// ellipsis operator at some point. For example, the typedef in the
/// following example contains an unexpanded parameter pack 'T':
///
/// \code
/// template<typename ...T>
/// struct X {
/// typedef T* pointer_types; // ill-formed; T is a parameter pack.
/// };
/// \endcode
///
/// Note that this routine does not specify which
bool containsUnexpandedParameterPack() const {
return TypeBits.ContainsUnexpandedParameterPack;
}
/// Determines if this type would be canonical if it had no further
/// qualification.
bool isCanonicalUnqualified() const {
return CanonicalType == QualType(this, 0);
}
/// Pull a single level of sugar off of this locally-unqualified type.
/// Users should generally prefer SplitQualType::getSingleStepDesugaredType()
/// or QualType::getSingleStepDesugaredType(const ASTContext&).
QualType getLocallyUnqualifiedSingleStepDesugaredType() const;
/// Types are partitioned into 3 broad categories (C99 6.2.5p1):
/// object types, function types, and incomplete types.
/// Return true if this is an incomplete type.
/// A type that can describe objects, but which lacks information needed to
/// determine its size (e.g. void, or a fwd declared struct). Clients of this
/// routine will need to determine if the size is actually required.
///
/// \brief Def If non-null, and the type refers to some kind of declaration
/// that can be completed (such as a C struct, C++ class, or Objective-C
/// class), will be set to the declaration.
bool isIncompleteType(NamedDecl **Def = nullptr) const;
/// Return true if this is an incomplete or object
/// type, in other words, not a function type.
bool isIncompleteOrObjectType() const {
return !isFunctionType();
}
/// \brief Determine whether this type is an object type.
bool isObjectType() const {
// C++ [basic.types]p8:
// An object type is a (possibly cv-qualified) type that is not a
// function type, not a reference type, and not a void type.
return !isReferenceType() && !isFunctionType() && !isVoidType();
}
/// Return true if this is a literal type
/// (C++11 [basic.types]p10)
bool isLiteralType(const ASTContext &Ctx) const;
/// Test if this type is a standard-layout type.
/// (C++0x [basic.type]p9)
bool isStandardLayoutType() const;
/// Helper methods to distinguish type categories. All type predicates
/// operate on the canonical type, ignoring typedefs and qualifiers.
/// Returns true if the type is a builtin type.
bool isBuiltinType() const;
/// Test for a particular builtin type.
bool isSpecificBuiltinType(unsigned K) const;
/// Test for a type which does not represent an actual type-system type but
/// is instead used as a placeholder for various convenient purposes within
/// Clang. All such types are BuiltinTypes.
bool isPlaceholderType() const;
const BuiltinType *getAsPlaceholderType() const;
/// Test for a specific placeholder type.
bool isSpecificPlaceholderType(unsigned K) const;
/// Test for a placeholder type other than Overload; see
/// BuiltinType::isNonOverloadPlaceholderType.
bool isNonOverloadPlaceholderType() const;
/// isIntegerType() does *not* include complex integers (a GCC extension).
/// isComplexIntegerType() can be used to test for complex integers.
bool isIntegerType() const; // C99 6.2.5p17 (int, char, bool, enum)
bool isEnumeralType() const;
bool isBooleanType() const;
bool isCharType() const;
bool isWideCharType() const;
bool isChar16Type() const;
bool isChar32Type() const;
bool isAnyCharacterType() const;
bool isIntegralType(const ASTContext &Ctx) const;
/// Determine whether this type is an integral or enumeration type.
bool isIntegralOrEnumerationType() const;
/// Determine whether this type is an integral or unscoped enumeration type.
bool isIntegralOrUnscopedEnumerationType() const;
/// Floating point categories.
bool isRealFloatingType() const; // C99 6.2.5p10 (float, double, long double)
/// isComplexType() does *not* include complex integers (a GCC extension).
/// isComplexIntegerType() can be used to test for complex integers.
bool isComplexType() const; // C99 6.2.5p11 (complex)
bool isAnyComplexType() const; // C99 6.2.5p11 (complex) + Complex Int.
bool isFloatingType() const; // C99 6.2.5p11 (real floating + complex)
bool isHalfType() const; // OpenCL 6.1.1.1, NEON (IEEE 754-2008 half)
bool isRealType() const; // C99 6.2.5p17 (real floating + integer)
bool isArithmeticType() const; // C99 6.2.5p18 (integer + floating)
bool isVoidType() const; // C99 6.2.5p19
bool isScalarType() const; // C99 6.2.5p21 (arithmetic + pointers)
bool isAggregateType() const;
bool isFundamentalType() const;
bool isCompoundType() const;
// Type Predicates: Check to see if this type is structurally the specified
// type, ignoring typedefs and qualifiers.
