blob: 7c7cda9ce00eda7a75f142e8083511e4e74d78aa [file] [log] [blame]
//===--- SemaType.cpp - Semantic Analysis for Types -----------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements type-related semantic analysis.
//
//===----------------------------------------------------------------------===//
#include "clang/Sema/SemaInternal.h"
#include "TypeLocBuilder.h"
#include "clang/AST/ASTConsumer.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/ASTMutationListener.h"
#include "clang/AST/CXXInheritance.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/AST/Expr.h"
#include "clang/AST/TypeLoc.h"
#include "clang/AST/TypeLocVisitor.h"
#include "clang/Lex/Preprocessor.h"
#include "clang/Basic/PartialDiagnostic.h"
#include "clang/Basic/TargetInfo.h"
#include "clang/Lex/Preprocessor.h"
#include "clang/Parse/ParseDiagnostic.h"
#include "clang/Sema/DeclSpec.h"
#include "clang/Sema/DelayedDiagnostic.h"
#include "clang/Sema/Lookup.h"
#include "clang/Sema/ScopeInfo.h"
#include "clang/Sema/Template.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/Support/ErrorHandling.h"
using namespace clang;
enum TypeDiagSelector {
TDS_Function,
TDS_Pointer,
TDS_ObjCObjOrBlock
};
/// isOmittedBlockReturnType - Return true if this declarator is missing a
/// return type because this is a omitted return type on a block literal.
static bool isOmittedBlockReturnType(const Declarator &D) {
if (D.getContext() != Declarator::BlockLiteralContext ||
D.getDeclSpec().hasTypeSpecifier())
return false;
if (D.getNumTypeObjects() == 0)
return true; // ^{ ... }
if (D.getNumTypeObjects() == 1 &&
D.getTypeObject(0).Kind == DeclaratorChunk::Function)
return true; // ^(int X, float Y) { ... }
return false;
}
/// diagnoseBadTypeAttribute - Diagnoses a type attribute which
/// doesn't apply to the given type.
static void diagnoseBadTypeAttribute(Sema &S, const AttributeList &attr,
QualType type) {
TypeDiagSelector WhichType;
bool useExpansionLoc = true;
switch (attr.getKind()) {
case AttributeList::AT_ObjCGC: WhichType = TDS_Pointer; break;
case AttributeList::AT_ObjCOwnership: WhichType = TDS_ObjCObjOrBlock; break;
default:
// Assume everything else was a function attribute.
WhichType = TDS_Function;
useExpansionLoc = false;
break;
}
SourceLocation loc = attr.getLoc();
StringRef name = attr.getName()->getName();
// The GC attributes are usually written with macros; special-case them.
IdentifierInfo *II = attr.isArgIdent(0) ? attr.getArgAsIdent(0)->Ident
: nullptr;
if (useExpansionLoc && loc.isMacroID() && II) {
if (II->isStr("strong")) {
if (S.findMacroSpelling(loc, "__strong")) name = "__strong";
} else if (II->isStr("weak")) {
if (S.findMacroSpelling(loc, "__weak")) name = "__weak";
}
}
S.Diag(loc, diag::warn_type_attribute_wrong_type) << name << WhichType
<< type;
}
// objc_gc applies to Objective-C pointers or, otherwise, to the
// smallest available pointer type (i.e. 'void*' in 'void**').
#define OBJC_POINTER_TYPE_ATTRS_CASELIST \
case AttributeList::AT_ObjCGC: \
case AttributeList::AT_ObjCOwnership
// Function type attributes.
#define FUNCTION_TYPE_ATTRS_CASELIST \
case AttributeList::AT_NoReturn: \
case AttributeList::AT_CDecl: \
case AttributeList::AT_FastCall: \
case AttributeList::AT_StdCall: \
case AttributeList::AT_ThisCall: \
case AttributeList::AT_Pascal: \
case AttributeList::AT_VectorCall: \
case AttributeList::AT_MSABI: \
case AttributeList::AT_SysVABI: \
case AttributeList::AT_Regparm: \
case AttributeList::AT_Pcs: \
case AttributeList::AT_IntelOclBicc
// Microsoft-specific type qualifiers.
#define MS_TYPE_ATTRS_CASELIST \
case AttributeList::AT_Ptr32: \
case AttributeList::AT_Ptr64: \
case AttributeList::AT_SPtr: \
case AttributeList::AT_UPtr
// Nullability qualifiers.
#define NULLABILITY_TYPE_ATTRS_CASELIST \
case AttributeList::AT_TypeNonNull: \
case AttributeList::AT_TypeNullable: \
case AttributeList::AT_TypeNullUnspecified
namespace {
/// An object which stores processing state for the entire
/// GetTypeForDeclarator process.
class TypeProcessingState {
Sema &sema;
/// The declarator being processed.
Declarator &declarator;
/// The index of the declarator chunk we're currently processing.
/// May be the total number of valid chunks, indicating the
/// DeclSpec.
unsigned chunkIndex;
/// Whether there are non-trivial modifications to the decl spec.
bool trivial;
/// Whether we saved the attributes in the decl spec.
bool hasSavedAttrs;
/// The original set of attributes on the DeclSpec.
SmallVector<AttributeList*, 2> savedAttrs;
/// A list of attributes to diagnose the uselessness of when the
/// processing is complete.
SmallVector<AttributeList*, 2> ignoredTypeAttrs;
public:
TypeProcessingState(Sema &sema, Declarator &declarator)
: sema(sema), declarator(declarator),
chunkIndex(declarator.getNumTypeObjects()),
trivial(true), hasSavedAttrs(false) {}
Sema &getSema() const {
return sema;
}
Declarator &getDeclarator() const {
return declarator;
}
bool isProcessingDeclSpec() const {
return chunkIndex == declarator.getNumTypeObjects();
}
unsigned getCurrentChunkIndex() const {
return chunkIndex;
}
void setCurrentChunkIndex(unsigned idx) {
assert(idx <= declarator.getNumTypeObjects());
chunkIndex = idx;
}
AttributeList *&getCurrentAttrListRef() const {
if (isProcessingDeclSpec())
return getMutableDeclSpec().getAttributes().getListRef();
return declarator.getTypeObject(chunkIndex).getAttrListRef();
}
/// Save the current set of attributes on the DeclSpec.
void saveDeclSpecAttrs() {
// Don't try to save them multiple times.
if (hasSavedAttrs) return;
DeclSpec &spec = getMutableDeclSpec();
for (AttributeList *attr = spec.getAttributes().getList(); attr;
attr = attr->getNext())
savedAttrs.push_back(attr);
trivial &= savedAttrs.empty();
hasSavedAttrs = true;
}
/// Record that we had nowhere to put the given type attribute.
/// We will diagnose such attributes later.
void addIgnoredTypeAttr(AttributeList &attr) {
ignoredTypeAttrs.push_back(&attr);
}
/// Diagnose all the ignored type attributes, given that the
/// declarator worked out to the given type.
void diagnoseIgnoredTypeAttrs(QualType type) const {
for (auto *Attr : ignoredTypeAttrs)
diagnoseBadTypeAttribute(getSema(), *Attr, type);
}
~TypeProcessingState() {
if (trivial) return;
restoreDeclSpecAttrs();
}
private:
DeclSpec &getMutableDeclSpec() const {
return const_cast<DeclSpec&>(declarator.getDeclSpec());
}
void restoreDeclSpecAttrs() {
assert(hasSavedAttrs);
if (savedAttrs.empty()) {
getMutableDeclSpec().getAttributes().set(nullptr);
return;
}
getMutableDeclSpec().getAttributes().set(savedAttrs[0]);
for (unsigned i = 0, e = savedAttrs.size() - 1; i != e; ++i)
savedAttrs[i]->setNext(savedAttrs[i+1]);
savedAttrs.back()->setNext(nullptr);
}
};
}
static void spliceAttrIntoList(AttributeList &attr, AttributeList *&head) {
attr.setNext(head);
head = &attr;
}
static void spliceAttrOutOfList(AttributeList &attr, AttributeList *&head) {
if (head == &attr) {
head = attr.getNext();
return;
}
AttributeList *cur = head;
while (true) {
assert(cur && cur->getNext() && "ran out of attrs?");
if (cur->getNext() == &attr) {
cur->setNext(attr.getNext());
return;
}
cur = cur->getNext();
}
}
static void moveAttrFromListToList(AttributeList &attr,
AttributeList *&fromList,
AttributeList *&toList) {
spliceAttrOutOfList(attr, fromList);
spliceAttrIntoList(attr, toList);
}
/// The location of a type attribute.
enum TypeAttrLocation {
/// The attribute is in the decl-specifier-seq.
TAL_DeclSpec,
/// The attribute is part of a DeclaratorChunk.
TAL_DeclChunk,
/// The attribute is immediately after the declaration's name.
TAL_DeclName
};
static void processTypeAttrs(TypeProcessingState &state,
QualType &type, TypeAttrLocation TAL,
AttributeList *attrs);
static bool handleFunctionTypeAttr(TypeProcessingState &state,
AttributeList &attr,
QualType &type);
static bool handleMSPointerTypeQualifierAttr(TypeProcessingState &state,
AttributeList &attr,
QualType &type);
static bool handleObjCGCTypeAttr(TypeProcessingState &state,
AttributeList &attr, QualType &type);
static bool handleObjCOwnershipTypeAttr(TypeProcessingState &state,
AttributeList &attr, QualType &type);
static bool handleObjCPointerTypeAttr(TypeProcessingState &state,
AttributeList &attr, QualType &type) {
if (attr.getKind() == AttributeList::AT_ObjCGC)
return handleObjCGCTypeAttr(state, attr, type);
assert(attr.getKind() == AttributeList::AT_ObjCOwnership);
return handleObjCOwnershipTypeAttr(state, attr, type);
}
/// Given the index of a declarator chunk, check whether that chunk
/// directly specifies the return type of a function and, if so, find
/// an appropriate place for it.
///
/// \param i - a notional index which the search will start
/// immediately inside
///
/// \param onlyBlockPointers Whether we should only look into block
/// pointer types (vs. all pointer types).
static DeclaratorChunk *maybeMovePastReturnType(Declarator &declarator,
unsigned i,
bool onlyBlockPointers) {
assert(i <= declarator.getNumTypeObjects());
DeclaratorChunk *result = nullptr;
// First, look inwards past parens for a function declarator.
for (; i != 0; --i) {
DeclaratorChunk &fnChunk = declarator.getTypeObject(i-1);
switch (fnChunk.Kind) {
case DeclaratorChunk::Paren:
continue;
// If we find anything except a function, bail out.
case DeclaratorChunk::Pointer:
case DeclaratorChunk::BlockPointer:
case DeclaratorChunk::Array:
case DeclaratorChunk::Reference:
case DeclaratorChunk::MemberPointer:
return result;
// If we do find a function declarator, scan inwards from that,
// looking for a (block-)pointer declarator.
case DeclaratorChunk::Function:
for (--i; i != 0; --i) {
DeclaratorChunk &ptrChunk = declarator.getTypeObject(i-1);
switch (ptrChunk.Kind) {
case DeclaratorChunk::Paren:
case DeclaratorChunk::Array:
case DeclaratorChunk::Function:
case DeclaratorChunk::Reference:
continue;
case DeclaratorChunk::MemberPointer:
case DeclaratorChunk::Pointer:
if (onlyBlockPointers)
continue;
// fallthrough
case DeclaratorChunk::BlockPointer:
result = &ptrChunk;
goto continue_outer;
}
llvm_unreachable("bad declarator chunk kind");
}
// If we run out of declarators doing that, we're done.
return result;
}
llvm_unreachable("bad declarator chunk kind");
// Okay, reconsider from our new point.
continue_outer: ;
}
// Ran out of chunks, bail out.
return result;
}
/// Given that an objc_gc attribute was written somewhere on a
/// declaration *other* than on the declarator itself (for which, use
/// distributeObjCPointerTypeAttrFromDeclarator), and given that it
/// didn't apply in whatever position it was written in, try to move
/// it to a more appropriate position.
static void distributeObjCPointerTypeAttr(TypeProcessingState &state,
AttributeList &attr,
QualType type) {
Declarator &declarator = state.getDeclarator();
// Move it to the outermost normal or block pointer declarator.
for (unsigned i = state.getCurrentChunkIndex(); i != 0; --i) {
DeclaratorChunk &chunk = declarator.getTypeObject(i-1);
switch (chunk.Kind) {
case DeclaratorChunk::Pointer:
case DeclaratorChunk::BlockPointer: {
// But don't move an ARC ownership attribute to the return type
// of a block.
DeclaratorChunk *destChunk = nullptr;
if (state.isProcessingDeclSpec() &&
attr.getKind() == AttributeList::AT_ObjCOwnership)
destChunk = maybeMovePastReturnType(declarator, i - 1,
/*onlyBlockPointers=*/true);
if (!destChunk) destChunk = &chunk;
moveAttrFromListToList(attr, state.getCurrentAttrListRef(),
destChunk->getAttrListRef());
return;
}
case DeclaratorChunk::Paren:
case DeclaratorChunk::Array:
continue;
// We may be starting at the return type of a block.
case DeclaratorChunk::Function:
if (state.isProcessingDeclSpec() &&
attr.getKind() == AttributeList::AT_ObjCOwnership) {
if (DeclaratorChunk *dest = maybeMovePastReturnType(
declarator, i,
/*onlyBlockPointers=*/true)) {
moveAttrFromListToList(attr, state.getCurrentAttrListRef(),
dest->getAttrListRef());
return;
}
}
goto error;
// Don't walk through these.
case DeclaratorChunk::Reference:
case DeclaratorChunk::MemberPointer:
goto error;
}
}
error:
diagnoseBadTypeAttribute(state.getSema(), attr, type);
}
/// Distribute an objc_gc type attribute that was written on the
/// declarator.
static void
distributeObjCPointerTypeAttrFromDeclarator(TypeProcessingState &state,
AttributeList &attr,
QualType &declSpecType) {
Declarator &declarator = state.getDeclarator();
// objc_gc goes on the innermost pointer to something that's not a
// pointer.
unsigned innermost = -1U;
bool considerDeclSpec = true;
for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) {
DeclaratorChunk &chunk = declarator.getTypeObject(i);
switch (chunk.Kind) {
case DeclaratorChunk::Pointer:
case DeclaratorChunk::BlockPointer:
innermost = i;
continue;
case DeclaratorChunk::Reference:
case DeclaratorChunk::MemberPointer:
case DeclaratorChunk::Paren:
case DeclaratorChunk::Array:
continue;
case DeclaratorChunk::Function:
considerDeclSpec = false;
goto done;
}
}
done:
// That might actually be the decl spec if we weren't blocked by
// anything in the declarator.
if (considerDeclSpec) {
if (handleObjCPointerTypeAttr(state, attr, declSpecType)) {
// Splice the attribute into the decl spec. Prevents the
// attribute from being applied multiple times and gives
// the source-location-filler something to work with.
state.saveDeclSpecAttrs();
moveAttrFromListToList(attr, declarator.getAttrListRef(),
declarator.getMutableDeclSpec().getAttributes().getListRef());
return;
}
}
// Otherwise, if we found an appropriate chunk, splice the attribute
// into it.
if (innermost != -1U) {
moveAttrFromListToList(attr, declarator.getAttrListRef(),
declarator.getTypeObject(innermost).getAttrListRef());
return;
}
// Otherwise, diagnose when we're done building the type.
spliceAttrOutOfList(attr, declarator.getAttrListRef());
state.addIgnoredTypeAttr(attr);
}
/// A function type attribute was written somewhere in a declaration
/// *other* than on the declarator itself or in the decl spec. Given
/// that it didn't apply in whatever position it was written in, try
/// to move it to a more appropriate position.
static void distributeFunctionTypeAttr(TypeProcessingState &state,
AttributeList &attr,
QualType type) {
Declarator &declarator = state.getDeclarator();
// Try to push the attribute from the return type of a function to
// the function itself.
for (unsigned i = state.getCurrentChunkIndex(); i != 0; --i) {
DeclaratorChunk &chunk = declarator.getTypeObject(i-1);
switch (chunk.Kind) {
case DeclaratorChunk::Function:
moveAttrFromListToList(attr, state.getCurrentAttrListRef(),
chunk.getAttrListRef());
return;
case DeclaratorChunk::Paren:
case DeclaratorChunk::Pointer:
case DeclaratorChunk::BlockPointer:
case DeclaratorChunk::Array:
case DeclaratorChunk::Reference:
case DeclaratorChunk::MemberPointer:
continue;
}
}
diagnoseBadTypeAttribute(state.getSema(), attr, type);
}
/// Try to distribute a function type attribute to the innermost
/// function chunk or type. Returns true if the attribute was
/// distributed, false if no location was found.
static bool
distributeFunctionTypeAttrToInnermost(TypeProcessingState &state,
AttributeList &attr,
AttributeList *&attrList,
QualType &declSpecType) {
Declarator &declarator = state.getDeclarator();
// Put it on the innermost function chunk, if there is one.
for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) {
DeclaratorChunk &chunk = declarator.getTypeObject(i);
if (chunk.Kind != DeclaratorChunk::Function) continue;
moveAttrFromListToList(attr, attrList, chunk.getAttrListRef());
return true;
}
return handleFunctionTypeAttr(state, attr, declSpecType);
}
/// A function type attribute was written in the decl spec. Try to
/// apply it somewhere.
static void
distributeFunctionTypeAttrFromDeclSpec(TypeProcessingState &state,
AttributeList &attr,
QualType &declSpecType) {
state.saveDeclSpecAttrs();
// C++11 attributes before the decl specifiers actually appertain to
// the declarators. Move them straight there. We don't support the
// 'put them wherever you like' semantics we allow for GNU attributes.
if (attr.isCXX11Attribute()) {
moveAttrFromListToList(attr, state.getCurrentAttrListRef(),
state.getDeclarator().getAttrListRef());
return;
}
// Try to distribute to the innermost.
if (distributeFunctionTypeAttrToInnermost(state, attr,
state.getCurrentAttrListRef(),
declSpecType))
return;
// If that failed, diagnose the bad attribute when the declarator is
// fully built.
state.addIgnoredTypeAttr(attr);
}
/// A function type attribute was written on the declarator. Try to
/// apply it somewhere.
static void
distributeFunctionTypeAttrFromDeclarator(TypeProcessingState &state,
AttributeList &attr,
QualType &declSpecType) {
Declarator &declarator = state.getDeclarator();
// Try to distribute to the innermost.
if (distributeFunctionTypeAttrToInnermost(state, attr,
declarator.getAttrListRef(),
declSpecType))
return;
// If that failed, diagnose the bad attribute when the declarator is
// fully built.
spliceAttrOutOfList(attr, declarator.getAttrListRef());
state.addIgnoredTypeAttr(attr);
}
/// \brief Given that there are attributes written on the declarator
/// itself, try to distribute any type attributes to the appropriate
/// declarator chunk.