bool isFunctionType() const;
bool isFunctionNoProtoType() const { return getAs<FunctionNoProtoType>(); }
bool isFunctionProtoType() const { return getAs<FunctionProtoType>(); }
bool isPointerType() const;
bool isAnyPointerType() const; // Any C pointer or ObjC object pointer
bool isBlockPointerType() const;
bool isVoidPointerType() const;
bool isReferenceType() const;
bool isLValueReferenceType() const;
bool isRValueReferenceType() const;
bool isFunctionPointerType() const;
bool isMemberPointerType() const;
bool isMemberFunctionPointerType() const;
bool isMemberDataPointerType() const;
bool isArrayType() const;
bool isConstantArrayType() const;
bool isIncompleteArrayType() const;
bool isVariableArrayType() const;
bool isDependentSizedArrayType() const;
bool isRecordType() const;
bool isClassType() const;
bool isStructureType() const;
bool isObjCBoxableRecordType() const;
bool isInterfaceType() const;
bool isStructureOrClassType() const;
bool isUnionType() const;
bool isComplexIntegerType() const; // GCC _Complex integer type.
bool isVectorType() const; // GCC vector type.
bool isExtVectorType() const; // Extended vector type.
bool isObjCObjectPointerType() const; // pointer to ObjC object
bool isObjCRetainableType() const; // ObjC object or block pointer
bool isObjCLifetimeType() const; // (array of)* retainable type
bool isObjCIndirectLifetimeType() const; // (pointer to)* lifetime type
bool isObjCNSObjectType() const; // __attribute__((NSObject))
bool isObjCIndependentClassType() const; // __attribute__((objc_independent_class))
// FIXME: change this to 'raw' interface type, so we can used 'interface' type
// for the common case.
bool isObjCObjectType() const; // NSString or typeof(*(id)0)
bool isObjCQualifiedInterfaceType() const; // NSString<foo>
bool isObjCQualifiedIdType() const; // id<foo>
bool isObjCQualifiedClassType() const; // Class<foo>
bool isObjCObjectOrInterfaceType() const;
bool isObjCIdType() const; // id
bool isObjCInertUnsafeUnretainedType() const;
/// Whether the type is Objective-C 'id' or a __kindof type of an
/// object type, e.g., __kindof NSView * or __kindof id
/// <NSCopying>.
///
/// \param bound Will be set to the bound on non-id subtype types,
/// which will be (possibly specialized) Objective-C class type, or
/// null for 'id.
bool isObjCIdOrObjectKindOfType(const ASTContext &ctx,
const ObjCObjectType *&bound) const;
bool isObjCClassType() const; // Class
/// Whether the type is Objective-C 'Class' or a __kindof type of an
/// Class type, e.g., __kindof Class <NSCopying>.
///
/// Unlike \c isObjCIdOrObjectKindOfType, there is no relevant bound
/// here because Objective-C's type system cannot express "a class
/// object for a subclass of NSFoo".
bool isObjCClassOrClassKindOfType() const;
bool isBlockCompatibleObjCPointerType(ASTContext &ctx) const;
bool isObjCSelType() const; // Class
bool isObjCBuiltinType() const; // 'id' or 'Class'
bool isObjCARCBridgableType() const;
bool isCARCBridgableType() const;
bool isTemplateTypeParmType() const; // C++ template type parameter
bool isNullPtrType() const; // C++11 std::nullptr_t
bool isAlignValT() const; // C++17 std::align_val_t
bool isAtomicType() const; // C11 _Atomic()
#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
bool is##Id##Type() const;
#include "clang/Basic/OpenCLImageTypes.def"
bool isImageType() const; // Any OpenCL image type
bool isSamplerT() const; // OpenCL sampler_t
bool isEventT() const; // OpenCL event_t
bool isClkEventT() const; // OpenCL clk_event_t
bool isQueueT() const; // OpenCL queue_t
bool isNDRangeT() const; // OpenCL ndrange_t
bool isReserveIDT() const; // OpenCL reserve_id_t
bool isPipeType() const; // OpenCL pipe type
bool isOpenCLSpecificType() const; // Any OpenCL specific type
/// Determines if this type, which must satisfy
/// isObjCLifetimeType(), is implicitly __unsafe_unretained rather
/// than implicitly __strong.
bool isObjCARCImplicitlyUnretainedType() const;
/// Return the implicit lifetime for this type, which must not be dependent.
Qualifiers::ObjCLifetime getObjCARCImplicitLifetime() const;
enum ScalarTypeKind {
STK_CPointer,
STK_BlockPointer,
STK_ObjCObjectPointer,
STK_MemberPointer,
STK_Bool,
STK_Integral,
STK_Floating,
STK_IntegralComplex,
STK_FloatingComplex
};
/// Given that this is a scalar type, classify it.
ScalarTypeKind getScalarTypeKind() const;
/// Whether this type is a dependent type, meaning that its definition
/// somehow depends on a template parameter (C++ [temp.dep.type]).
bool isDependentType() const { return TypeBits.Dependent; }
/// \brief Determine whether this type is an instantiation-dependent type,
/// meaning that the type involves a template parameter (even if the
/// definition does not actually depend on the type substituted for that
/// template parameter).
bool isInstantiationDependentType() const {
return TypeBits.InstantiationDependent;
}
/// \brief Determine whether this type is an undeduced type, meaning that
/// it somehow involves a C++11 'auto' type which has not yet been deduced.
bool isUndeducedType() const;
/// \brief Whether this type is a variably-modified type (C99 6.7.5).
bool isVariablyModifiedType() const { return TypeBits.VariablyModified; }
/// \brief Whether this type involves a variable-length array type
/// with a definite size.
bool hasSizedVLAType() const;
/// \brief Whether this type is or contains a local or unnamed type.
bool hasUnnamedOrLocalType() const;
bool isOverloadableType() const;
/// \brief Determine wither this type is a C++ elaborated-type-specifier.
bool isElaboratedTypeSpecifier() const;
bool canDecayToPointerType() const;
/// Whether this type is represented natively as a pointer. This includes
/// pointers, references, block pointers, and Objective-C interface,
/// qualified id, and qualified interface types, as well as nullptr_t.
bool hasPointerRepresentation() const;
/// Whether this type can represent an objective pointer type for the
/// purpose of GC'ability
bool hasObjCPointerRepresentation() const;
/// \brief Determine whether this type has an integer representation
/// of some sort, e.g., it is an integer type or a vector.
bool hasIntegerRepresentation() const;
/// \brief Determine whether this type has an signed integer representation
/// of some sort, e.g., it is an signed integer type or a vector.
bool hasSignedIntegerRepresentation() const;
/// \brief Determine whether this type has an unsigned integer representation
/// of some sort, e.g., it is an unsigned integer type or a vector.
bool hasUnsignedIntegerRepresentation() const;
/// \brief Determine whether this type has a floating-point representation
/// of some sort, e.g., it is a floating-point type or a vector thereof.
bool hasFloatingRepresentation() const;
// Type Checking Functions: Check to see if this type is structurally the
// specified type, ignoring typedefs and qualifiers, and return a pointer to
// the best type we can.
const RecordType *getAsStructureType() const;
/// NOTE: getAs*ArrayType are methods on ASTContext.
const RecordType *getAsUnionType() const;
const ComplexType *getAsComplexIntegerType() const; // GCC complex int type.
const ObjCObjectType *getAsObjCInterfaceType() const;
// The following is a convenience method that returns an ObjCObjectPointerType
// for object declared using an interface.
const ObjCObjectPointerType *getAsObjCInterfacePointerType() const;
const ObjCObjectPointerType *getAsObjCQualifiedIdType() const;
const ObjCObjectPointerType *getAsObjCQualifiedClassType() const;
const ObjCObjectType *getAsObjCQualifiedInterfaceType() const;
/// \brief Retrieves the CXXRecordDecl that this type refers to, either
/// because the type is a RecordType or because it is the injected-class-name
/// type of a class template or class template partial specialization.
CXXRecordDecl *getAsCXXRecordDecl() const;
/// \brief Retrieves the TagDecl that this type refers to, either
/// because the type is a TagType or because it is the injected-class-name
/// type of a class template or class template partial specialization.
TagDecl *getAsTagDecl() const;
/// If this is a pointer or reference to a RecordType, return the
/// CXXRecordDecl that that type refers to.
///
/// If this is not a pointer or reference, or the type being pointed to does
/// not refer to a CXXRecordDecl, returns NULL.
const CXXRecordDecl *getPointeeCXXRecordDecl() const;
/// Get the AutoType whose type will be deduced for a variable with
/// an initializer of this type. This looks through declarators like pointer
/// types, but not through decltype or typedefs.
AutoType *getContainedAutoType() const;
/// Member-template getAs<specific type>'. Look through sugar for
/// an instance of \<specific type>. This scheme will eventually
/// replace the specific getAsXXXX methods above.
///
/// There are some specializations of this member template listed
/// immediately following this class.
template <typename T> const T *getAs() const;
/// A variant of getAs<> for array types which silently discards
/// qualifiers from the outermost type.
const ArrayType *getAsArrayTypeUnsafe() const;
/// Member-template castAs<specific type>. Look through sugar for
/// the underlying instance of \<specific type>.
///
/// This method has the same relationship to getAs<T> as cast<T> has
/// to dyn_cast<T>; which is to say, the underlying type *must*
/// have the intended type, and this method will never return null.
template <typename T> const T *castAs() const;
/// A variant of castAs<> for array type which silently discards
/// qualifiers from the outermost type.
const ArrayType *castAsArrayTypeUnsafe() const;
/// Get the base element type of this type, potentially discarding type
/// qualifiers. This should never be used when type qualifiers
/// are meaningful.
const Type *getBaseElementTypeUnsafe() const;
/// If this is an array type, return the element type of the array,
/// potentially with type qualifiers missing.
/// This should never be used when type qualifiers are meaningful.
const Type *getArrayElementTypeNoTypeQual() const;
/// If this is a pointer type, return the pointee type.
/// If this is an array type, return the array element type.
/// This should never be used when type qualifiers are meaningful.
const Type *getPointeeOrArrayElementType() const;
/// If this is a pointer, ObjC object pointer, or block
/// pointer, this returns the respective pointee.