///
/// These are attributes like the following:
/// int f ATTR;
/// int (f ATTR)();
/// but not necessarily this:
/// int f() ATTR;
static void distributeTypeAttrsFromDeclarator(TypeProcessingState &state,
QualType &declSpecType) {
// Collect all the type attributes from the declarator itself.
assert(state.getDeclarator().getAttributes() && "declarator has no attrs!");
AttributeList *attr = state.getDeclarator().getAttributes();
AttributeList *next;
do {
next = attr->getNext();
// Do not distribute C++11 attributes. They have strict rules for what
// they appertain to.
if (attr->isCXX11Attribute())
continue;
switch (attr->getKind()) {
OBJC_POINTER_TYPE_ATTRS_CASELIST:
distributeObjCPointerTypeAttrFromDeclarator(state, *attr, declSpecType);
break;
case AttributeList::AT_NSReturnsRetained:
if (!state.getSema().getLangOpts().ObjCAutoRefCount)
break;
// fallthrough
FUNCTION_TYPE_ATTRS_CASELIST:
distributeFunctionTypeAttrFromDeclarator(state, *attr, declSpecType);
break;
MS_TYPE_ATTRS_CASELIST:
// Microsoft type attributes cannot go after the declarator-id.
continue;
NULLABILITY_TYPE_ATTRS_CASELIST:
// Nullability specifiers cannot go after the declarator-id.
// Objective-C __kindof does not get distributed.
case AttributeList::AT_ObjCKindOf:
continue;
default:
break;
}
} while ((attr = next));
}
/// Add a synthetic '()' to a block-literal declarator if it is
/// required, given the return type.
static void maybeSynthesizeBlockSignature(TypeProcessingState &state,
QualType declSpecType) {
Declarator &declarator = state.getDeclarator();
// First, check whether the declarator would produce a function,
// i.e. whether the innermost semantic chunk is a function.
if (declarator.isFunctionDeclarator()) {
// If so, make that declarator a prototyped declarator.
declarator.getFunctionTypeInfo().hasPrototype = true;
return;
}
// If there are any type objects, the type as written won't name a
// function, regardless of the decl spec type. This is because a
// block signature declarator is always an abstract-declarator, and
// abstract-declarators can't just be parentheses chunks. Therefore
// we need to build a function chunk unless there are no type
// objects and the decl spec type is a function.
if (!declarator.getNumTypeObjects() && declSpecType->isFunctionType())
return;
// Note that there *are* cases with invalid declarators where
// declarators consist solely of parentheses. In general, these
// occur only in failed efforts to make function declarators, so
// faking up the function chunk is still the right thing to do.
// Otherwise, we need to fake up a function declarator.
SourceLocation loc = declarator.getLocStart();
// ...and *prepend* it to the declarator.
SourceLocation NoLoc;
declarator.AddInnermostTypeInfo(DeclaratorChunk::getFunction(
/*HasProto=*/true,
/*IsAmbiguous=*/false,
/*LParenLoc=*/NoLoc,
/*ArgInfo=*/nullptr,
/*NumArgs=*/0,
/*EllipsisLoc=*/NoLoc,
/*RParenLoc=*/NoLoc,
/*TypeQuals=*/0,
/*RefQualifierIsLvalueRef=*/true,
/*RefQualifierLoc=*/NoLoc,
/*ConstQualifierLoc=*/NoLoc,
/*VolatileQualifierLoc=*/NoLoc,
/*RestrictQualifierLoc=*/NoLoc,
/*MutableLoc=*/NoLoc, EST_None,
/*ESpecRange=*/SourceRange(),
/*Exceptions=*/nullptr,
/*ExceptionRanges=*/nullptr,
/*NumExceptions=*/0,
/*NoexceptExpr=*/nullptr,
/*ExceptionSpecTokens=*/nullptr,
loc, loc, declarator));
// For consistency, make sure the state still has us as processing
// the decl spec.
assert(state.getCurrentChunkIndex() == declarator.getNumTypeObjects() - 1);
state.setCurrentChunkIndex(declarator.getNumTypeObjects());
}
static void diagnoseAndRemoveTypeQualifiers(Sema &S, const DeclSpec &DS,
unsigned &TypeQuals,
QualType TypeSoFar,
unsigned RemoveTQs,
unsigned DiagID) {
// If this occurs outside a template instantiation, warn the user about
// it; they probably didn't mean to specify a redundant qualifier.
typedef std::pair<DeclSpec::TQ, SourceLocation> QualLoc;
for (QualLoc Qual : {QualLoc(DeclSpec::TQ_const, DS.getConstSpecLoc()),
QualLoc(DeclSpec::TQ_volatile, DS.getVolatileSpecLoc()),
QualLoc(DeclSpec::TQ_atomic, DS.getAtomicSpecLoc())}) {
if (!(RemoveTQs & Qual.first))
continue;
if (S.ActiveTemplateInstantiations.empty()) {
if (TypeQuals & Qual.first)
S.Diag(Qual.second, DiagID)
<< DeclSpec::getSpecifierName(Qual.first) << TypeSoFar
<< FixItHint::CreateRemoval(Qual.second);
}
TypeQuals &= ~Qual.first;
}
}
/// Apply Objective-C type arguments to the given type.
static QualType applyObjCTypeArgs(Sema &S, SourceLocation loc, QualType type,
ArrayRef<TypeSourceInfo *> typeArgs,
SourceRange typeArgsRange,
bool failOnError = false) {
// We can only apply type arguments to an Objective-C class type.
const auto *objcObjectType = type->getAs<ObjCObjectType>();
if (!objcObjectType || !objcObjectType->getInterface()) {
S.Diag(loc, diag::err_objc_type_args_non_class)
<< type
<< typeArgsRange;
if (failOnError)
return QualType();
return type;
}
// The class type must be parameterized.
ObjCInterfaceDecl *objcClass = objcObjectType->getInterface();
ObjCTypeParamList *typeParams = objcClass->getTypeParamList();
if (!typeParams) {
S.Diag(loc, diag::err_objc_type_args_non_parameterized_class)
<< objcClass->getDeclName()
<< FixItHint::CreateRemoval(typeArgsRange);
if (failOnError)
return QualType();
return type;
}
// The type must not already be specialized.
if (objcObjectType->isSpecialized()) {
S.Diag(loc, diag::err_objc_type_args_specialized_class)
<< type
<< FixItHint::CreateRemoval(typeArgsRange);
if (failOnError)
return QualType();
return type;
}
// Check the type arguments.
SmallVector<QualType, 4> finalTypeArgs;
unsigned numTypeParams = typeParams->size();
bool anyPackExpansions = false;
for (unsigned i = 0, n = typeArgs.size(); i != n; ++i) {
TypeSourceInfo *typeArgInfo = typeArgs[i];
QualType typeArg = typeArgInfo->getType();
// Type arguments cannot have explicit qualifiers or nullability.
// We ignore indirect sources of these, e.g. behind typedefs or
// template arguments.
if (TypeLoc qual = typeArgInfo->getTypeLoc().findExplicitQualifierLoc()) {
bool diagnosed = false;
SourceRange rangeToRemove;
if (auto attr = qual.getAs<AttributedTypeLoc>()) {
rangeToRemove = attr.getLocalSourceRange();
if (attr.getTypePtr()->getImmediateNullability()) {
typeArg = attr.getTypePtr()->getModifiedType();
S.Diag(attr.getLocStart(),
diag::err_objc_type_arg_explicit_nullability)
<< typeArg << FixItHint::CreateRemoval(rangeToRemove);
diagnosed = true;
}
}
if (!diagnosed) {
S.Diag(qual.getLocStart(), diag::err_objc_type_arg_qualified)
<< typeArg << typeArg.getQualifiers().getAsString()
<< FixItHint::CreateRemoval(rangeToRemove);
}
}
// Remove qualifiers even if they're non-local.
typeArg = typeArg.getUnqualifiedType();
finalTypeArgs.push_back(typeArg);
if (typeArg->getAs<PackExpansionType>())
anyPackExpansions = true;
// Find the corresponding type parameter, if there is one.
ObjCTypeParamDecl *typeParam = nullptr;
if (!anyPackExpansions) {
if (i < numTypeParams) {
typeParam = typeParams->begin()[i];
} else {
// Too many arguments.
S.Diag(loc, diag::err_objc_type_args_wrong_arity)
<< false
<< objcClass->getDeclName()
<< (unsigned)typeArgs.size()
<< numTypeParams;
S.Diag(objcClass->getLocation(), diag::note_previous_decl)
<< objcClass;
if (failOnError)
return QualType();
return type;
}
}
// Objective-C object pointer types must be substitutable for the bounds.
if (const auto *typeArgObjC = typeArg->getAs<ObjCObjectPointerType>()) {
// If we don't have a type parameter to match against, assume
// everything is fine. There was a prior pack expansion that
// means we won't be able to match anything.
if (!typeParam) {
assert(anyPackExpansions && "Too many arguments?");
continue;
}
// Retrieve the bound.
QualType bound = typeParam->getUnderlyingType();
const auto *boundObjC = bound->getAs<ObjCObjectPointerType>();
// Determine whether the type argument is substitutable for the bound.
if (typeArgObjC->isObjCIdType()) {
// When the type argument is 'id', the only acceptable type
// parameter bound is 'id'.
if (boundObjC->isObjCIdType())
continue;
} else if (S.Context.canAssignObjCInterfaces(boundObjC, typeArgObjC)) {
// Otherwise, we follow the assignability rules.
continue;
}
// Diagnose the mismatch.
S.Diag(typeArgInfo->getTypeLoc().getLocStart(),
diag::err_objc_type_arg_does_not_match_bound)
<< typeArg << bound << typeParam->getDeclName();
S.Diag(typeParam->getLocation(), diag::note_objc_type_param_here)
<< typeParam->getDeclName();
if (failOnError)
return QualType();
return type;
}
// Block pointer types are permitted for unqualified 'id' bounds.
if (typeArg->isBlockPointerType()) {
// If we don't have a type parameter to match against, assume
// everything is fine. There was a prior pack expansion that
// means we won't be able to match anything.
if (!typeParam) {
assert(anyPackExpansions && "Too many arguments?");
continue;
}
// Retrieve the bound.
QualType bound = typeParam->getUnderlyingType();
if (bound->isBlockCompatibleObjCPointerType(S.Context))
continue;
// Diagnose the mismatch.
S.Diag(typeArgInfo->getTypeLoc().getLocStart(),
diag::err_objc_type_arg_does_not_match_bound)
<< typeArg << bound << typeParam->getDeclName();
S.Diag(typeParam->getLocation(), diag::note_objc_type_param_here)
<< typeParam->getDeclName();
if (failOnError)
return QualType();
return type;
}
// Dependent types will be checked at instantiation time.
if (typeArg->isDependentType()) {
continue;
}
// Diagnose non-id-compatible type arguments.
S.Diag(typeArgInfo->getTypeLoc().getLocStart(),
diag::err_objc_type_arg_not_id_compatible)
<< typeArg
<< typeArgInfo->getTypeLoc().getSourceRange();
if (failOnError)
return QualType();
return type;
}
// Make sure we didn't have the wrong number of arguments.
if (!anyPackExpansions && finalTypeArgs.size() != numTypeParams) {
S.Diag(loc, diag::err_objc_type_args_wrong_arity)
<< (typeArgs.size() < typeParams->size())
<< objcClass->getDeclName()
<< (unsigned)finalTypeArgs.size()
<< (unsigned)numTypeParams;
S.Diag(objcClass->getLocation(), diag::note_previous_decl)
<< objcClass;
if (failOnError)
return QualType();
return type;
}
// Success. Form the specialized type.
return S.Context.getObjCObjectType(type, finalTypeArgs, { }, false);
}
/// Apply Objective-C protocol qualifiers to the given type.
static QualType applyObjCProtocolQualifiers(
Sema &S, SourceLocation loc, SourceRange range, QualType type,
ArrayRef<ObjCProtocolDecl *> protocols,
const SourceLocation *protocolLocs,
bool failOnError = false) {
ASTContext &ctx = S.Context;
if (const ObjCObjectType *objT = dyn_cast<ObjCObjectType>(type.getTypePtr())){
// FIXME: Check for protocols to which the class type is already
// known to conform.
return ctx.getObjCObjectType(objT->getBaseType(),
objT->getTypeArgsAsWritten(),
protocols,
objT->isKindOfTypeAsWritten());
}
if (type->isObjCObjectType()) {
// Silently overwrite any existing protocol qualifiers.
// TODO: determine whether that's the right thing to do.
// FIXME: Check for protocols to which the class type is already
// known to conform.
return ctx.getObjCObjectType(type, { }, protocols, false);
}
// id<protocol-list>
if (type->isObjCIdType()) {
const ObjCObjectPointerType *objPtr = type->castAs<ObjCObjectPointerType>();
type = ctx.getObjCObjectType(ctx.ObjCBuiltinIdTy, { }, protocols,
objPtr->isKindOfType());
return ctx.getObjCObjectPointerType(type);
}
// Class<protocol-list>
if (type->isObjCClassType()) {
const ObjCObjectPointerType *objPtr = type->castAs<ObjCObjectPointerType>();
type = ctx.getObjCObjectType(ctx.ObjCBuiltinClassTy, { }, protocols,
objPtr->isKindOfType());
return ctx.getObjCObjectPointerType(type);
}
S.Diag(loc, diag::err_invalid_protocol_qualifiers)
<< range;
if (failOnError)
return QualType();
return type;
}
QualType Sema::BuildObjCObjectType(QualType BaseType,
SourceLocation Loc,
SourceLocation TypeArgsLAngleLoc,
ArrayRef<TypeSourceInfo *> TypeArgs,
SourceLocation TypeArgsRAngleLoc,
SourceLocation ProtocolLAngleLoc,
ArrayRef<ObjCProtocolDecl *> Protocols,
ArrayRef<SourceLocation> ProtocolLocs,
SourceLocation ProtocolRAngleLoc,
bool FailOnError) {
QualType Result = BaseType;
if (!TypeArgs.empty()) {
Result = applyObjCTypeArgs(*this, Loc, Result, TypeArgs,
SourceRange(TypeArgsLAngleLoc,
TypeArgsRAngleLoc),
FailOnError);
if (FailOnError && Result.isNull())
return QualType();
}
if (!Protocols.empty()) {
Result = applyObjCProtocolQualifiers(*this, Loc,
SourceRange(ProtocolLAngleLoc,
ProtocolRAngleLoc),
Result, Protocols,
ProtocolLocs.data(),
FailOnError);
if (FailOnError && Result.isNull())
return QualType();
}
return Result;
}
TypeResult Sema::actOnObjCProtocolQualifierType(
SourceLocation lAngleLoc,
ArrayRef<Decl *> protocols,
ArrayRef<SourceLocation> protocolLocs,
SourceLocation rAngleLoc) {
// Form id<protocol-list>.