QualType getPointeeType() const;
/// Return the specified type with any "sugar" removed from the type,
/// removing any typedefs, typeofs, etc., as well as any qualifiers.
const Type *getUnqualifiedDesugaredType() const;
/// More type predicates useful for type checking/promotion
bool isPromotableIntegerType() const; // C99 6.3.1.1p2
/// Return true if this is an integer type that is
/// signed, according to C99 6.2.5p4 [char, signed char, short, int, long..],
/// or an enum decl which has a signed representation.
bool isSignedIntegerType() const;
/// Return true if this is an integer type that is
/// unsigned, according to C99 6.2.5p6 [which returns true for _Bool],
/// or an enum decl which has an unsigned representation.
bool isUnsignedIntegerType() const;
/// Determines whether this is an integer type that is signed or an
/// enumeration types whose underlying type is a signed integer type.
bool isSignedIntegerOrEnumerationType() const;
/// Determines whether this is an integer type that is unsigned or an
/// enumeration types whose underlying type is a unsigned integer type.
bool isUnsignedIntegerOrEnumerationType() const;
/// Return true if this is not a variable sized type,
/// according to the rules of C99 6.7.5p3. It is not legal to call this on
/// incomplete types.
bool isConstantSizeType() const;
/// Returns true if this type can be represented by some
/// set of type specifiers.
bool isSpecifierType() const;
/// Determine the linkage of this type.
Linkage getLinkage() const;
/// Determine the visibility of this type.
Visibility getVisibility() const {
return getLinkageAndVisibility().getVisibility();
}
/// Return true if the visibility was explicitly set is the code.
bool isVisibilityExplicit() const {
return getLinkageAndVisibility().isVisibilityExplicit();
}
/// Determine the linkage and visibility of this type.
LinkageInfo getLinkageAndVisibility() const;
/// True if the computed linkage is valid. Used for consistency
/// checking. Should always return true.
bool isLinkageValid() const;
/// Determine the nullability of the given type.
///
/// Note that nullability is only captured as sugar within the type
/// system, not as part of the canonical type, so nullability will
/// be lost by canonicalization and desugaring.
Optional<NullabilityKind> getNullability(const ASTContext &context) const;
/// Determine whether the given type can have a nullability
/// specifier applied to it, i.e., if it is any kind of pointer type
/// or a dependent type that could instantiate to any kind of
/// pointer type.
bool canHaveNullability() const;
/// Retrieve the set of substitutions required when accessing a member
/// of the Objective-C receiver type that is declared in the given context.
///
/// \c *this is the type of the object we're operating on, e.g., the
/// receiver for a message send or the base of a property access, and is
/// expected to be of some object or object pointer type.
///
/// \param dc The declaration context for which we are building up a
/// substitution mapping, which should be an Objective-C class, extension,
/// category, or method within.
///
/// \returns an array of type arguments that can be substituted for
/// the type parameters of the given declaration context in any type described
/// within that context, or an empty optional to indicate that no
/// substitution is required.
Optional<ArrayRef<QualType>>
getObjCSubstitutions(const DeclContext *dc) const;
/// Determines if this is an ObjC interface type that may accept type
/// parameters.
bool acceptsObjCTypeParams() const;
const char *getTypeClassName() const;
QualType getCanonicalTypeInternal() const {
return CanonicalType;
}
CanQualType getCanonicalTypeUnqualified() const; // in CanonicalType.h
void dump() const;
void dump(llvm::raw_ostream &OS) const;
friend class ASTReader;
friend class ASTWriter;
};
/// \brief This will check for a TypedefType by removing any existing sugar
/// until it reaches a TypedefType or a non-sugared type.
template <> const TypedefType *Type::getAs() const;
/// \brief This will check for a TemplateSpecializationType by removing any
/// existing sugar until it reaches a TemplateSpecializationType or a
/// non-sugared type.
template <> const TemplateSpecializationType *Type::getAs() const;
/// \brief This will check for an AttributedType by removing any existing sugar
/// until it reaches an AttributedType or a non-sugared type.
template <> const AttributedType *Type::getAs() const;
// We can do canonical leaf types faster, because we don't have to
// worry about preserving child type decoration.
#define TYPE(Class, Base)
#define LEAF_TYPE(Class) \
template <> inline const Class##Type *Type::getAs() const { \
return dyn_cast<Class##Type>(CanonicalType); \
} \
template <> inline const Class##Type *Type::castAs() const { \
return cast<Class##Type>(CanonicalType); \
}
#include "clang/AST/TypeNodes.def"
/// This class is used for builtin types like 'int'. Builtin
/// types are always canonical and have a literal name field.
class BuiltinType : public Type {
public:
enum Kind {
// OpenCL image types
#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) Id,
#include "clang/Basic/OpenCLImageTypes.def"
// All other builtin types
#define BUILTIN_TYPE(Id, SingletonId) Id,
#define LAST_BUILTIN_TYPE(Id) LastKind = Id
#include "clang/AST/BuiltinTypes.def"
};
public:
BuiltinType(Kind K)
: Type(Builtin, QualType(), /*Dependent=*/(K == Dependent),
/*InstantiationDependent=*/(K == Dependent),
/*VariablyModified=*/false,
/*Unexpanded paramter pack=*/false) {
BuiltinTypeBits.Kind = K;
}
Kind getKind() const { return static_cast<Kind>(BuiltinTypeBits.Kind); }
StringRef getName(const PrintingPolicy &Policy) const;
const char *getNameAsCString(const PrintingPolicy &Policy) const {
// The StringRef is null-terminated.