QualType Result = Context.getObjCObjectType(
Context.ObjCBuiltinIdTy, { },
llvm::makeArrayRef(
(ObjCProtocolDecl * const *)protocols.data(),
protocols.size()),
false);
Result = Context.getObjCObjectPointerType(Result);
TypeSourceInfo *ResultTInfo = Context.CreateTypeSourceInfo(Result);
TypeLoc ResultTL = ResultTInfo->getTypeLoc();
auto ObjCObjectPointerTL = ResultTL.castAs<ObjCObjectPointerTypeLoc>();
ObjCObjectPointerTL.setStarLoc(SourceLocation()); // implicit
auto ObjCObjectTL = ObjCObjectPointerTL.getPointeeLoc()
.castAs<ObjCObjectTypeLoc>();
ObjCObjectTL.setHasBaseTypeAsWritten(false);
ObjCObjectTL.getBaseLoc().initialize(Context, SourceLocation());
// No type arguments.
ObjCObjectTL.setTypeArgsLAngleLoc(SourceLocation());
ObjCObjectTL.setTypeArgsRAngleLoc(SourceLocation());
// Fill in protocol qualifiers.
ObjCObjectTL.setProtocolLAngleLoc(lAngleLoc);
ObjCObjectTL.setProtocolRAngleLoc(rAngleLoc);
for (unsigned i = 0, n = protocols.size(); i != n; ++i)
ObjCObjectTL.setProtocolLoc(i, protocolLocs[i]);
// We're done. Return the completed type to the parser.
return CreateParsedType(Result, ResultTInfo);
}
TypeResult Sema::actOnObjCTypeArgsAndProtocolQualifiers(
Scope *S,
SourceLocation Loc,
ParsedType BaseType,
SourceLocation TypeArgsLAngleLoc,
ArrayRef<ParsedType> TypeArgs,
SourceLocation TypeArgsRAngleLoc,
SourceLocation ProtocolLAngleLoc,
ArrayRef<Decl *> Protocols,
ArrayRef<SourceLocation> ProtocolLocs,
SourceLocation ProtocolRAngleLoc) {
TypeSourceInfo *BaseTypeInfo = nullptr;
QualType T = GetTypeFromParser(BaseType, &BaseTypeInfo);
if (T.isNull())
return true;
// Handle missing type-source info.
if (!BaseTypeInfo)
BaseTypeInfo = Context.getTrivialTypeSourceInfo(T, Loc);
// Extract type arguments.
SmallVector<TypeSourceInfo *, 4> ActualTypeArgInfos;
for (unsigned i = 0, n = TypeArgs.size(); i != n; ++i) {
TypeSourceInfo *TypeArgInfo = nullptr;
QualType TypeArg = GetTypeFromParser(TypeArgs[i], &TypeArgInfo);
if (TypeArg.isNull()) {
ActualTypeArgInfos.clear();
break;
}
assert(TypeArgInfo && "No type source info?");
ActualTypeArgInfos.push_back(TypeArgInfo);
}
// Build the object type.
QualType Result = BuildObjCObjectType(
T, BaseTypeInfo->getTypeLoc().getSourceRange().getBegin(),
TypeArgsLAngleLoc, ActualTypeArgInfos, TypeArgsRAngleLoc,
ProtocolLAngleLoc,
llvm::makeArrayRef((ObjCProtocolDecl * const *)Protocols.data(),
Protocols.size()),
ProtocolLocs, ProtocolRAngleLoc,
/*FailOnError=*/false);
if (Result == T)
return BaseType;
// Create source information for this type.
TypeSourceInfo *ResultTInfo = Context.CreateTypeSourceInfo(Result);
TypeLoc ResultTL = ResultTInfo->getTypeLoc();
// For id<Proto1, Proto2> or Class<Proto1, Proto2>, we'll have an
// object pointer type. Fill in source information for it.
if (auto ObjCObjectPointerTL = ResultTL.getAs<ObjCObjectPointerTypeLoc>()) {
// The '*' is implicit.
ObjCObjectPointerTL.setStarLoc(SourceLocation());
ResultTL = ObjCObjectPointerTL.getPointeeLoc();
}
auto ObjCObjectTL = ResultTL.castAs<ObjCObjectTypeLoc>();
// Type argument information.
if (ObjCObjectTL.getNumTypeArgs() > 0) {
assert(ObjCObjectTL.getNumTypeArgs() == ActualTypeArgInfos.size());
ObjCObjectTL.setTypeArgsLAngleLoc(TypeArgsLAngleLoc);
ObjCObjectTL.setTypeArgsRAngleLoc(TypeArgsRAngleLoc);
for (unsigned i = 0, n = ActualTypeArgInfos.size(); i != n; ++i)
ObjCObjectTL.setTypeArgTInfo(i, ActualTypeArgInfos[i]);
} else {
ObjCObjectTL.setTypeArgsLAngleLoc(SourceLocation());
ObjCObjectTL.setTypeArgsRAngleLoc(SourceLocation());
}
// Protocol qualifier information.
if (ObjCObjectTL.getNumProtocols() > 0) {
assert(ObjCObjectTL.getNumProtocols() == Protocols.size());
ObjCObjectTL.setProtocolLAngleLoc(ProtocolLAngleLoc);
ObjCObjectTL.setProtocolRAngleLoc(ProtocolRAngleLoc);
for (unsigned i = 0, n = Protocols.size(); i != n; ++i)
ObjCObjectTL.setProtocolLoc(i, ProtocolLocs[i]);
} else {
ObjCObjectTL.setProtocolLAngleLoc(SourceLocation());
ObjCObjectTL.setProtocolRAngleLoc(SourceLocation());
}
// Base type.
ObjCObjectTL.setHasBaseTypeAsWritten(true);
if (ObjCObjectTL.getType() == T)
ObjCObjectTL.getBaseLoc().initializeFullCopy(BaseTypeInfo->getTypeLoc());
else
ObjCObjectTL.getBaseLoc().initialize(Context, Loc);
// We're done. Return the completed type to the parser.
return CreateParsedType(Result, ResultTInfo);
}
/// \brief Convert the specified declspec to the appropriate type
/// object.
/// \param state Specifies the declarator containing the declaration specifier
/// to be converted, along with other associated processing state.
/// \returns The type described by the declaration specifiers. This function
/// never returns null.
static QualType ConvertDeclSpecToType(TypeProcessingState &state) {
// FIXME: Should move the logic from DeclSpec::Finish to here for validity
// checking.
Sema &S = state.getSema();
Declarator &declarator = state.getDeclarator();
const DeclSpec &DS = declarator.getDeclSpec();
SourceLocation DeclLoc = declarator.getIdentifierLoc();
if (DeclLoc.isInvalid())
DeclLoc = DS.getLocStart();
ASTContext &Context = S.Context;
QualType Result;
switch (DS.getTypeSpecType()) {
case DeclSpec::TST_void:
Result = Context.VoidTy;
break;
case DeclSpec::TST_char:
if (DS.getTypeSpecSign() == DeclSpec::TSS_unspecified)
Result = Context.CharTy;
else if (DS.getTypeSpecSign() == DeclSpec::TSS_signed)
Result = Context.SignedCharTy;
else {
assert(DS.getTypeSpecSign() == DeclSpec::TSS_unsigned &&
"Unknown TSS value");
Result = Context.UnsignedCharTy;
}
break;
case DeclSpec::TST_wchar:
if (DS.getTypeSpecSign() == DeclSpec::TSS_unspecified)
Result = Context.WCharTy;
else if (DS.getTypeSpecSign() == DeclSpec::TSS_signed) {
S.Diag(DS.getTypeSpecSignLoc(), diag::ext_invalid_sign_spec)
<< DS.getSpecifierName(DS.getTypeSpecType(),
Context.getPrintingPolicy());
Result = Context.getSignedWCharType();
} else {
assert(DS.getTypeSpecSign() == DeclSpec::TSS_unsigned &&
"Unknown TSS value");
S.Diag(DS.getTypeSpecSignLoc(), diag::ext_invalid_sign_spec)
<< DS.getSpecifierName(DS.getTypeSpecType(),
Context.getPrintingPolicy());
Result = Context.getUnsignedWCharType();
}
break;
case DeclSpec::TST_char16:
assert(DS.getTypeSpecSign() == DeclSpec::TSS_unspecified &&
"Unknown TSS value");
Result = Context.Char16Ty;
break;
case DeclSpec::TST_char32:
assert(DS.getTypeSpecSign() == DeclSpec::TSS_unspecified &&
"Unknown TSS value");
Result = Context.Char32Ty;
break;
case DeclSpec::TST_unspecified:
// If this is a missing declspec in a block literal return context, then it
// is inferred from the return statements inside the block.
// The declspec is always missing in a lambda expr context; it is either
// specified with a trailing return type or inferred.
if (S.getLangOpts().CPlusPlus14 &&
declarator.getContext() == Declarator::LambdaExprContext) {
// In C++1y, a lambda's implicit return type is 'auto'.
Result = Context.getAutoDeductType();
break;
} else if (declarator.getContext() == Declarator::LambdaExprContext ||
isOmittedBlockReturnType(declarator)) {
Result = Context.DependentTy;
break;
}
// Unspecified typespec defaults to int in C90. However, the C90 grammar
// [C90 6.5] only allows a decl-spec if there was *some* type-specifier,
// type-qualifier, or storage-class-specifier. If not, emit an extwarn.
// Note that the one exception to this is function definitions, which are
// allowed to be completely missing a declspec. This is handled in the
// parser already though by it pretending to have seen an 'int' in this
// case.
if (S.getLangOpts().ImplicitInt) {
// In C89 mode, we only warn if there is a completely missing declspec
// when one is not allowed.
if (DS.isEmpty()) {
S.Diag(DeclLoc, diag::ext_missing_declspec)
<< DS.getSourceRange()
<< FixItHint::CreateInsertion(DS.getLocStart(), "int");
}
} else if (!DS.hasTypeSpecifier()) {
// C99 and C++ require a type specifier. For example, C99 6.7.2p2 says:
// "At least one type specifier shall be given in the declaration
// specifiers in each declaration, and in the specifier-qualifier list in
// each struct declaration and type name."
if (S.getLangOpts().CPlusPlus) {
S.Diag(DeclLoc, diag::err_missing_type_specifier)
<< DS.getSourceRange();
// When this occurs in C++ code, often something is very broken with the
// value being declared, poison it as invalid so we don't get chains of
// errors.
declarator.setInvalidType(true);
} else {
S.Diag(DeclLoc, diag::ext_missing_type_specifier)
<< DS.getSourceRange();
}
}
// FALL THROUGH.
case DeclSpec::TST_int: {
if (DS.getTypeSpecSign() != DeclSpec::TSS_unsigned) {
switch (DS.getTypeSpecWidth()) {
case DeclSpec::TSW_unspecified: Result = Context.IntTy; break;
case DeclSpec::TSW_short: Result = Context.ShortTy; break;
case DeclSpec::TSW_long: Result = Context.LongTy; break;
case DeclSpec::TSW_longlong:
Result = Context.LongLongTy;
// 'long long' is a C99 or C++11 feature.
if (!S.getLangOpts().C99) {
if (S.getLangOpts().CPlusPlus)
S.Diag(DS.getTypeSpecWidthLoc(),
S.getLangOpts().CPlusPlus11 ?
diag::warn_cxx98_compat_longlong : diag::ext_cxx11_longlong);
else
S.Diag(DS.getTypeSpecWidthLoc(), diag::ext_c99_longlong);
}
break;
}
} else {
switch (DS.getTypeSpecWidth()) {
case DeclSpec::TSW_unspecified: Result = Context.UnsignedIntTy; break;
case DeclSpec::TSW_short: Result = Context.UnsignedShortTy; break;
case DeclSpec::TSW_long: Result = Context.UnsignedLongTy; break;
case DeclSpec::TSW_longlong:
Result = Context.UnsignedLongLongTy;
// 'long long' is a C99 or C++11 feature.
if (!S.getLangOpts().C99) {
if (S.getLangOpts().CPlusPlus)
S.Diag(DS.getTypeSpecWidthLoc(),
S.getLangOpts().CPlusPlus11 ?
diag::warn_cxx98_compat_longlong : diag::ext_cxx11_longlong);
else
S.Diag(DS.getTypeSpecWidthLoc(), diag::ext_c99_longlong);
}
break;
}
}
break;
}
case DeclSpec::TST_int128:
if (!S.Context.getTargetInfo().hasInt128Type())
S.Diag(DS.getTypeSpecTypeLoc(), diag::err_int128_unsupported);
if (DS.getTypeSpecSign() == DeclSpec::TSS_unsigned)
Result = Context.UnsignedInt128Ty;
else
Result = Context.Int128Ty;
break;
case DeclSpec::TST_half: Result = Context.HalfTy; break;
case DeclSpec::TST_float: Result = Context.FloatTy; break;
case DeclSpec::TST_double:
if (DS.getTypeSpecWidth() == DeclSpec::TSW_long)
Result = Context.LongDoubleTy;
else
Result = Context.DoubleTy;
if (S.getLangOpts().OpenCL &&
!((S.getLangOpts().OpenCLVersion >= 120) ||
S.getOpenCLOptions().cl_khr_fp64)) {
S.Diag(DS.getTypeSpecTypeLoc(), diag::err_type_requires_extension)
<< Result << "cl_khr_fp64";
declarator.setInvalidType(true);
}
break;
case DeclSpec::TST_bool: Result = Context.BoolTy; break; // _Bool or bool
case DeclSpec::TST_decimal32: // _Decimal32
case DeclSpec::TST_decimal64: // _Decimal64
case DeclSpec::TST_decimal128: // _Decimal128
S.Diag(DS.getTypeSpecTypeLoc(), diag::err_decimal_unsupported);
Result = Context.IntTy;
declarator.setInvalidType(true);
break;
case DeclSpec::TST_class:
case DeclSpec::TST_enum:
case DeclSpec::TST_union:
case DeclSpec::TST_struct:
case DeclSpec::TST_interface: {
TypeDecl *D = dyn_cast_or_null<TypeDecl>(DS.getRepAsDecl());
if (!D) {
// This can happen in C++ with ambiguous lookups.
Result = Context.IntTy;
declarator.setInvalidType(true);
break;
}
// If the type is deprecated or unavailable, diagnose it.
S.DiagnoseUseOfDecl(D, DS.getTypeSpecTypeNameLoc());
assert(DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex() == 0 &&
DS.getTypeSpecSign() == 0 && "No qualifiers on tag names!");
// TypeQuals handled by caller.
Result = Context.getTypeDeclType(D);
// In both C and C++, make an ElaboratedType.
ElaboratedTypeKeyword Keyword
= ElaboratedType::getKeywordForTypeSpec(DS.getTypeSpecType());
Result = S.getElaboratedType(Keyword, DS.getTypeSpecScope(), Result);
break;
}
case DeclSpec::TST_typename: {
assert(DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex() == 0 &&
DS.getTypeSpecSign() == 0 &&
"Can't handle qualifiers on typedef names yet!");
Result = S.GetTypeFromParser(DS.getRepAsType());
if (Result.isNull()) {
declarator.setInvalidType(true);
} else if (S.getLangOpts().OpenCL) {
if (Result->getAs<AtomicType>()) {
StringRef TypeName = Result.getBaseTypeIdentifier()->getName();
bool NoExtTypes =
llvm::StringSwitch<bool>(TypeName)
.Cases("atomic_int", "atomic_uint", "atomic_float",
"atomic_flag", true)
.Default(false);
if (!S.getOpenCLOptions().cl_khr_int64_base_atomics && !NoExtTypes) {
S.Diag(DS.getTypeSpecTypeLoc(), diag::err_type_requires_extension)
<< Result << "cl_khr_int64_base_atomics";
declarator.setInvalidType(true);
}
if (!S.getOpenCLOptions().cl_khr_int64_extended_atomics &&
!NoExtTypes) {
S.Diag(DS.getTypeSpecTypeLoc(), diag::err_type_requires_extension)
<< Result << "cl_khr_int64_extended_atomics";
declarator.setInvalidType(true);
}
if (!S.getOpenCLOptions().cl_khr_fp64 &&
!TypeName.compare("atomic_double")) {
S.Diag(DS.getTypeSpecTypeLoc(), diag::err_type_requires_extension)
<< Result << "cl_khr_fp64";
declarator.setInvalidType(true);
}
} else if (!S.getOpenCLOptions().cl_khr_gl_msaa_sharing &&
(Result->isImage2dMSAAT() || Result->isImage2dArrayMSAAT() ||
Result->isImage2dArrayMSAATDepth() ||
Result->isImage2dMSAATDepth())) {
S.Diag(DS.getTypeSpecTypeLoc(), diag::err_type_requires_extension)
<< Result << "cl_khr_gl_msaa_sharing";
declarator.setInvalidType(true);
}
}
// TypeQuals handled by caller.
break;
}
case DeclSpec::TST_typeofType:
// FIXME: Preserve type source info.
Result = S.GetTypeFromParser(DS.getRepAsType());
assert(!Result.isNull() && "Didn't get a type for typeof?");
if (!Result->isDependentType())
if (const TagType *TT = Result->getAs<TagType>())
S.DiagnoseUseOfDecl(TT->getDecl(), DS.getTypeSpecTypeLoc());
// TypeQuals handled by caller.
Result = Context.getTypeOfType(Result);
break;
case DeclSpec::TST_typeofExpr: {
Expr *E = DS.getRepAsExpr();
assert(E && "Didn't get an expression for typeof?");
// TypeQuals handled by caller.
Result = S.BuildTypeofExprType(E, DS.getTypeSpecTypeLoc());
if (Result.isNull()) {
Result = Context.IntTy;
declarator.setInvalidType(true);
}
break;
}
case DeclSpec::TST_decltype: {
Expr *E = DS.getRepAsExpr();
assert(E && "Didn't get an expression for decltype?");
// TypeQuals handled by caller.
Result = S.BuildDecltypeType(E, DS.getTypeSpecTypeLoc());
if (Result.isNull()) {
Result = Context.IntTy;
declarator.setInvalidType(true);
}
break;
}
case DeclSpec::TST_underlyingType:
Result = S.GetTypeFromParser(DS.getRepAsType());
assert(!Result.isNull() && "Didn't get a type for __underlying_type?");
Result = S.BuildUnaryTransformType(Result,
UnaryTransformType::EnumUnderlyingType,
DS.getTypeSpecTypeLoc());
if (Result.isNull()) {
Result = Context.IntTy;
declarator.setInvalidType(true);
}
break;
case DeclSpec::TST_auto:
// TypeQuals handled by caller.
// If auto is mentioned in a lambda parameter context, convert it to a
// template parameter type immediately, with the appropriate depth and
// index, and update sema's state (LambdaScopeInfo) for the current lambda
// being analyzed (which tracks the invented type template parameter).
if (declarator.getContext() == Declarator::LambdaExprParameterContext) {
sema::LambdaScopeInfo *LSI = S.getCurLambda();
assert(LSI && "No LambdaScopeInfo on the stack!");
const unsigned TemplateParameterDepth = LSI->AutoTemplateParameterDepth;
const unsigned AutoParameterPosition = LSI->AutoTemplateParams.size();
const bool IsParameterPack = declarator.hasEllipsis();
// Turns out we must create the TemplateTypeParmDecl here to
// retrieve the corresponding template parameter type.
TemplateTypeParmDecl *CorrespondingTemplateParam =
TemplateTypeParmDecl::Create(Context,
// Temporarily add to the TranslationUnit DeclContext. When the
// associated TemplateParameterList is attached to a template
// declaration (such as FunctionTemplateDecl), the DeclContext
// for each template parameter gets updated appropriately via
// a call to AdoptTemplateParameterList.
Context.getTranslationUnitDecl(),
/*KeyLoc*/ SourceLocation(),
/*NameLoc*/ declarator.getLocStart(),
TemplateParameterDepth,
AutoParameterPosition, // our template param index
/* Identifier*/ nullptr, false, IsParameterPack);
LSI->AutoTemplateParams.push_back(CorrespondingTemplateParam);
// Replace the 'auto' in the function parameter with this invented
// template type parameter.
Result = QualType(CorrespondingTemplateParam->getTypeForDecl(), 0);
} else {
Result = Context.getAutoType(QualType(), /*decltype(auto)*/false, false);
}
break;
case DeclSpec::TST_decltype_auto:
Result = Context.getAutoType(QualType(),
/*decltype(auto)*/true,
/*IsDependent*/ false);
break;
case DeclSpec::TST_unknown_anytype:
Result = Context.UnknownAnyTy;
break;
case DeclSpec::TST_atomic:
Result = S.GetTypeFromParser(DS.getRepAsType());
assert(!Result.isNull() && "Didn't get a type for _Atomic?");
Result = S.BuildAtomicType(Result, DS.getTypeSpecTypeLoc());
if (Result.isNull()) {
Result = Context.IntTy;
declarator.setInvalidType(true);
}
break;
case DeclSpec::TST_error:
Result = Context.IntTy;
declarator.setInvalidType(true);
break;
}
// Handle complex types.
if (DS.getTypeSpecComplex() == DeclSpec::TSC_complex) {
if (S.getLangOpts().Freestanding)
S.Diag(DS.getTypeSpecComplexLoc(), diag::ext_freestanding_complex);
Result = Context.getComplexType(Result);
} else if (DS.isTypeAltiVecVector()) {
unsigned typeSize = static_cast<unsigned>(Context.getTypeSize(Result));
assert(typeSize > 0 && "type size for vector must be greater than 0 bits");
VectorType::VectorKind VecKind = VectorType::AltiVecVector;
if (DS.isTypeAltiVecPixel())
VecKind = VectorType::AltiVecPixel;
else if (DS.isTypeAltiVecBool())
VecKind = VectorType::AltiVecBool;
Result = Context.getVectorType(Result, 128/typeSize, VecKind);
}
// FIXME: Imaginary.
if (DS.getTypeSpecComplex() == DeclSpec::TSC_imaginary)
S.Diag(DS.getTypeSpecComplexLoc(), diag::err_imaginary_not_supported);
// Before we process any type attributes, synthesize a block literal
// function declarator if necessary.
if (declarator.getContext() == Declarator::BlockLiteralContext)
maybeSynthesizeBlockSignature(state, Result);
// Apply any type attributes from the decl spec. This may cause the
// list of type attributes to be temporarily saved while the type
// attributes are pushed around.
if (AttributeList *attrs = DS.getAttributes().getList())
processTypeAttrs(state, Result, TAL_DeclSpec, attrs);
// Apply const/volatile/restrict qualifiers to T.
if (unsigned TypeQuals = DS.getTypeQualifiers()) {
// Warn about CV qualifiers on function types.
// C99 6.7.3p8:
// If the specification of a function type includes any type qualifiers,
// the behavior is undefined.
// C++11 [dcl.fct]p7:
// The effect of a cv-qualifier-seq in a function declarator is not the
// same as adding cv-qualification on top of the function type. In the
// latter case, the cv-qualifiers are ignored.
if (TypeQuals && Result->isFunctionType()) {
diagnoseAndRemoveTypeQualifiers(
S, DS, TypeQuals, Result, DeclSpec::TQ_const | DeclSpec::TQ_volatile,
S.getLangOpts().CPlusPlus
? diag::warn_typecheck_function_qualifiers_ignored
: diag::warn_typecheck_function_qualifiers_unspecified);
// No diagnostic for 'restrict' or '_Atomic' applied to a
// function type; we'll diagnose those later, in BuildQualifiedType.
}
// C++11 [dcl.ref]p1:
// Cv-qualified references are ill-formed except when the
// cv-qualifiers are introduced through the use of a typedef-name
// or decltype-specifier, in which case the cv-qualifiers are ignored.
//
// There don't appear to be any other contexts in which a cv-qualified
// reference type could be formed, so the 'ill-formed' clause here appears
// to never happen.
if (TypeQuals && Result->isReferenceType()) {
diagnoseAndRemoveTypeQualifiers(
S, DS, TypeQuals, Result,
DeclSpec::TQ_const | DeclSpec::TQ_volatile | DeclSpec::TQ_atomic,
diag::warn_typecheck_reference_qualifiers);
}
// C90 6.5.3 constraints: "The same type qualifier shall not appear more
// than once in the same specifier-list or qualifier-list, either directly
// or via one or more typedefs."
if (!S.getLangOpts().C99 && !S.getLangOpts().CPlusPlus
&& TypeQuals & Result.getCVRQualifiers()) {
if (TypeQuals & DeclSpec::TQ_const && Result.isConstQualified()) {
S.Diag(DS.getConstSpecLoc(), diag::ext_duplicate_declspec)
<< "const";
}
if (TypeQuals & DeclSpec::TQ_volatile && Result.isVolatileQualified()) {
S.Diag(DS.getVolatileSpecLoc(), diag::ext_duplicate_declspec)
<< "volatile";
}
// C90 doesn't have restrict nor _Atomic, so it doesn't force us to
// produce a warning in this case.
}
QualType Qualified = S.BuildQualifiedType(Result, DeclLoc, TypeQuals, &DS);
// If adding qualifiers fails, just use the unqualified type.
if (Qualified.isNull())
declarator.setInvalidType(true);
else
Result = Qualified;
}
assert(!Result.isNull() && "This function should not return a null type");
return Result;
}
static std::string getPrintableNameForEntity(DeclarationName Entity) {
if (Entity)
return Entity.getAsString();
return "type name";
}
QualType Sema::BuildQualifiedType(QualType T, SourceLocation Loc,
Qualifiers Qs, const DeclSpec *DS) {
if (T.isNull())
return QualType();
// Enforce C99 6.7.3p2: "Types other than pointer types derived from
// object or incomplete types shall not be restrict-qualified."
if (Qs.hasRestrict()) {
unsigned DiagID = 0;
QualType ProblemTy;
if (T->isAnyPointerType() || T->isReferenceType() ||
T->isMemberPointerType()) {
QualType EltTy;
if (T->isObjCObjectPointerType())
EltTy = T;
else if (const MemberPointerType *PTy = T->getAs<MemberPointerType>())
EltTy = PTy->getPointeeType();
else
EltTy = T->getPointeeType();
// If we have a pointer or reference, the pointee must have an object
// incomplete type.
if (!EltTy->isIncompleteOrObjectType()) {
DiagID = diag::err_typecheck_invalid_restrict_invalid_pointee;
ProblemTy = EltTy;
}
} else if (!T->isDependentType()) {
DiagID = diag::err_typecheck_invalid_restrict_not_pointer;
ProblemTy = T;
}
if (DiagID) {
Diag(DS ? DS->getRestrictSpecLoc() : Loc, DiagID) << ProblemTy;
Qs.removeRestrict();
}
}
return Context.getQualifiedType(T, Qs);
}
QualType Sema::BuildQualifiedType(QualType T, SourceLocation Loc,
unsigned CVRA, const DeclSpec *DS) {
if (T.isNull())
return QualType();
// Convert from DeclSpec::TQ to Qualifiers::TQ by just dropping TQ_atomic.
unsigned CVR = CVRA & ~DeclSpec::TQ_atomic;
// C11 6.7.3/5:
// If the same qualifier appears more than once in the same
// specifier-qualifier-list, either directly or via one or more typedefs,
// the behavior is the same as if it appeared only once.
//
// It's not specified what happens when the _Atomic qualifier is applied to
// a type specified with the _Atomic specifier, but we assume that this
// should be treated as if the _Atomic qualifier appeared multiple times.
if (CVRA & DeclSpec::TQ_atomic && !T->isAtomicType()) {
// C11 6.7.3/5:
// If other qualifiers appear along with the _Atomic qualifier in a
// specifier-qualifier-list, the resulting type is the so-qualified
// atomic type.
//
// Don't need to worry about array types here, since _Atomic can't be
// applied to such types.
SplitQualType Split = T.getSplitUnqualifiedType();
T = BuildAtomicType(QualType(Split.Ty, 0),
DS ? DS->getAtomicSpecLoc() : Loc);
if (T.isNull())
return T;
Split.Quals.addCVRQualifiers(CVR);
return BuildQualifiedType(T, Loc, Split.Quals);
}
return BuildQualifiedType(T, Loc, Qualifiers::fromCVRMask(CVR), DS);
}
/// \brief Build a paren type including \p T.
QualType Sema::BuildParenType(QualType T) {
return Context.getParenType(T);
}
/// Given that we're building a pointer or reference to the given
static QualType inferARCLifetimeForPointee(Sema &S, QualType type,
SourceLocation loc,
bool isReference) {
// Bail out if retention is unrequired or already specified.
if (!type->isObjCLifetimeType() ||
type.getObjCLifetime() != Qualifiers::OCL_None)
return type;
Qualifiers::ObjCLifetime implicitLifetime = Qualifiers::OCL_None;
// If the object type is const-qualified, we can safely use
// __unsafe_unretained. This is safe (because there are no read
// barriers), and it'll be safe to coerce anything but __weak* to
// the resulting type.
if (type.isConstQualified()) {
implicitLifetime = Qualifiers::OCL_ExplicitNone;
// Otherwise, check whether the static type does not require
// retaining. This currently only triggers for Class (possibly
// protocol-qualifed, and arrays thereof).
} else if (type->isObjCARCImplicitlyUnretainedType()) {
implicitLifetime = Qualifiers::OCL_ExplicitNone;
// If we are in an unevaluated context, like sizeof, skip adding a
// qualification.
} else if (S.isUnevaluatedContext()) {
return type;
// If that failed, give an error and recover using __strong. __strong
// is the option most likely to prevent spurious second-order diagnostics,
// like when binding a reference to a field.
} else {
// These types can show up in private ivars in system headers, so
// we need this to not be an error in those cases. Instead we
// want to delay.
if (S.DelayedDiagnostics.shouldDelayDiagnostics()) {
S.DelayedDiagnostics.add(
sema::DelayedDiagnostic::makeForbiddenType(loc,
diag::err_arc_indirect_no_ownership, type, isReference));
} else {
S.Diag(loc, diag::err_arc_indirect_no_ownership) << type << isReference;
}
implicitLifetime = Qualifiers::OCL_Strong;
}
assert(implicitLifetime && "didn't infer any lifetime!");
Qualifiers qs;
qs.addObjCLifetime(implicitLifetime);
return S.Context.getQualifiedType(type, qs);
}
static std::string getFunctionQualifiersAsString(const FunctionProtoType *FnTy){
std::string Quals =
Qualifiers::fromCVRMask(FnTy->getTypeQuals()).getAsString();
switch (FnTy->getRefQualifier()) {
case RQ_None:
break;
case RQ_LValue:
if (!Quals.empty())
Quals += ' ';
Quals += '&';
break;
case RQ_RValue:
if (!Quals.empty())
Quals += ' ';
Quals += "&&";
break;
}
return Quals;
}
namespace {
/// Kinds of declarator that cannot contain a qualified function type.
///
/// C++98 [dcl.fct]p4 / C++11 [dcl.fct]p6:
/// a function type with a cv-qualifier or a ref-qualifier can only appear
/// at the topmost level of a type.
///
/// Parens and member pointers are permitted. We don't diagnose array and
/// function declarators, because they don't allow function types at all.
///
/// The values of this enum are used in diagnostics.
enum QualifiedFunctionKind { QFK_BlockPointer, QFK_Pointer, QFK_Reference };
}
/// Check whether the type T is a qualified function type, and if it is,
/// diagnose that it cannot be contained within the given kind of declarator.
static bool checkQualifiedFunction(Sema &S, QualType T, SourceLocation Loc,
QualifiedFunctionKind QFK) {
// Does T refer to a function type with a cv-qualifier or a ref-qualifier?
const FunctionProtoType *FPT = T->getAs<FunctionProtoType>();
if (!FPT || (FPT->getTypeQuals() == 0 && FPT->getRefQualifier() == RQ_None))
return false;
S.Diag(Loc, diag::err_compound_qualified_function_type)
<< QFK << isa<FunctionType>(T.IgnoreParens()) << T
<< getFunctionQualifiersAsString(FPT);
return true;
}
/// \brief Build a pointer type.
///
/// \param T The type to which we'll be building a pointer.
///
/// \param Loc The location of the entity whose type involves this
/// pointer type or, if there is no such entity, the location of the
/// type that will have pointer type.
///
/// \param Entity The name of the entity that involves the pointer
/// type, if known.
///
/// \returns A suitable pointer type, if there are no
/// errors. Otherwise, returns a NULL type.
QualType Sema::BuildPointerType(QualType T,
SourceLocation Loc, DeclarationName Entity) {
if (T->isReferenceType()) {
// C++ 8.3.2p4: There shall be no ... pointers to references ...
Diag(Loc, diag::err_illegal_decl_pointer_to_reference)
<< getPrintableNameForEntity(Entity) << T;
return QualType();
}
if (checkQualifiedFunction(*this, T, Loc, QFK_Pointer))
return QualType();
assert(!T->isObjCObjectType() && "Should build ObjCObjectPointerType");
// In ARC, it is forbidden to build pointers to unqualified pointers.
if (getLangOpts().ObjCAutoRefCount)
T = inferARCLifetimeForPointee(*this, T, Loc, /*reference*/ false);
// Build the pointer type.
return Context.getPointerType(T);
}
/// \brief Build a reference type.
///
/// \param T The type to which we'll be building a reference.
///
/// \param Loc The location of the entity whose type involves this
/// reference type or, if there is no such entity, the location of the
/// type that will have reference type.
///
/// \param Entity The name of the entity that involves the reference
/// type, if known.