StringRef str = getName(Policy);
assert(!str.empty() && str.data()[str.size()] == '\0');
return str.data();
}
bool isSugared() const { return false; }
QualType desugar() const { return QualType(this, 0); }
bool isInteger() const {
return getKind() >= Bool && getKind() <= Int128;
}
bool isSignedInteger() const {
return getKind() >= Char_S && getKind() <= Int128;
}
bool isUnsignedInteger() const {
return getKind() >= Bool && getKind() <= UInt128;
}
bool isFloatingPoint() const {
return getKind() >= Half && getKind() <= Float128;
}
/// Determines whether the given kind corresponds to a placeholder type.
static bool isPlaceholderTypeKind(Kind K) {
return K >= Overload;
}
/// Determines whether this type is a placeholder type, i.e. a type
/// which cannot appear in arbitrary positions in a fully-formed
/// expression.
bool isPlaceholderType() const {
return isPlaceholderTypeKind(getKind());
}
/// Determines whether this type is a placeholder type other than
/// Overload. Most placeholder types require only syntactic
/// information about their context in order to be resolved (e.g.
/// whether it is a call expression), which means they can (and
/// should) be resolved in an earlier "phase" of analysis.
/// Overload expressions sometimes pick up further information
/// from their context, like whether the context expects a
/// specific function-pointer type, and so frequently need
/// special treatment.
bool isNonOverloadPlaceholderType() const {
return getKind() > Overload;
}
static bool classof(const Type *T) { return T->getTypeClass() == Builtin; }
};
/// Complex values, per C99 6.2.5p11. This supports the C99 complex
/// types (_Complex float etc) as well as the GCC integer complex extensions.
///
class ComplexType : public Type, public llvm::FoldingSetNode {
QualType ElementType;
ComplexType(QualType Element, QualType CanonicalPtr) :
Type(Complex, CanonicalPtr, Element->isDependentType(),
Element->isInstantiationDependentType(),
Element->isVariablyModifiedType(),
Element->containsUnexpandedParameterPack()),
ElementType(Element) {
}
friend class ASTContext; // ASTContext creates these.
public:
QualType getElementType() const { return ElementType; }
bool isSugared() const { return false; }
QualType desugar() const { return QualType(this, 0); }
void Profile(llvm::FoldingSetNodeID &ID) {
Profile(ID, getElementType());
}
static void Profile(llvm::FoldingSetNodeID &ID, QualType Element) {
ID.AddPointer(Element.getAsOpaquePtr());
}
static bool classof(const Type *T) { return T->getTypeClass() == Complex; }
};
/// Sugar for parentheses used when specifying types.
///
class ParenType : public Type, public llvm::FoldingSetNode {
QualType Inner;
ParenType(QualType InnerType, QualType CanonType) :
Type(Paren, CanonType, InnerType->isDependentType(),
InnerType->isInstantiationDependentType(),
InnerType->isVariablyModifiedType(),
InnerType->containsUnexpandedParameterPack()),
Inner(InnerType) {
}
friend class ASTContext; // ASTContext creates these.
public:
QualType getInnerType() const { return Inner; }
bool isSugared() const { return true; }
QualType desugar() const { return getInnerType(); }
void Profile(llvm::FoldingSetNodeID &ID) {
Profile(ID, getInnerType());
}
static void Profile(llvm::FoldingSetNodeID &ID, QualType Inner) {
Inner.Profile(ID);
}
static bool classof(const Type *T) { return T->getTypeClass() == Paren; }
};
/// PointerType - C99 6.7.5.1 - Pointer Declarators.
///
class PointerType : public Type, public llvm::FoldingSetNode {
QualType PointeeType;
PointerType(QualType Pointee, QualType CanonicalPtr) :
Type(Pointer, CanonicalPtr, Pointee->isDependentType(),
Pointee->isInstantiationDependentType(),
Pointee->isVariablyModifiedType(),
Pointee->containsUnexpandedParameterPack()),
PointeeType(Pointee) {
}
friend class ASTContext; // ASTContext creates these.
public:
QualType getPointeeType() const { return PointeeType; }
/// Returns true if address spaces of pointers overlap.
/// OpenCL v2.0 defines conversion rules for pointers to different
/// address spaces (OpenCLC v2.0 s6.5.5) and notion of overlapping
/// address spaces.
/// CL1.1 or CL1.2:
/// address spaces overlap iff they are they same.
/// CL2.0 adds:
/// __generic overlaps with any address space except for __constant.
bool isAddressSpaceOverlapping(const PointerType &other) const {
Qualifiers thisQuals = PointeeType.getQualifiers();
Qualifiers otherQuals = other.getPointeeType().getQualifiers();
// Address spaces overlap if at least one of them is a superset of another
return thisQuals.isAddressSpaceSupersetOf(otherQuals) ||
otherQuals.isAddressSpaceSupersetOf(thisQuals);
}
bool isSugared() const { return false; }
QualType desugar() const { return QualType(this, 0); }
void Profile(llvm::FoldingSetNodeID &ID) {
Profile(ID, getPointeeType());
}
static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
ID.AddPointer(Pointee.getAsOpaquePtr());
}
static bool classof(const Type *T) { return T->getTypeClass() == Pointer; }
};
/// Represents a type which was implicitly adjusted by the semantic
/// engine for arbitrary reasons. For example, array and function types can
/// decay, and function types can have their calling conventions adjusted.
class AdjustedType : public Type, public llvm::FoldingSetNode {
QualType OriginalTy;
QualType AdjustedTy;
protected:
AdjustedType(TypeClass TC, QualType OriginalTy, QualType AdjustedTy,
QualType CanonicalPtr)
: Type(TC, CanonicalPtr, OriginalTy->isDependentType(),
OriginalTy->isInstantiationDependentType(),
OriginalTy->isVariablyModifiedType(),
OriginalTy->containsUnexpandedParameterPack()),
OriginalTy(OriginalTy), AdjustedTy(AdjustedTy) {}
friend class ASTContext; // ASTContext creates these.
public:
QualType getOriginalType() const { return OriginalTy; }
QualType getAdjustedType() const { return AdjustedTy; }
bool isSugared() const { return true; }
QualType desugar() const { return AdjustedTy; }
void Profile(llvm::FoldingSetNodeID &ID) {
Profile(ID, OriginalTy, AdjustedTy);
}
static void Profile(llvm::FoldingSetNodeID &ID, QualType Orig, QualType New) {
ID.AddPointer(Orig.getAsOpaquePtr());
ID.AddPointer(New.getAsOpaquePtr());
}
static bool classof(const Type *T) {
return T->getTypeClass() == Adjusted || T->getTypeClass() == Decayed;
}
};
/// Represents a pointer type decayed from an array or function type.
class DecayedType : public AdjustedType {
inline
DecayedType(QualType OriginalType, QualType Decayed, QualType Canonical);
friend class ASTContext; // ASTContext creates these.
public:
QualType getDecayedType() const { return getAdjustedType(); }
inline QualType getPointeeType() const;
static bool classof(const Type *T) { return T->getTypeClass() == Decayed; }
};
/// Pointer to a block type.
/// This type is to represent types syntactically represented as
/// "void (^)(int)", etc. Pointee is required to always be a function type.
///
class BlockPointerType : public Type, public llvm::FoldingSetNode {
QualType PointeeType; // Block is some kind of pointer type
BlockPointerType(QualType Pointee, QualType CanonicalCls) :
Type(BlockPointer, CanonicalCls, Pointee->isDependentType(),
Pointee->isInstantiationDependentType(),
Pointee->isVariablyModifiedType(),
Pointee->containsUnexpandedParameterPack()),
PointeeType(Pointee) {
}
friend class ASTContext; // ASTContext creates these.
public:
// Get the pointee type. Pointee is required to always be a function type.
QualType getPointeeType() const { return PointeeType; }
bool isSugared() const { return false; }
QualType desugar() const { return QualType(this, 0); }
void Profile(llvm::FoldingSetNodeID &ID) {
Profile(ID, getPointeeType());
}
static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
ID.AddPointer(Pointee.getAsOpaquePtr());
}
static bool classof(const Type *T) {
return T->getTypeClass() == BlockPointer;
}
};
/// Base for LValueReferenceType and RValueReferenceType
///
class ReferenceType : public Type, public llvm::FoldingSetNode {
QualType PointeeType;
protected:
ReferenceType(TypeClass tc, QualType Referencee, QualType CanonicalRef,
bool SpelledAsLValue) :
Type(tc, CanonicalRef, Referencee->isDependentType(),
Referencee->isInstantiationDependentType(),
Referencee->isVariablyModifiedType(),
Referencee->containsUnexpandedParameterPack()),
PointeeType(Referencee)
{
ReferenceTypeBits.SpelledAsLValue = SpelledAsLValue;
ReferenceTypeBits.InnerRef = Referencee->isReferenceType();
}
public:
bool isSpelledAsLValue() const { return ReferenceTypeBits.SpelledAsLValue; }
bool isInnerRef() const { return ReferenceTypeBits.InnerRef; }
QualType getPointeeTypeAsWritten() const { return PointeeType; }
QualType getPointeeType() const {
// FIXME: this might strip inner qualifiers; okay?
const ReferenceType *T = this;
while (T->isInnerRef())
T = T->PointeeType->castAs<ReferenceType>();
return T->PointeeType;
}
void Profile(llvm::FoldingSetNodeID &ID) {
Profile(ID, PointeeType, isSpelledAsLValue());
}
static void Profile(llvm::FoldingSetNodeID &ID,
QualType Referencee,
bool SpelledAsLValue) {
ID.AddPointer(Referencee.getAsOpaquePtr());
ID.AddBoolean(SpelledAsLValue);
}
static bool classof(const Type *T) {
return T->getTypeClass() == LValueReference ||
T->getTypeClass() == RValueReference;
}
};
/// An lvalue reference type, per C++11 [dcl.ref].