///
/// \returns A suitable reference type, if there are no
/// errors. Otherwise, returns a NULL type.
QualType Sema::BuildReferenceType(QualType T, bool SpelledAsLValue,
SourceLocation Loc,
DeclarationName Entity) {
assert(Context.getCanonicalType(T) != Context.OverloadTy &&
"Unresolved overloaded function type");
// C++0x [dcl.ref]p6:
// If a typedef (7.1.3), a type template-parameter (14.3.1), or a
// decltype-specifier (7.1.6.2) denotes a type TR that is a reference to a
// type T, an attempt to create the type "lvalue reference to cv TR" creates
// the type "lvalue reference to T", while an attempt to create the type
// "rvalue reference to cv TR" creates the type TR.
bool LValueRef = SpelledAsLValue || T->getAs<LValueReferenceType>();
// C++ [dcl.ref]p4: There shall be no references to references.
//
// According to C++ DR 106, references to references are only
// diagnosed when they are written directly (e.g., "int & &"),
// but not when they happen via a typedef:
//
// typedef int& intref;
// typedef intref& intref2;
//
// Parser::ParseDeclaratorInternal diagnoses the case where
// references are written directly; here, we handle the
// collapsing of references-to-references as described in C++0x.
// DR 106 and 540 introduce reference-collapsing into C++98/03.
// C++ [dcl.ref]p1:
// A declarator that specifies the type "reference to cv void"
// is ill-formed.
if (T->isVoidType()) {
Diag(Loc, diag::err_reference_to_void);
return QualType();
}
if (checkQualifiedFunction(*this, T, Loc, QFK_Reference))
return QualType();
// In ARC, it is forbidden to build references to unqualified pointers.
if (getLangOpts().ObjCAutoRefCount)
T = inferARCLifetimeForPointee(*this, T, Loc, /*reference*/ true);
// Handle restrict on references.
if (LValueRef)
return Context.getLValueReferenceType(T, SpelledAsLValue);
return Context.getRValueReferenceType(T);
}
/// Check whether the specified array size makes the array type a VLA. If so,
/// return true, if not, return the size of the array in SizeVal.
static bool isArraySizeVLA(Sema &S, Expr *ArraySize, llvm::APSInt &SizeVal) {
// If the size is an ICE, it certainly isn't a VLA. If we're in a GNU mode
// (like gnu99, but not c99) accept any evaluatable value as an extension.
class VLADiagnoser : public Sema::VerifyICEDiagnoser {
public:
VLADiagnoser() : Sema::VerifyICEDiagnoser(true) {}
void diagnoseNotICE(Sema &S, SourceLocation Loc, SourceRange SR) override {
}
void diagnoseFold(Sema &S, SourceLocation Loc, SourceRange SR) override {
S.Diag(Loc, diag::ext_vla_folded_to_constant) << SR;
}
} Diagnoser;
return S.VerifyIntegerConstantExpression(ArraySize, &SizeVal, Diagnoser,
S.LangOpts.GNUMode).isInvalid();
}
/// \brief Build an array type.
///
/// \param T The type of each element in the array.
///
/// \param ASM C99 array size modifier (e.g., '*', 'static').
///
/// \param ArraySize Expression describing the size of the array.
///
/// \param Brackets The range from the opening '[' to the closing ']'.
///
/// \param Entity The name of the entity that involves the array
/// type, if known.
///
/// \returns A suitable array type, if there are no errors. Otherwise,
/// returns a NULL type.
QualType Sema::BuildArrayType(QualType T, ArrayType::ArraySizeModifier ASM,
Expr *ArraySize, unsigned Quals,
SourceRange Brackets, DeclarationName Entity) {
SourceLocation Loc = Brackets.getBegin();
if (getLangOpts().CPlusPlus) {
// C++ [dcl.array]p1:
// T is called the array element type; this type shall not be a reference
// type, the (possibly cv-qualified) type void, a function type or an
// abstract class type.
//
// C++ [dcl.array]p3:
// When several "array of" specifications are adjacent, [...] only the
// first of the constant expressions that specify the bounds of the arrays
// may be omitted.
//
// Note: function types are handled in the common path with C.
if (T->isReferenceType()) {
Diag(Loc, diag::err_illegal_decl_array_of_references)
<< getPrintableNameForEntity(Entity) << T;
return QualType();
}
if (T->isVoidType() || T->isIncompleteArrayType()) {
Diag(Loc, diag::err_illegal_decl_array_incomplete_type) << T;
return QualType();
}
if (RequireNonAbstractType(Brackets.getBegin(), T,
diag::err_array_of_abstract_type))
return QualType();
// Mentioning a member pointer type for an array type causes us to lock in
// an inheritance model, even if it's inside an unused typedef.
if (Context.getTargetInfo().getCXXABI().isMicrosoft())
if (const MemberPointerType *MPTy = T->getAs<MemberPointerType>())
if (!MPTy->getClass()->isDependentType())
RequireCompleteType(Loc, T, 0);
} else {
// C99 6.7.5.2p1: If the element type is an incomplete or function type,
// reject it (e.g. void ary[7], struct foo ary[7], void ary[7]())
if (RequireCompleteType(Loc, T,
diag::err_illegal_decl_array_incomplete_type))
return QualType();
}
if (T->isFunctionType()) {
Diag(Loc, diag::err_illegal_decl_array_of_functions)
<< getPrintableNameForEntity(Entity) << T;
return QualType();
}
if (const RecordType *EltTy = T->getAs<RecordType>()) {
// If the element type is a struct or union that contains a variadic
// array, accept it as a GNU extension: C99 6.7.2.1p2.
if (EltTy->getDecl()->hasFlexibleArrayMember())
Diag(Loc, diag::ext_flexible_array_in_array) << T;
} else if (T->isObjCObjectType()) {
Diag(Loc, diag::err_objc_array_of_interfaces) << T;
return QualType();
}
// Do placeholder conversions on the array size expression.
if (ArraySize && ArraySize->hasPlaceholderType()) {
ExprResult Result = CheckPlaceholderExpr(ArraySize);
if (Result.isInvalid()) return QualType();
ArraySize = Result.get();
}
// Do lvalue-to-rvalue conversions on the array size expression.
if (ArraySize && !ArraySize->isRValue()) {
ExprResult Result = DefaultLvalueConversion(ArraySize);
if (Result.isInvalid())
return QualType();
ArraySize = Result.get();
}
// C99 6.7.5.2p1: The size expression shall have integer type.
// C++11 allows contextual conversions to such types.
if (!getLangOpts().CPlusPlus11 &&
ArraySize && !ArraySize->isTypeDependent() &&
!ArraySize->getType()->isIntegralOrUnscopedEnumerationType()) {
Diag(ArraySize->getLocStart(), diag::err_array_size_non_int)
<< ArraySize->getType() << ArraySize->getSourceRange();
return QualType();
}
llvm::APSInt ConstVal(Context.getTypeSize(Context.getSizeType()));
if (!ArraySize) {
if (ASM == ArrayType::Star)
T = Context.getVariableArrayType(T, nullptr, ASM, Quals, Brackets);
else
T = Context.getIncompleteArrayType(T, ASM, Quals);
} else if (ArraySize->isTypeDependent() || ArraySize->isValueDependent()) {
T = Context.getDependentSizedArrayType(T, ArraySize, ASM, Quals, Brackets);
} else if ((!T->isDependentType() && !T->isIncompleteType() &&
!T->isConstantSizeType()) ||
isArraySizeVLA(*this, ArraySize, ConstVal)) {
// Even in C++11, don't allow contextual conversions in the array bound
// of a VLA.
if (getLangOpts().CPlusPlus11 &&
!ArraySize->getType()->isIntegralOrUnscopedEnumerationType()) {
Diag(ArraySize->getLocStart(), diag::err_array_size_non_int)
<< ArraySize->getType() << ArraySize->getSourceRange();
return QualType();
}
// C99: an array with an element type that has a non-constant-size is a VLA.
// C99: an array with a non-ICE size is a VLA. We accept any expression
// that we can fold to a non-zero positive value as an extension.
T = Context.getVariableArrayType(T, ArraySize, ASM, Quals, Brackets);
} else {
// C99 6.7.5.2p1: If the expression is a constant expression, it shall
// have a value greater than zero.
if (ConstVal.isSigned() && ConstVal.isNegative()) {
if (Entity)
Diag(ArraySize->getLocStart(), diag::err_decl_negative_array_size)
<< getPrintableNameForEntity(Entity) << ArraySize->getSourceRange();
else
Diag(ArraySize->getLocStart(), diag::err_typecheck_negative_array_size)
<< ArraySize->getSourceRange();
return QualType();
}
if (ConstVal == 0) {
// GCC accepts zero sized static arrays. We allow them when
// we're not in a SFINAE context.
Diag(ArraySize->getLocStart(),
isSFINAEContext()? diag::err_typecheck_zero_array_size
: diag::ext_typecheck_zero_array_size)
<< ArraySize->getSourceRange();
if (ASM == ArrayType::Static) {
Diag(ArraySize->getLocStart(),
diag::warn_typecheck_zero_static_array_size)
<< ArraySize->getSourceRange();
ASM = ArrayType::Normal;
}
} else if (!T->isDependentType() && !T->isVariablyModifiedType() &&
!T->isIncompleteType() && !T->isUndeducedType()) {
// Is the array too large?
unsigned ActiveSizeBits
= ConstantArrayType::getNumAddressingBits(Context, T, ConstVal);
if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
Diag(ArraySize->getLocStart(), diag::err_array_too_large)
<< ConstVal.toString(10)
<< ArraySize->getSourceRange();
return QualType();
}
}
T = Context.getConstantArrayType(T, ConstVal, ASM, Quals);
}
// OpenCL v1.2 s6.9.d: variable length arrays are not supported.
if (getLangOpts().OpenCL && T->isVariableArrayType()) {
Diag(Loc, diag::err_opencl_vla);
return QualType();
}
// If this is not C99, extwarn about VLA's and C99 array size modifiers.
if (!getLangOpts().C99) {
if (T->isVariableArrayType()) {
// Prohibit the use of non-POD types in VLAs.
QualType BaseT = Context.getBaseElementType(T);
if (!T->isDependentType() &&
!RequireCompleteType(Loc, BaseT, 0) &&
!BaseT.isPODType(Context) &&
!BaseT->isObjCLifetimeType()) {
Diag(Loc, diag::err_vla_non_pod)
<< BaseT;
return QualType();
}
// Prohibit the use of VLAs during template argument deduction.
else if (isSFINAEContext()) {
Diag(Loc, diag::err_vla_in_sfinae);
return QualType();
}
// Just extwarn about VLAs.
else
Diag(Loc, diag::ext_vla);
} else if (ASM != ArrayType::Normal || Quals != 0)
Diag(Loc,
getLangOpts().CPlusPlus? diag::err_c99_array_usage_cxx
: diag::ext_c99_array_usage) << ASM;
}
if (T->isVariableArrayType()) {
// Warn about VLAs for -Wvla.
Diag(Loc, diag::warn_vla_used);
}
return T;
}
/// \brief Build an ext-vector type.
///
/// Run the required checks for the extended vector type.
QualType Sema::BuildExtVectorType(QualType T, Expr *ArraySize,
SourceLocation AttrLoc) {
// unlike gcc's vector_size attribute, we do not allow vectors to be defined
// in conjunction with complex types (pointers, arrays, functions, etc.).
if (!T->isDependentType() &&
!T->isIntegerType() && !T->isRealFloatingType()) {
Diag(AttrLoc, diag::err_attribute_invalid_vector_type) << T;
return QualType();
}
if (!ArraySize->isTypeDependent() && !ArraySize->isValueDependent()) {
llvm::APSInt vecSize(32);
if (!ArraySize->isIntegerConstantExpr(vecSize, Context)) {
Diag(AttrLoc, diag::err_attribute_argument_type)
<< "ext_vector_type" << AANT_ArgumentIntegerConstant
<< ArraySize->getSourceRange();
return QualType();
}
// unlike gcc's vector_size attribute, the size is specified as the
// number of elements, not the number of bytes.
unsigned vectorSize = static_cast<unsigned>(vecSize.getZExtValue());
if (vectorSize == 0) {
Diag(AttrLoc, diag::err_attribute_zero_size)
<< ArraySize->getSourceRange();
return QualType();
}
if (VectorType::isVectorSizeTooLarge(vectorSize)) {
Diag(AttrLoc, diag::err_attribute_size_too_large)
<< ArraySize->getSourceRange();
return QualType();
}
return Context.getExtVectorType(T, vectorSize);
}
return Context.getDependentSizedExtVectorType(T, ArraySize, AttrLoc);
}
bool Sema::CheckFunctionReturnType(QualType T, SourceLocation Loc) {
if (T->isArrayType() || T->isFunctionType()) {
Diag(Loc, diag::err_func_returning_array_function)
<< T->isFunctionType() << T;
return true;
}
// Functions cannot return half FP.
if (T->isHalfType() && !getLangOpts().HalfArgsAndReturns) {
Diag(Loc, diag::err_parameters_retval_cannot_have_fp16_type) << 1 <<
FixItHint::CreateInsertion(Loc, "*");
return true;
}
// Methods cannot return interface types. All ObjC objects are
// passed by reference.
if (T->isObjCObjectType()) {
Diag(Loc, diag::err_object_cannot_be_passed_returned_by_value) << 0 << T;
return 0;
}
return false;
}
QualType Sema::BuildFunctionType(QualType T,
MutableArrayRef<QualType> ParamTypes,
SourceLocation Loc, DeclarationName Entity,
const FunctionProtoType::ExtProtoInfo &EPI) {
bool Invalid = false;
Invalid |= CheckFunctionReturnType(T, Loc);
for (unsigned Idx = 0, Cnt = ParamTypes.size(); Idx < Cnt; ++Idx) {
// FIXME: Loc is too inprecise here, should use proper locations for args.
QualType ParamType = Context.getAdjustedParameterType(ParamTypes[Idx]);
if (ParamType->isVoidType()) {
Diag(Loc, diag::err_param_with_void_type);
Invalid = true;
} else if (ParamType->isHalfType() && !getLangOpts().HalfArgsAndReturns) {
// Disallow half FP arguments.
Diag(Loc, diag::err_parameters_retval_cannot_have_fp16_type) << 0 <<
FixItHint::CreateInsertion(Loc, "*");
Invalid = true;
}
ParamTypes[Idx] = ParamType;
}
if (Invalid)
return QualType();
return Context.getFunctionType(T, ParamTypes, EPI);
}
/// \brief Build a member pointer type \c T Class::*.
///
/// \param T the type to which the member pointer refers.
/// \param Class the class type into which the member pointer points.
/// \param Loc the location where this type begins
/// \param Entity the name of the entity that will have this member pointer type
///
/// \returns a member pointer type, if successful, or a NULL type if there was
/// an error.
QualType Sema::BuildMemberPointerType(QualType T, QualType Class,
SourceLocation Loc,
DeclarationName Entity) {
// Verify that we're not building a pointer to pointer to function with
// exception specification.
if (CheckDistantExceptionSpec(T)) {
Diag(Loc, diag::err_distant_exception_spec);
return QualType();
}
// C++ 8.3.3p3: A pointer to member shall not point to ... a member
// with reference type, or "cv void."
if (T->isReferenceType()) {
Diag(Loc, diag::err_illegal_decl_mempointer_to_reference)
<< getPrintableNameForEntity(Entity) << T;
return QualType();
}
if (T->isVoidType()) {
Diag(Loc, diag::err_illegal_decl_mempointer_to_void)
<< getPrintableNameForEntity(Entity);
return QualType();
}
if (!Class->isDependentType() && !Class->isRecordType()) {
Diag(Loc, diag::err_mempointer_in_nonclass_type) << Class;
return QualType();
}
// Adjust the default free function calling convention to the default method
// calling convention.
bool IsCtorOrDtor =
(Entity.getNameKind() == DeclarationName::CXXConstructorName) ||
(Entity.getNameKind() == DeclarationName::CXXDestructorName);
if (T->isFunctionType())
adjustMemberFunctionCC(T, /*IsStatic=*/false, IsCtorOrDtor, Loc);
return Context.getMemberPointerType(T, Class.getTypePtr());
}
/// \brief Build a block pointer type.
///
/// \param T The type to which we'll be building a block pointer.
///
/// \param Loc The source location, used for diagnostics.
///
/// \param Entity The name of the entity that involves the block pointer
/// type, if known.
///
/// \returns A suitable block pointer type, if there are no
/// errors. Otherwise, returns a NULL type.
QualType Sema::BuildBlockPointerType(QualType T,
SourceLocation Loc,
DeclarationName Entity) {
if (!T->isFunctionType()) {
Diag(Loc, diag::err_nonfunction_block_type);
return QualType();
}
if (checkQualifiedFunction(*this, T, Loc, QFK_BlockPointer))
return QualType();
return Context.getBlockPointerType(T);
}
QualType Sema::GetTypeFromParser(ParsedType Ty, TypeSourceInfo **TInfo) {
QualType QT = Ty.get();
if (QT.isNull()) {
if (TInfo) *TInfo = nullptr;
return QualType();
}
TypeSourceInfo *DI = nullptr;
if (const LocInfoType *LIT = dyn_cast<LocInfoType>(QT)) {
QT = LIT->getType();
DI = LIT->getTypeSourceInfo();
}
if (TInfo) *TInfo = DI;
return QT;
}
static void transferARCOwnershipToDeclaratorChunk(TypeProcessingState &state,
Qualifiers::ObjCLifetime ownership,
unsigned chunkIndex);
/// Given that this is the declaration of a parameter under ARC,
/// attempt to infer attributes and such for pointer-to-whatever
/// types.
static void inferARCWriteback(TypeProcessingState &state,
QualType &declSpecType) {
Sema &S = state.getSema();
Declarator &declarator = state.getDeclarator();
// TODO: should we care about decl qualifiers?
// Check whether the declarator has the expected form. We walk
// from the inside out in order to make the block logic work.
unsigned outermostPointerIndex = 0;
bool isBlockPointer = false;
unsigned numPointers = 0;
for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) {
unsigned chunkIndex = i;
DeclaratorChunk &chunk = declarator.getTypeObject(chunkIndex);
switch (chunk.Kind) {
case DeclaratorChunk::Paren:
// Ignore parens.
break;
case DeclaratorChunk::Reference:
case DeclaratorChunk::Pointer:
// Count the number of pointers. Treat references
// interchangeably as pointers; if they're mis-ordered, normal
// type building will discover that.
outermostPointerIndex = chunkIndex;
numPointers++;
break;
case DeclaratorChunk::BlockPointer:
// If we have a pointer to block pointer, that's an acceptable
// indirect reference; anything else is not an application of
// the rules.
if (numPointers != 1) return;
numPointers++;
outermostPointerIndex = chunkIndex;
isBlockPointer = true;
// We don't care about pointer structure in return values here.
goto done;
case DeclaratorChunk::Array: // suppress if written (id[])?
case DeclaratorChunk::Function:
case DeclaratorChunk::MemberPointer:
return;
}
}
done:
// If we have *one* pointer, then we want to throw the qualifier on
// the declaration-specifiers, which means that it needs to be a
// retainable object type.
if (numPointers == 1) {
// If it's not a retainable object type, the rule doesn't apply.
if (!declSpecType->isObjCRetainableType()) return;
// If it already has lifetime, don't do anything.
if (declSpecType.getObjCLifetime()) return;
// Otherwise, modify the type in-place.
Qualifiers qs;
if (declSpecType->isObjCARCImplicitlyUnretainedType())
qs.addObjCLifetime(Qualifiers::OCL_ExplicitNone);
else
qs.addObjCLifetime(Qualifiers::OCL_Autoreleasing);
declSpecType = S.Context.getQualifiedType(declSpecType, qs);
// If we have *two* pointers, then we want to throw the qualifier on
// the outermost pointer.
} else if (numPointers == 2) {
// If we don't have a block pointer, we need to check whether the
// declaration-specifiers gave us something that will turn into a
// retainable object pointer after we slap the first pointer on it.
if (!isBlockPointer && !declSpecType->isObjCObjectType())
return;
// Look for an explicit lifetime attribute there.
DeclaratorChunk &chunk = declarator.getTypeObject(outermostPointerIndex);
if (chunk.Kind != DeclaratorChunk::Pointer &&
chunk.Kind != DeclaratorChunk::BlockPointer)
return;
for (const AttributeList *attr = chunk.getAttrs(); attr;
attr = attr->getNext())
if (attr->getKind() == AttributeList::AT_ObjCOwnership)
return;
transferARCOwnershipToDeclaratorChunk(state, Qualifiers::OCL_Autoreleasing,
outermostPointerIndex);
// Any other number of pointers/references does not trigger the rule.
} else return;
// TODO: mark whether we did this inference?
}
void Sema::diagnoseIgnoredQualifiers(unsigned DiagID, unsigned Quals,
SourceLocation FallbackLoc,
SourceLocation ConstQualLoc,
SourceLocation VolatileQualLoc,
SourceLocation RestrictQualLoc,
SourceLocation AtomicQualLoc) {
if (!Quals)
return;
struct Qual {
unsigned Mask;
const char *Name;
SourceLocation Loc;
} const QualKinds[4] = {
{ DeclSpec::TQ_const, "const", ConstQualLoc },
{ DeclSpec::TQ_volatile, "volatile", VolatileQualLoc },
{ DeclSpec::TQ_restrict, "restrict", RestrictQualLoc },
{ DeclSpec::TQ_atomic, "_Atomic", AtomicQualLoc }
};
SmallString<32> QualStr;
unsigned NumQuals = 0;
SourceLocation Loc;
FixItHint FixIts[4];
// Build a string naming the redundant qualifiers.
for (unsigned I = 0; I != 4; ++I) {
if (Quals & QualKinds[I].Mask) {
if (!QualStr.empty()) QualStr += ' ';
QualStr += QualKinds[I].Name;
// If we have a location for the qualifier, offer a fixit.
SourceLocation QualLoc = QualKinds[I].Loc;
if (QualLoc.isValid()) {
FixIts[NumQuals] = FixItHint::CreateRemoval(QualLoc);
if (Loc.isInvalid() ||
getSourceManager().isBeforeInTranslationUnit(QualLoc, Loc))
Loc = QualLoc;
}
++NumQuals;
}
}
Diag(Loc.isInvalid() ? FallbackLoc : Loc, DiagID)
<< QualStr << NumQuals << FixIts[0] << FixIts[1] << FixIts[2] << FixIts[3];
}
// Diagnose pointless type qualifiers on the return type of a function.
static void diagnoseRedundantReturnTypeQualifiers(Sema &S, QualType RetTy,
Declarator &D,
unsigned FunctionChunkIndex) {
if (D.getTypeObject(FunctionChunkIndex).Fun.hasTrailingReturnType()) {
// FIXME: TypeSourceInfo doesn't preserve location information for
// qualifiers.
S.diagnoseIgnoredQualifiers(diag::warn_qual_return_type,
RetTy.getLocalCVRQualifiers(),
D.getIdentifierLoc());
return;
}
for (unsigned OuterChunkIndex = FunctionChunkIndex + 1,
End = D.getNumTypeObjects();
OuterChunkIndex != End; ++OuterChunkIndex) {
DeclaratorChunk &OuterChunk = D.getTypeObject(OuterChunkIndex);
switch (OuterChunk.Kind) {
case DeclaratorChunk::Paren:
continue;
case DeclaratorChunk::Pointer: {
DeclaratorChunk::PointerTypeInfo &PTI = OuterChunk.Ptr;
S.diagnoseIgnoredQualifiers(
diag::warn_qual_return_type,
PTI.TypeQuals,
SourceLocation(),
SourceLocation::getFromRawEncoding(PTI.ConstQualLoc),
SourceLocation::getFromRawEncoding(PTI.VolatileQualLoc),
SourceLocation::getFromRawEncoding(PTI.RestrictQualLoc),
SourceLocation::getFromRawEncoding(PTI.AtomicQualLoc));
return;
}
case DeclaratorChunk::Function:
case DeclaratorChunk::BlockPointer:
case DeclaratorChunk::Reference:
case DeclaratorChunk::Array:
case DeclaratorChunk::MemberPointer:
// FIXME: We can't currently provide an accurate source location and a
// fix-it hint for these.
unsigned AtomicQual = RetTy->isAtomicType() ? DeclSpec::TQ_atomic : 0;
S.diagnoseIgnoredQualifiers(diag::warn_qual_return_type,
RetTy.getCVRQualifiers() | AtomicQual,
D.getIdentifierLoc());
return;
}
llvm_unreachable("unknown declarator chunk kind");
}
// If the qualifiers come from a conversion function type, don't diagnose
// them -- they're not necessarily redundant, since such a conversion
// operator can be explicitly called as "x.operator const int()".
if (D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId)
return;
// Just parens all the way out to the decl specifiers. Diagnose any qualifiers
// which are present there.
S.diagnoseIgnoredQualifiers(diag::warn_qual_return_type,
D.getDeclSpec().getTypeQualifiers(),
D.getIdentifierLoc(),
D.getDeclSpec().getConstSpecLoc(),
D.getDeclSpec().getVolatileSpecLoc(),
D.getDeclSpec().getRestrictSpecLoc(),
D.getDeclSpec().getAtomicSpecLoc());
}
static QualType GetDeclSpecTypeForDeclarator(TypeProcessingState &state,
TypeSourceInfo *&ReturnTypeInfo) {
Sema &SemaRef = state.getSema();
Declarator &D = state.getDeclarator();
QualType T;
ReturnTypeInfo = nullptr;
// The TagDecl owned by the DeclSpec.
TagDecl *OwnedTagDecl = nullptr;
bool ContainsPlaceholderType = false;
switch (D.getName().getKind()) {
case UnqualifiedId::IK_ImplicitSelfParam:
case UnqualifiedId::IK_OperatorFunctionId:
case UnqualifiedId::IK_Identifier:
case UnqualifiedId::IK_LiteralOperatorId:
case UnqualifiedId::IK_TemplateId:
T = ConvertDeclSpecToType(state);
ContainsPlaceholderType = D.getDeclSpec().containsPlaceholderType();
if (!D.isInvalidType() && D.getDeclSpec().isTypeSpecOwned()) {
OwnedTagDecl = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
// Owned declaration is embedded in declarator.
OwnedTagDecl->setEmbeddedInDeclarator(true);
}
break;
case UnqualifiedId::IK_ConstructorName:
case UnqualifiedId::IK_ConstructorTemplateId:
case UnqualifiedId::IK_DestructorName:
// Constructors and destructors don't have return types. Use
// "void" instead.
T = SemaRef.Context.VoidTy;
if (AttributeList *attrs = D.getDeclSpec().getAttributes().getList())
processTypeAttrs(state, T, TAL_DeclSpec, attrs);
break;
case UnqualifiedId::IK_ConversionFunctionId:
// The result type of a conversion function is the type that it
// converts to.
T = SemaRef.GetTypeFromParser(D.getName().ConversionFunctionId,
&ReturnTypeInfo);
ContainsPlaceholderType = T->getContainedAutoType();
break;
}
if (D.getAttributes())
distributeTypeAttrsFromDeclarator(state, T);
// C++11 [dcl.spec.auto]p5: reject 'auto' if it is not in an allowed context.
// In C++11, a function declarator using 'auto' must have a trailing return
// type (this is checked later) and we can skip this. In other languages
// using auto, we need to check regardless.
// C++14 In generic lambdas allow 'auto' in their parameters.
if (ContainsPlaceholderType &&
(!SemaRef.getLangOpts().CPlusPlus11 || !D.isFunctionDeclarator())) {
int Error = -1;
switch (D.getContext()) {
case Declarator::KNRTypeListContext:
llvm_unreachable("K&R type lists aren't allowed in C++");
case Declarator::LambdaExprContext:
llvm_unreachable("Can't specify a type specifier in lambda grammar");
case Declarator::ObjCParameterContext:
case Declarator::ObjCResultContext:
case Declarator::PrototypeContext:
Error = 0;
break;
case Declarator::LambdaExprParameterContext:
if (!(SemaRef.getLangOpts().CPlusPlus14
&& D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto))
Error = 14;
break;
case Declarator::MemberContext:
if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_static)
break;
switch (cast<TagDecl>(SemaRef.CurContext)->getTagKind()) {
case TTK_Enum: llvm_unreachable("unhandled tag kind");
case TTK_Struct: Error = 1; /* Struct member */ break;
case TTK_Union: Error = 2; /* Union member */ break;
case TTK_Class: Error = 3; /* Class member */ break;
case TTK_Interface: Error = 4; /* Interface member */ break;
}
break;
case Declarator::CXXCatchContext:
case Declarator::ObjCCatchContext:
Error = 5; // Exception declaration
break;
case Declarator::TemplateParamContext:
Error = 6; // Template parameter
break;
case Declarator::BlockLiteralContext:
Error = 7; // Block literal
break;
case Declarator::TemplateTypeArgContext:
Error = 8; // Template type argument
break;
case Declarator::AliasDeclContext:
case Declarator::AliasTemplateContext:
Error = 10; // Type alias
break;
case Declarator::TrailingReturnContext:
if (!SemaRef.getLangOpts().CPlusPlus14)
Error = 11; // Function return type
break;
case Declarator::ConversionIdContext:
if (!SemaRef.getLangOpts().CPlusPlus14)
Error = 12; // conversion-type-id
break;
case Declarator::TypeNameContext:
Error = 13; // Generic
break;
case Declarator::FileContext:
case Declarator::BlockContext:
case Declarator::ForContext:
case Declarator::ConditionContext:
case Declarator::CXXNewContext:
break;
}
if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
Error = 9;
// In Objective-C it is an error to use 'auto' on a function declarator.
if (D.isFunctionDeclarator())
Error = 11;
// C++11 [dcl.spec.auto]p2: 'auto' is always fine if the declarator
// contains a trailing return type. That is only legal at the outermost
// level. Check all declarator chunks (outermost first) anyway, to give
// better diagnostics.
if (SemaRef.getLangOpts().CPlusPlus11 && Error != -1) {
for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
unsigned chunkIndex = e - i - 1;
state.setCurrentChunkIndex(chunkIndex);
DeclaratorChunk &DeclType = D.getTypeObject(chunkIndex);
if (DeclType.Kind == DeclaratorChunk::Function) {
const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
if (FTI.hasTrailingReturnType()) {
Error = -1;
break;
}
}
}
}
SourceRange AutoRange = D.getDeclSpec().getTypeSpecTypeLoc();
if (D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId)
AutoRange = D.getName().getSourceRange();
if (Error != -1) {
const bool IsDeclTypeAuto =
D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_decltype_auto;
SemaRef.Diag(AutoRange.getBegin(), diag::err_auto_not_allowed)
<< IsDeclTypeAuto << Error << AutoRange;
T = SemaRef.Context.IntTy;
D.setInvalidType(true);
} else
SemaRef.Diag(AutoRange.getBegin(),
diag::warn_cxx98_compat_auto_type_specifier)
<< AutoRange;
}
if (SemaRef.getLangOpts().CPlusPlus &&
OwnedTagDecl && OwnedTagDecl->isCompleteDefinition()) {
// Check the contexts where C++ forbids the declaration of a new class
// or enumeration in a type-specifier-seq.
switch (D.getContext()) {
case Declarator::TrailingReturnContext:
// Class and enumeration definitions are syntactically not allowed in
// trailing return types.
llvm_unreachable("parser should not have allowed this");
break;
case Declarator::FileContext:
case Declarator::MemberContext:
case Declarator::BlockContext:
case Declarator::ForContext:
case Declarator::BlockLiteralContext:
case Declarator::LambdaExprContext:
// C++11 [dcl.type]p3:
// A type-specifier-seq shall not define a class or enumeration unless
// it appears in the type-id of an alias-declaration (7.1.3) that is not
// the declaration of a template-declaration.
case Declarator::AliasDeclContext:
break;
case Declarator::AliasTemplateContext:
SemaRef.Diag(OwnedTagDecl->getLocation(),
diag::err_type_defined_in_alias_template)
<< SemaRef.Context.getTypeDeclType(OwnedTagDecl);
D.setInvalidType(true);
break;
case Declarator::TypeNameContext:
case Declarator::ConversionIdContext:
case Declarator::TemplateParamContext:
case Declarator::CXXNewContext:
case Declarator::CXXCatchContext:
case Declarator::ObjCCatchContext:
case Declarator::TemplateTypeArgContext:
SemaRef.Diag(OwnedTagDecl->getLocation(),
diag::err_type_defined_in_type_specifier)
<< SemaRef.Context.getTypeDeclType(OwnedTagDecl);
D.setInvalidType(true);
break;
case Declarator::PrototypeContext:
case Declarator::LambdaExprParameterContext:
case Declarator::ObjCParameterContext:
case Declarator::ObjCResultContext:
case Declarator::KNRTypeListContext:
// C++ [dcl.fct]p6:
// Types shall not be defined in return or parameter types.
SemaRef.Diag(OwnedTagDecl->getLocation(),
diag::err_type_defined_in_param_type)
<< SemaRef.Context.getTypeDeclType(OwnedTagDecl);
D.setInvalidType(true);
break;
case Declarator::ConditionContext:
// C++ 6.4p2:
// The type-specifier-seq shall not contain typedef and shall not declare
// a new class or enumeration.