///
class LValueReferenceType : public ReferenceType {
LValueReferenceType(QualType Referencee, QualType CanonicalRef,
bool SpelledAsLValue) :
ReferenceType(LValueReference, Referencee, CanonicalRef, SpelledAsLValue)
{}
friend class ASTContext; // ASTContext creates these
public:
bool isSugared() const { return false; }
QualType desugar() const { return QualType(this, 0); }
static bool classof(const Type *T) {
return T->getTypeClass() == LValueReference;
}
};
/// An rvalue reference type, per C++11 [dcl.ref].
///
class RValueReferenceType : public ReferenceType {
RValueReferenceType(QualType Referencee, QualType CanonicalRef) :
ReferenceType(RValueReference, Referencee, CanonicalRef, false) {
}
friend class ASTContext; // ASTContext creates these
public:
bool isSugared() const { return false; }
QualType desugar() const { return QualType(this, 0); }
static bool classof(const Type *T) {
return T->getTypeClass() == RValueReference;
}
};
/// A pointer to member type per C++ 8.3.3 - Pointers to members.
///
/// This includes both pointers to data members and pointer to member functions.
///
class MemberPointerType : public Type, public llvm::FoldingSetNode {
QualType PointeeType;
/// The class of which the pointee is a member. Must ultimately be a
/// RecordType, but could be a typedef or a template parameter too.
const Type *Class;
MemberPointerType(QualType Pointee, const Type *Cls, QualType CanonicalPtr) :
Type(MemberPointer, CanonicalPtr,
Cls->isDependentType() || Pointee->isDependentType(),
(Cls->isInstantiationDependentType() ||
Pointee->isInstantiationDependentType()),
Pointee->isVariablyModifiedType(),
(Cls->containsUnexpandedParameterPack() ||
Pointee->containsUnexpandedParameterPack())),
PointeeType(Pointee), Class(Cls) {
}
friend class ASTContext; // ASTContext creates these.
public:
QualType getPointeeType() const { return PointeeType; }
/// Returns true if the member type (i.e. the pointee type) is a
/// function type rather than a data-member type.
bool isMemberFunctionPointer() const {
return PointeeType->isFunctionProtoType();
}
/// Returns true if the member type (i.e. the pointee type) is a
/// data type rather than a function type.
bool isMemberDataPointer() const {
return !PointeeType->isFunctionProtoType();
}
const Type *getClass() const { return Class; }
CXXRecordDecl *getMostRecentCXXRecordDecl() const;
bool isSugared() const { return false; }
QualType desugar() const { return QualType(this, 0); }
void Profile(llvm::FoldingSetNodeID &ID) {
Profile(ID, getPointeeType(), getClass());
}
static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee,
const Type *Class) {
ID.AddPointer(Pointee.getAsOpaquePtr());
ID.AddPointer(Class);
}
static bool classof(const Type *T) {
return T->getTypeClass() == MemberPointer;
}
};
/// Represents an array type, per C99 6.7.5.2 - Array Declarators.
///
class ArrayType : public Type, public llvm::FoldingSetNode {
public:
/// Capture whether this is a normal array (e.g. int X[4])
/// an array with a static size (e.g. int X[static 4]), or an array
/// with a star size (e.g. int X[*]).
/// 'static' is only allowed on function parameters.
enum ArraySizeModifier {
Normal, Static, Star
};
private:
/// The element type of the array.
QualType ElementType;
protected:
// C++ [temp.dep.type]p1:
// A type is dependent if it is...
// - an array type constructed from any dependent type or whose
// size is specified by a constant expression that is
// value-dependent,
ArrayType(TypeClass tc, QualType et, QualType can,
ArraySizeModifier sm, unsigned tq,
bool ContainsUnexpandedParameterPack)
: Type(tc, can, et->isDependentType() || tc == DependentSizedArray,
et->isInstantiationDependentType() || tc == DependentSizedArray,
(tc == VariableArray || et->isVariablyModifiedType()),
ContainsUnexpandedParameterPack),
ElementType(et) {
ArrayTypeBits.IndexTypeQuals = tq;
ArrayTypeBits.SizeModifier = sm;
}
friend class ASTContext; // ASTContext creates these.
public:
QualType getElementType() const { return ElementType; }
ArraySizeModifier getSizeModifier() const {
return ArraySizeModifier(ArrayTypeBits.SizeModifier);
}
Qualifiers getIndexTypeQualifiers() const {
return Qualifiers::fromCVRMask(getIndexTypeCVRQualifiers());
}
unsigned getIndexTypeCVRQualifiers() const {
return ArrayTypeBits.IndexTypeQuals;
}
static bool classof(const Type *T) {
return T->getTypeClass() == ConstantArray ||
T->getTypeClass() == VariableArray ||
T->getTypeClass() == IncompleteArray ||
T->getTypeClass() == DependentSizedArray;
}
};
/// Represents the canonical version of C arrays with a specified constant size.
/// For example, the canonical type for 'int A[4 + 4*100]' is a
/// ConstantArrayType where the element type is 'int' and the size is 404.
class ConstantArrayType : public ArrayType {
llvm::APInt Size; // Allows us to unique the type.
ConstantArrayType(QualType et, QualType can, const llvm::APInt &size,
ArraySizeModifier sm, unsigned tq)
: ArrayType(ConstantArray, et, can, sm, tq,
et->containsUnexpandedParameterPack()),
Size(size) {}
protected:
ConstantArrayType(TypeClass tc, QualType et, QualType can,
const llvm::APInt &size, ArraySizeModifier sm, unsigned tq)
: ArrayType(tc, et, can, sm, tq, et->containsUnexpandedParameterPack()),
Size(size) {}
friend class ASTContext; // ASTContext creates these.
public:
const llvm::APInt &getSize() const { return Size; }
bool isSugared() const { return false; }
QualType desugar() const { return QualType(this, 0); }
/// \brief Determine the number of bits required to address a member of
// an array with the given element type and number of elements.
static unsigned getNumAddressingBits(const ASTContext &Context,
QualType ElementType,
const llvm::APInt &NumElements);
/// \brief Determine the maximum number of active bits that an array's size
/// can require, which limits the maximum size of the array.
static unsigned getMaxSizeBits(const ASTContext &Context);
void Profile(llvm::FoldingSetNodeID &ID) {
Profile(ID, getElementType(), getSize(),
getSizeModifier(), getIndexTypeCVRQualifiers());
}
static void Profile(llvm::FoldingSetNodeID &ID, QualType ET,
const llvm::APInt &ArraySize, ArraySizeModifier SizeMod,
unsigned TypeQuals) {
ID.AddPointer(ET.getAsOpaquePtr());
ID.AddInteger(ArraySize.getZExtValue());
ID.AddInteger(SizeMod);
ID.AddInteger(TypeQuals);
}
static bool classof(const Type *T) {
return T->getTypeClass() == ConstantArray;
}
};
/// Represents a C array with an unspecified size. For example 'int A[]' has
/// an IncompleteArrayType where the element type is 'int' and the size is
/// unspecified.
class IncompleteArrayType : public ArrayType {
IncompleteArrayType(QualType et, QualType can,
ArraySizeModifier sm, unsigned tq)
: ArrayType(IncompleteArray, et, can, sm, tq,
et->containsUnexpandedParameterPack()) {}
friend class ASTContext; // ASTContext creates these.
public:
bool isSugared() const { return false; }
QualType desugar() const { return QualType(this, 0); }
static bool classof(const Type *T) {
return T->getTypeClass() == IncompleteArray;
}
friend class StmtIteratorBase;
void Profile(llvm::FoldingSetNodeID &ID) {
Profile(ID, getElementType(), getSizeModifier(),
getIndexTypeCVRQualifiers());
}
static void Profile(llvm::FoldingSetNodeID &ID, QualType ET,
ArraySizeModifier SizeMod, unsigned TypeQuals) {
ID.AddPointer(ET.getAsOpaquePtr());
ID.AddInteger(SizeMod);
ID.AddInteger(TypeQuals);
}
};
/// Represents a C array with a specified size that is not an
/// integer-constant-expression. For example, 'int s[x+foo()]'.
/// Since the size expression is an arbitrary expression, we store it as such.
///
/// Note: VariableArrayType's aren't uniqued (since the expressions aren't) and
/// should not be: two lexically equivalent variable array types could mean
/// different things, for example, these variables do not have the same type
/// dynamically:
///
/// void foo(int x) {
/// int Y[x];
/// ++x;
/// int Z[x];
/// }
///
class VariableArrayType : public ArrayType {
/// An assignment-expression. VLA's are only permitted within
/// a function block.
Stmt *SizeExpr;
/// The range spanned by the left and right array brackets.
SourceRange Brackets;
VariableArrayType(QualType et, QualType can, Expr *e,
ArraySizeModifier sm, unsigned tq,
SourceRange brackets)
: ArrayType(VariableArray, et, can, sm, tq,
et->containsUnexpandedParameterPack()),
SizeExpr((Stmt*) e), Brackets(brackets) {}
friend class ASTContext; // ASTContext creates these.
public:
Expr *getSizeExpr() const {
// We use C-style casts instead of cast<> here because we do not wish
// to have a dependency of Type.h on Stmt.h/Expr.h.
return (Expr*) SizeExpr;
}
SourceRange getBracketsRange() const { return Brackets; }
SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }
bool isSugared() const { return false; }
QualType desugar() const { return QualType(this, 0); }
static bool classof(const Type *T) {
return T->getTypeClass() == VariableArray;
}
friend class StmtIteratorBase;
void Profile(llvm::FoldingSetNodeID &ID) {
llvm_unreachable("Cannot unique VariableArrayTypes.");
}
};
/// Represents an array type in C++ whose size is a value-dependent expression.
///
/// For example:
/// \code
/// template<typename T, int Size>
/// class array {
/// T data[Size];
/// };