SemaRef.Diag(OwnedTagDecl->getLocation(),
diag::err_type_defined_in_condition);
D.setInvalidType(true);
break;
}
}
assert(!T.isNull() && "This function should not return a null type");
return T;
}
/// Produce an appropriate diagnostic for an ambiguity between a function
/// declarator and a C++ direct-initializer.
static void warnAboutAmbiguousFunction(Sema &S, Declarator &D,
DeclaratorChunk &DeclType, QualType RT) {
const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
assert(FTI.isAmbiguous && "no direct-initializer / function ambiguity");
// If the return type is void there is no ambiguity.
if (RT->isVoidType())
return;
// An initializer for a non-class type can have at most one argument.
if (!RT->isRecordType() && FTI.NumParams > 1)
return;
// An initializer for a reference must have exactly one argument.
if (RT->isReferenceType() && FTI.NumParams != 1)
return;
// Only warn if this declarator is declaring a function at block scope, and
// doesn't have a storage class (such as 'extern') specified.
if (!D.isFunctionDeclarator() ||
D.getFunctionDefinitionKind() != FDK_Declaration ||
!S.CurContext->isFunctionOrMethod() ||
D.getDeclSpec().getStorageClassSpec()
!= DeclSpec::SCS_unspecified)
return;
// Inside a condition, a direct initializer is not permitted. We allow one to
// be parsed in order to give better diagnostics in condition parsing.
if (D.getContext() == Declarator::ConditionContext)
return;
SourceRange ParenRange(DeclType.Loc, DeclType.EndLoc);
S.Diag(DeclType.Loc,
FTI.NumParams ? diag::warn_parens_disambiguated_as_function_declaration
: diag::warn_empty_parens_are_function_decl)
<< ParenRange;
// If the declaration looks like:
// T var1,
// f();
// and name lookup finds a function named 'f', then the ',' was
// probably intended to be a ';'.
if (!D.isFirstDeclarator() && D.getIdentifier()) {
FullSourceLoc Comma(D.getCommaLoc(), S.SourceMgr);
FullSourceLoc Name(D.getIdentifierLoc(), S.SourceMgr);
if (Comma.getFileID() != Name.getFileID() ||
Comma.getSpellingLineNumber() != Name.getSpellingLineNumber()) {
LookupResult Result(S, D.getIdentifier(), SourceLocation(),
Sema::LookupOrdinaryName);
if (S.LookupName(Result, S.getCurScope()))
S.Diag(D.getCommaLoc(), diag::note_empty_parens_function_call)
<< FixItHint::CreateReplacement(D.getCommaLoc(), ";")
<< D.getIdentifier();
}
}
if (FTI.NumParams > 0) {
// For a declaration with parameters, eg. "T var(T());", suggest adding
// parens around the first parameter to turn the declaration into a
// variable declaration.
SourceRange Range = FTI.Params[0].Param->getSourceRange();
SourceLocation B = Range.getBegin();
SourceLocation E = S.getLocForEndOfToken(Range.getEnd());
// FIXME: Maybe we should suggest adding braces instead of parens
// in C++11 for classes that don't have an initializer_list constructor.
S.Diag(B, diag::note_additional_parens_for_variable_declaration)
<< FixItHint::CreateInsertion(B, "(")
<< FixItHint::CreateInsertion(E, ")");
} else {
// For a declaration without parameters, eg. "T var();", suggest replacing
// the parens with an initializer to turn the declaration into a variable
// declaration.
const CXXRecordDecl *RD = RT->getAsCXXRecordDecl();
// Empty parens mean value-initialization, and no parens mean
// default initialization. These are equivalent if the default
// constructor is user-provided or if zero-initialization is a
// no-op.
if (RD && RD->hasDefinition() &&
(RD->isEmpty() || RD->hasUserProvidedDefaultConstructor()))
S.Diag(DeclType.Loc, diag::note_empty_parens_default_ctor)
<< FixItHint::CreateRemoval(ParenRange);
else {
std::string Init =
S.getFixItZeroInitializerForType(RT, ParenRange.getBegin());
if (Init.empty() && S.LangOpts.CPlusPlus11)
Init = "{}";
if (!Init.empty())
S.Diag(DeclType.Loc, diag::note_empty_parens_zero_initialize)
<< FixItHint::CreateReplacement(ParenRange, Init);
}
}
}
/// Helper for figuring out the default CC for a function declarator type. If
/// this is the outermost chunk, then we can determine the CC from the
/// declarator context. If not, then this could be either a member function
/// type or normal function type.
static CallingConv
getCCForDeclaratorChunk(Sema &S, Declarator &D,
const DeclaratorChunk::FunctionTypeInfo &FTI,
unsigned ChunkIndex) {
assert(D.getTypeObject(ChunkIndex).Kind == DeclaratorChunk::Function);
bool IsCXXInstanceMethod = false;
if (S.getLangOpts().CPlusPlus) {
// Look inwards through parentheses to see if this chunk will form a
// member pointer type or if we're the declarator. Any type attributes
// between here and there will override the CC we choose here.
unsigned I = ChunkIndex;
bool FoundNonParen = false;
while (I && !FoundNonParen) {
--I;
if (D.getTypeObject(I).Kind != DeclaratorChunk::Paren)
FoundNonParen = true;
}
if (FoundNonParen) {
// If we're not the declarator, we're a regular function type unless we're
// in a member pointer.
IsCXXInstanceMethod =
D.getTypeObject(I).Kind == DeclaratorChunk::MemberPointer;
} else if (D.getContext() == Declarator::LambdaExprContext) {
// This can only be a call operator for a lambda, which is an instance
// method.
IsCXXInstanceMethod = true;
} else {
// We're the innermost decl chunk, so must be a function declarator.
assert(D.isFunctionDeclarator());
// If we're inside a record, we're declaring a method, but it could be
// explicitly or implicitly static.
IsCXXInstanceMethod =
D.isFirstDeclarationOfMember() &&
D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
!D.isStaticMember();
}
}
CallingConv CC = S.Context.getDefaultCallingConvention(FTI.isVariadic,
IsCXXInstanceMethod);
// Attribute AT_OpenCLKernel affects the calling convention only on
// the SPIR target, hence it cannot be treated as a calling
// convention attribute. This is the simplest place to infer
// "spir_kernel" for OpenCL kernels on SPIR.
if (CC == CC_SpirFunction) {
for (const AttributeList *Attr = D.getDeclSpec().getAttributes().getList();
Attr; Attr = Attr->getNext()) {
if (Attr->getKind() == AttributeList::AT_OpenCLKernel) {
CC = CC_SpirKernel;
break;
}
}
}
return CC;
}
namespace {
/// A simple notion of pointer kinds, which matches up with the various
/// pointer declarators.
enum class SimplePointerKind {
Pointer,
BlockPointer,
MemberPointer,
};
}
IdentifierInfo *Sema::getNullabilityKeyword(NullabilityKind nullability) {
switch (nullability) {
case NullabilityKind::NonNull:
if (!Ident__Nonnull)
Ident__Nonnull = PP.getIdentifierInfo("_Nonnull");
return Ident__Nonnull;
case NullabilityKind::Nullable:
if (!Ident__Nullable)
Ident__Nullable = PP.getIdentifierInfo("_Nullable");
return Ident__Nullable;
case NullabilityKind::Unspecified:
if (!Ident__Null_unspecified)
Ident__Null_unspecified = PP.getIdentifierInfo("_Null_unspecified");
return Ident__Null_unspecified;
}
llvm_unreachable("Unknown nullability kind.");
}
/// Retrieve the identifier "NSError".
IdentifierInfo *Sema::getNSErrorIdent() {
if (!Ident_NSError)
Ident_NSError = PP.getIdentifierInfo("NSError");
return Ident_NSError;
}
/// Check whether there is a nullability attribute of any kind in the given
/// attribute list.
static bool hasNullabilityAttr(const AttributeList *attrs) {
for (const AttributeList *attr = attrs; attr;
attr = attr->getNext()) {
if (attr->getKind() == AttributeList::AT_TypeNonNull ||
attr->getKind() == AttributeList::AT_TypeNullable ||
attr->getKind() == AttributeList::AT_TypeNullUnspecified)
return true;
}
return false;
}
namespace {
/// Describes the kind of a pointer a declarator describes.
enum class PointerDeclaratorKind {
// Not a pointer.
NonPointer,
// Single-level pointer.
SingleLevelPointer,
// Multi-level pointer (of any pointer kind).
MultiLevelPointer,
// CFFooRef*
MaybePointerToCFRef,
// CFErrorRef*
CFErrorRefPointer,
// NSError**
NSErrorPointerPointer,
};
}
/// Classify the given declarator, whose type-specified is \c type, based on
/// what kind of pointer it refers to.
///
/// This is used to determine the default nullability.
static PointerDeclaratorKind classifyPointerDeclarator(Sema &S,
QualType type,
Declarator &declarator) {
unsigned numNormalPointers = 0;
// For any dependent type, we consider it a non-pointer.
if (type->isDependentType())
return PointerDeclaratorKind::NonPointer;
// Look through the declarator chunks to identify pointers.
for (unsigned i = 0, n = declarator.getNumTypeObjects(); i != n; ++i) {
DeclaratorChunk &chunk = declarator.getTypeObject(i);
switch (chunk.Kind) {
case DeclaratorChunk::Array:
case DeclaratorChunk::Function:
break;
case DeclaratorChunk::BlockPointer:
case DeclaratorChunk::MemberPointer:
return numNormalPointers > 0 ? PointerDeclaratorKind::MultiLevelPointer
: PointerDeclaratorKind::SingleLevelPointer;
case DeclaratorChunk::Paren:
case DeclaratorChunk::Reference:
continue;
case DeclaratorChunk::Pointer:
++numNormalPointers;
if (numNormalPointers > 2)
return PointerDeclaratorKind::MultiLevelPointer;
continue;
}
}
// Then, dig into the type specifier itself.
unsigned numTypeSpecifierPointers = 0;
do {
// Decompose normal pointers.
if (auto ptrType = type->getAs<PointerType>()) {
++numNormalPointers;
if (numNormalPointers > 2)
return PointerDeclaratorKind::MultiLevelPointer;
type = ptrType->getPointeeType();
++numTypeSpecifierPointers;
continue;
}
// Decompose block pointers.
if (type->getAs<BlockPointerType>()) {
return numNormalPointers > 0 ? PointerDeclaratorKind::MultiLevelPointer
: PointerDeclaratorKind::SingleLevelPointer;
}
// Decompose member pointers.
if (type->getAs<MemberPointerType>()) {
return numNormalPointers > 0 ? PointerDeclaratorKind::MultiLevelPointer
: PointerDeclaratorKind::SingleLevelPointer;
}
// Look at Objective-C object pointers.
if (auto objcObjectPtr = type->getAs<ObjCObjectPointerType>()) {
++numNormalPointers;
++numTypeSpecifierPointers;
// If this is NSError**, report that.
if (auto objcClassDecl = objcObjectPtr->getInterfaceDecl()) {
if (objcClassDecl->getIdentifier() == S.getNSErrorIdent() &&
numNormalPointers == 2 && numTypeSpecifierPointers < 2) {
return PointerDeclaratorKind::NSErrorPointerPointer;
}
}
break;
}
// Look at Objective-C class types.
if (auto objcClass = type->getAs<ObjCInterfaceType>()) {
if (objcClass->getInterface()->getIdentifier() == S.getNSErrorIdent()) {
if (numNormalPointers == 2 && numTypeSpecifierPointers < 2)
return PointerDeclaratorKind::NSErrorPointerPointer;;
}
break;
}
// If at this point we haven't seen a pointer, we won't see one.
if (numNormalPointers == 0)
return PointerDeclaratorKind::NonPointer;
if (auto recordType = type->getAs<RecordType>()) {
RecordDecl *recordDecl = recordType->getDecl();
// If this is CFErrorRef*, report it as such.
if (numNormalPointers == 2 && numTypeSpecifierPointers < 2 &&
S.isCFError(recordDecl)) {
return PointerDeclaratorKind::CFErrorRefPointer;
}
break;
}
break;
} while (true);
switch (numNormalPointers) {
case 0:
return PointerDeclaratorKind::NonPointer;
case 1:
return PointerDeclaratorKind::SingleLevelPointer;
case 2:
return PointerDeclaratorKind::MaybePointerToCFRef;
default:
return PointerDeclaratorKind::MultiLevelPointer;
}
}
bool Sema::isCFError(RecordDecl *recordDecl) {
// If we already know about CFError, test it directly.
if (CFError) {
return (CFError == recordDecl);
}
// Check whether this is CFError, which we identify based on being
// bridged to NSError.
if (recordDecl->getTagKind() == TTK_Struct) {
if (auto bridgeAttr = recordDecl->getAttr<ObjCBridgeAttr>()) {
if (bridgeAttr->getBridgedType() == getNSErrorIdent()) {
CFError = recordDecl;
return true;
}
}
}
return false;
}
static FileID getNullabilityCompletenessCheckFileID(Sema &S,
SourceLocation loc) {
// If we're anywhere in a function, method, or closure context, don't perform
// completeness checks.
for (DeclContext *ctx = S.CurContext; ctx; ctx = ctx->getParent()) {
if (ctx->isFunctionOrMethod())
return FileID();
if (ctx->isFileContext())
break;
}
// We only care about the expansion location.
loc = S.SourceMgr.getExpansionLoc(loc);
FileID file = S.SourceMgr.getFileID(loc);
if (file.isInvalid())
return FileID();
// Retrieve file information.
bool invalid = false;
const SrcMgr::SLocEntry &sloc = S.SourceMgr.getSLocEntry(file, &invalid);
if (invalid || !sloc.isFile())
return FileID();
// We don't want to perform completeness checks on the main file or in
// system headers.
const SrcMgr::FileInfo &fileInfo = sloc.getFile();
if (fileInfo.getIncludeLoc().isInvalid())
return FileID();
if (fileInfo.getFileCharacteristic() != SrcMgr::C_User &&
S.Diags.getSuppressSystemWarnings()) {
return FileID();
}
return file;
}
/// Check for consistent use of nullability.
static void checkNullabilityConsistency(TypeProcessingState &state,
SimplePointerKind pointerKind,
SourceLocation pointerLoc) {
Sema &S = state.getSema();
// Determine which file we're performing consistency checking for.
FileID file = getNullabilityCompletenessCheckFileID(S, pointerLoc);
if (file.isInvalid())
return;
// If we haven't seen any type nullability in this file, we won't warn now
// about anything.
FileNullability &fileNullability = S.NullabilityMap[file];
if (!fileNullability.SawTypeNullability) {
// If this is the first pointer declarator in the file, record it.
if (fileNullability.PointerLoc.isInvalid() &&
!S.Context.getDiagnostics().isIgnored(diag::warn_nullability_missing,
pointerLoc)) {
fileNullability.PointerLoc = pointerLoc;
fileNullability.PointerKind = static_cast<unsigned>(pointerKind);
}
return;
}
// Complain about missing nullability.
S.Diag(pointerLoc, diag::warn_nullability_missing)
<< static_cast<unsigned>(pointerKind);
}
static TypeSourceInfo *GetFullTypeForDeclarator(TypeProcessingState &state,
QualType declSpecType,
TypeSourceInfo *TInfo) {
// The TypeSourceInfo that this function returns will not be a null type.
// If there is an error, this function will fill in a dummy type as fallback.
QualType T = declSpecType;
Declarator &D = state.getDeclarator();
Sema &S = state.getSema();
ASTContext &Context = S.Context;
const LangOptions &LangOpts = S.getLangOpts();
// The name we're declaring, if any.
DeclarationName Name;
if (D.getIdentifier())
Name = D.getIdentifier();
// Does this declaration declare a typedef-name?
bool IsTypedefName =
D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef ||
D.getContext() == Declarator::AliasDeclContext ||
D.getContext() == Declarator::AliasTemplateContext;
// Does T refer to a function type with a cv-qualifier or a ref-qualifier?
bool IsQualifiedFunction = T->isFunctionProtoType() &&
(T->castAs<FunctionProtoType>()->getTypeQuals() != 0 ||
T->castAs<FunctionProtoType>()->getRefQualifier() != RQ_None);
// If T is 'decltype(auto)', the only declarators we can have are parens
// and at most one function declarator if this is a function declaration.
if (const AutoType *AT = T->getAs<AutoType>()) {
if (AT->isDecltypeAuto()) {
for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
unsigned Index = E - I - 1;
DeclaratorChunk &DeclChunk = D.getTypeObject(Index);
unsigned DiagId = diag::err_decltype_auto_compound_type;
unsigned DiagKind = 0;
switch (DeclChunk.Kind) {
case DeclaratorChunk::Paren:
continue;
case DeclaratorChunk::Function: {
unsigned FnIndex;
if (D.isFunctionDeclarationContext() &&
D.isFunctionDeclarator(FnIndex) && FnIndex == Index)
continue;
DiagId = diag::err_decltype_auto_function_declarator_not_declaration;
break;
}
case DeclaratorChunk::Pointer:
case DeclaratorChunk::BlockPointer:
case DeclaratorChunk::MemberPointer:
DiagKind = 0;
break;
case DeclaratorChunk::Reference:
DiagKind = 1;
break;
case DeclaratorChunk::Array:
DiagKind = 2;
break;
}
S.Diag(DeclChunk.Loc, DiagId) << DiagKind;
D.setInvalidType(true);
break;
}
}
}
// Determine whether we should infer _Nonnull on pointer types.
Optional<NullabilityKind> inferNullability;
bool inferNullabilityCS = false;
bool inferNullabilityInnerOnly = false;
bool inferNullabilityInnerOnlyComplete = false;
// Are we in an assume-nonnull region?
bool inAssumeNonNullRegion = false;
if (S.PP.getPragmaAssumeNonNullLoc().isValid()) {
inAssumeNonNullRegion = true;
// Determine which file we saw the assume-nonnull region in.
FileID file = getNullabilityCompletenessCheckFileID(
S, S.PP.getPragmaAssumeNonNullLoc());
if (file.isValid()) {
FileNullability &fileNullability = S.NullabilityMap[file];
// If we haven't seen any type nullability before, now we have.
if (!fileNullability.SawTypeNullability) {
if (fileNullability.PointerLoc.isValid()) {
S.Diag(fileNullability.PointerLoc, diag::warn_nullability_missing)
<< static_cast<unsigned>(fileNullability.PointerKind);
}
fileNullability.SawTypeNullability = true;
}
}
}
// Whether to complain about missing nullability specifiers or not.
enum {
/// Never complain.
CAMN_No,
/// Complain on the inner pointers (but not the outermost
/// pointer).
CAMN_InnerPointers,
/// Complain about any pointers that don't have nullability
/// specified or inferred.
CAMN_Yes
} complainAboutMissingNullability = CAMN_No;
unsigned NumPointersRemaining = 0;
if (IsTypedefName) {
// For typedefs, we do not infer any nullability (the default),
// and we only complain about missing nullability specifiers on
// inner pointers.
complainAboutMissingNullability = CAMN_InnerPointers;
if (T->canHaveNullability() && !T->getNullability(S.Context)) {
++NumPointersRemaining;
}
for (unsigned i = 0, n = D.getNumTypeObjects(); i != n; ++i) {
DeclaratorChunk &chunk = D.getTypeObject(i);
switch (chunk.Kind) {
case DeclaratorChunk::Array:
case DeclaratorChunk::Function:
break;
case DeclaratorChunk::BlockPointer:
case DeclaratorChunk::MemberPointer:
++NumPointersRemaining;
break;
case DeclaratorChunk::Paren:
case DeclaratorChunk::Reference:
continue;
case DeclaratorChunk::Pointer:
++NumPointersRemaining;
continue;
}
}
} else {
bool isFunctionOrMethod = false;
switch (auto context = state.getDeclarator().getContext()) {
case Declarator::ObjCParameterContext:
case Declarator::ObjCResultContext:
case Declarator::PrototypeContext:
case Declarator::TrailingReturnContext:
isFunctionOrMethod = true;
// fallthrough
case Declarator::MemberContext:
if (state.getDeclarator().isObjCIvar() && !isFunctionOrMethod) {
complainAboutMissingNullability = CAMN_No;
break;
}
// Weak properties are inferred to be nullable.
if (state.getDeclarator().isObjCWeakProperty() && inAssumeNonNullRegion) {
inferNullability = NullabilityKind::Nullable;
break;
}
// fallthrough
case Declarator::FileContext:
case Declarator::KNRTypeListContext:
complainAboutMissingNullability = CAMN_Yes;
// Nullability inference depends on the type and declarator.
switch (classifyPointerDeclarator(S, T, D)) {
case PointerDeclaratorKind::NonPointer:
case PointerDeclaratorKind::MultiLevelPointer:
// Cannot infer nullability.
break;
case PointerDeclaratorKind::SingleLevelPointer:
// Infer _Nonnull if we are in an assumes-nonnull region.
if (inAssumeNonNullRegion) {
inferNullability = NullabilityKind::NonNull;
inferNullabilityCS = (context == Declarator::ObjCParameterContext ||
context == Declarator::ObjCResultContext);
}
break;
case PointerDeclaratorKind::CFErrorRefPointer:
case PointerDeclaratorKind::NSErrorPointerPointer:
// Within a function or method signature, infer _Nullable at both
// levels.
if (isFunctionOrMethod && inAssumeNonNullRegion)
inferNullability = NullabilityKind::Nullable;
break;
case PointerDeclaratorKind::MaybePointerToCFRef:
if (isFunctionOrMethod) {
// On pointer-to-pointer parameters marked cf_returns_retained or
// cf_returns_not_retained, if the outer pointer is explicit then
// infer the inner pointer as _Nullable.
auto hasCFReturnsAttr = [](const AttributeList *NextAttr) -> bool {
while (NextAttr) {
if (NextAttr->getKind() == AttributeList::AT_CFReturnsRetained ||
NextAttr->getKind() == AttributeList::AT_CFReturnsNotRetained)
return true;
NextAttr = NextAttr->getNext();
}
return false;
};
if (const auto *InnermostChunk = D.getInnermostNonParenChunk()) {
if (hasCFReturnsAttr(D.getAttributes()) ||
hasCFReturnsAttr(InnermostChunk->getAttrs()) ||
hasCFReturnsAttr(D.getDeclSpec().getAttributes().getList())) {
inferNullability = NullabilityKind::Nullable;
inferNullabilityInnerOnly = true;
}
}
}
break;
}
break;
case Declarator::ConversionIdContext:
complainAboutMissingNullability = CAMN_Yes;
break;
case Declarator::AliasDeclContext:
case Declarator::AliasTemplateContext:
case Declarator::BlockContext:
case Declarator::BlockLiteralContext:
case Declarator::ConditionContext:
case Declarator::CXXCatchContext:
case Declarator::CXXNewContext:
case Declarator::ForContext:
case Declarator::LambdaExprContext:
case Declarator::LambdaExprParameterContext:
case Declarator::ObjCCatchContext:
case Declarator::TemplateParamContext:
case Declarator::TemplateTypeArgContext:
case Declarator::TypeNameContext:
// Don't infer in these contexts.
break;
}
}
// Local function that checks the nullability for a given pointer declarator.
// Returns true if _Nonnull was inferred.
auto inferPointerNullability = [&](SimplePointerKind pointerKind,
SourceLocation pointerLoc,
AttributeList *&attrs) -> AttributeList * {
// We've seen a pointer.
if (NumPointersRemaining > 0)
--NumPointersRemaining;
// If a nullability attribute is present, there's nothing to do.
if (hasNullabilityAttr(attrs))
return nullptr;
// If we're supposed to infer nullability, do so now.
if (inferNullability && !inferNullabilityInnerOnlyComplete) {
AttributeList::Syntax syntax
= inferNullabilityCS ? AttributeList::AS_ContextSensitiveKeyword
: AttributeList::AS_Keyword;
AttributeList *nullabilityAttr = state.getDeclarator().getAttributePool()
.create(
S.getNullabilityKeyword(
*inferNullability),
SourceRange(pointerLoc),
nullptr, SourceLocation(),
nullptr, 0, syntax);
spliceAttrIntoList(*nullabilityAttr, attrs);
if (inferNullabilityCS) {
state.getDeclarator().getMutableDeclSpec().getObjCQualifiers()
->setObjCDeclQualifier(ObjCDeclSpec::DQ_CSNullability);
}
if (inferNullabilityInnerOnly)
inferNullabilityInnerOnlyComplete = true;
return nullabilityAttr;
}
// If we're supposed to complain about missing nullability, do so
// now if it's truly missing.
switch (complainAboutMissingNullability) {
case CAMN_No:
break;
case CAMN_InnerPointers:
if (NumPointersRemaining == 0)
break;
// Fallthrough.
case CAMN_Yes:
checkNullabilityConsistency(state, pointerKind, pointerLoc);
}
return nullptr;
};
// If the type itself could have nullability but does not, infer pointer
// nullability and perform consistency checking.
if (T->canHaveNullability() && S.ActiveTemplateInstantiations.empty() &&
!T->getNullability(S.Context)) {
SimplePointerKind pointerKind = SimplePointerKind::Pointer;
if (T->isBlockPointerType())
pointerKind = SimplePointerKind::BlockPointer;
else if (T->isMemberPointerType())
pointerKind = SimplePointerKind::MemberPointer;
if (auto *attr = inferPointerNullability(
pointerKind, D.getDeclSpec().getTypeSpecTypeLoc(),
D.getMutableDeclSpec().getAttributes().getListRef())) {
T = Context.getAttributedType(
AttributedType::getNullabilityAttrKind(*inferNullability), T, T);
attr->setUsedAsTypeAttr();
}
}
// Walk the DeclTypeInfo, building the recursive type as we go.
// DeclTypeInfos are ordered from the identifier out, which is
// opposite of what we want :).
for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
unsigned chunkIndex = e - i - 1;
state.setCurrentChunkIndex(chunkIndex);
DeclaratorChunk &DeclType = D.getTypeObject(chunkIndex);
IsQualifiedFunction &= DeclType.Kind == DeclaratorChunk::Paren;
switch (DeclType.Kind) {
case DeclaratorChunk::Paren:
T = S.BuildParenType(T);
break;
case DeclaratorChunk::BlockPointer:
// If blocks are disabled, emit an error.
if (!LangOpts.Blocks)
S.Diag(DeclType.Loc, diag::err_blocks_disable);
// Handle pointer nullability.
inferPointerNullability(SimplePointerKind::BlockPointer,
DeclType.Loc, DeclType.getAttrListRef());
T = S.BuildBlockPointerType(T, D.getIdentifierLoc(), Name);
if (DeclType.Cls.TypeQuals)
T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Cls.TypeQuals);
break;
case DeclaratorChunk::Pointer:
// Verify that we're not building a pointer to pointer to function with
// exception specification.
if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) {
S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
D.setInvalidType(true);
// Build the type anyway.
}
// Handle pointer nullability
inferPointerNullability(SimplePointerKind::Pointer, DeclType.Loc,
DeclType.getAttrListRef());
if (LangOpts.ObjC1 && T->getAs<ObjCObjectType>()) {
T = Context.getObjCObjectPointerType(T);
if (DeclType.Ptr.TypeQuals)
T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Ptr.TypeQuals);
break;
}
T = S.BuildPointerType(T, DeclType.Loc, Name);
if (DeclType.Ptr.TypeQuals)
T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Ptr.TypeQuals);
break;
case DeclaratorChunk::Reference: {
// Verify that we're not building a reference to pointer to function with
// exception specification.
if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) {
S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
D.setInvalidType(true);
// Build the type anyway.
}
T = S.BuildReferenceType(T, DeclType.Ref.LValueRef, DeclType.Loc, Name);
if (DeclType.Ref.HasRestrict)
T = S.BuildQualifiedType(T, DeclType.Loc, Qualifiers::Restrict);
break;
}
case DeclaratorChunk::Array: {
// Verify that we're not building an array of pointers to function with
// exception specification.
if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) {
S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
D.setInvalidType(true);
// Build the type anyway.
}
DeclaratorChunk::ArrayTypeInfo &ATI = DeclType.Arr;
Expr *ArraySize = static_cast<Expr*>(ATI.NumElts);
ArrayType::ArraySizeModifier ASM;
if (ATI.isStar)
ASM = ArrayType::Star;
else if (ATI.hasStatic)
ASM = ArrayType::Static;
else
ASM = ArrayType::Normal;
if (ASM == ArrayType::Star && !D.isPrototypeContext()) {
// FIXME: This check isn't quite right: it allows star in prototypes
// for function definitions, and disallows some edge cases detailed
// in http://gcc.gnu.org/ml/gcc-patches/2009-02/msg00133.html
S.Diag(DeclType.Loc, diag::err_array_star_outside_prototype);
ASM = ArrayType::Normal;
D.setInvalidType(true);
}
// C99 6.7.5.2p1: The optional type qualifiers and the keyword static
// shall appear only in a declaration of a function parameter with an
// array type, ...
if (ASM == ArrayType::Static || ATI.TypeQuals) {
if (!(D.isPrototypeContext() ||
D.getContext() == Declarator::KNRTypeListContext)) {
S.Diag(DeclType.Loc, diag::err_array_static_outside_prototype) <<
(ASM == ArrayType::Static ? "'static'" : "type qualifier");
// Remove the 'static' and the type qualifiers.
if (ASM == ArrayType::Static)
ASM = ArrayType::Normal;
ATI.TypeQuals = 0;
D.setInvalidType(true);
}
// C99 6.7.5.2p1: ... and then only in the outermost array type
// derivation.
unsigned x = chunkIndex;
while (x != 0) {
// Walk outwards along the declarator chunks.
x--;
const DeclaratorChunk &DC = D.getTypeObject(x);
switch (DC.Kind) {
case DeclaratorChunk::Paren:
continue;
case DeclaratorChunk::Array:
case DeclaratorChunk::Pointer:
case DeclaratorChunk::Reference:
case DeclaratorChunk::MemberPointer:
S.Diag(DeclType.Loc, diag::err_array_static_not_outermost) <<
(ASM == ArrayType::Static ? "'static'" : "type qualifier");
if (ASM == ArrayType::Static)
ASM = ArrayType::Normal;
ATI.TypeQuals = 0;
D.setInvalidType(true);
break;
case DeclaratorChunk::Function:
case DeclaratorChunk::BlockPointer:
// These are invalid anyway, so just ignore.
break;
}
}
}
const AutoType *AT = T->getContainedAutoType();
// Allow arrays of auto if we are a generic lambda parameter.
// i.e. [](auto (&array)[5]) { return array[0]; }; OK
if (AT && D.getContext() != Declarator::LambdaExprParameterContext) {
// We've already diagnosed this for decltype(auto).
if (!AT->isDecltypeAuto())
S.Diag(DeclType.Loc, diag::err_illegal_decl_array_of_auto)
<< getPrintableNameForEntity(Name) << T;
T = QualType();
break;
}
T = S.BuildArrayType(T, ASM, ArraySize, ATI.TypeQuals,
SourceRange(DeclType.Loc, DeclType.EndLoc), Name);
break;
}
case DeclaratorChunk::Function: {
// If the function declarator has a prototype (i.e. it is not () and
// does not have a K&R-style identifier list), then the arguments are part
// of the type, otherwise the argument list is ().
const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
IsQualifiedFunction = FTI.TypeQuals || FTI.hasRefQualifier();
// Check for auto functions and trailing return type and adjust the
// return type accordingly.
if (!D.isInvalidType()) {
// trailing-return-type is only required if we're declaring a function,
// and not, for instance, a pointer to a function.
if (D.getDeclSpec().containsPlaceholderType() &&
!FTI.hasTrailingReturnType() && chunkIndex == 0 &&
!S.getLangOpts().CPlusPlus14) {
S.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto
? diag::err_auto_missing_trailing_return
: diag::err_deduced_return_type);
T = Context.IntTy;
D.setInvalidType(true);
} else if (FTI.hasTrailingReturnType()) {
// T must be exactly 'auto' at this point. See CWG issue 681.
if (isa<ParenType>(T)) {
S.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
diag::err_trailing_return_in_parens)
<< T << D.getDeclSpec().getSourceRange();
D.setInvalidType(true);
} else if (D.getContext() != Declarator::LambdaExprContext &&
(T.hasQualifiers() || !isa<AutoType>(T) ||
cast<AutoType>(T)->isDecltypeAuto())) {
S.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
diag::err_trailing_return_without_auto)
<< T << D.getDeclSpec().getSourceRange();
D.setInvalidType(true);
}
T = S.GetTypeFromParser(FTI.getTrailingReturnType(), &TInfo);
if (T.isNull()) {
// An error occurred parsing the trailing return type.
T = Context.IntTy;
D.setInvalidType(true);
}
}
}
// C99 6.7.5.3p1: The return type may not be a function or array type.
// For conversion functions, we'll diagnose this particular error later.
if ((T->isArrayType() || T->isFunctionType()) &&
(D.getName().getKind() != UnqualifiedId::IK_ConversionFunctionId)) {
unsigned diagID = diag::err_func_returning_array_function;
// Last processing chunk in block context means this function chunk
// represents the block.
if (chunkIndex == 0 &&
D.getContext() == Declarator::BlockLiteralContext)
diagID = diag::err_block_returning_array_function;
S.Diag(DeclType.Loc, diagID) << T->isFunctionType() << T;
T = Context.IntTy;
D.setInvalidType(true);
}
// Do not allow returning half FP value.
// FIXME: This really should be in BuildFunctionType.
if (T->isHalfType()) {
if (S.getLangOpts().OpenCL) {
if (!S.getOpenCLOptions().cl_khr_fp16) {
S.Diag(D.getIdentifierLoc(), diag::err_opencl_half_return) << T;
D.setInvalidType(true);
}
} else if (!S.getLangOpts().HalfArgsAndReturns) {
S.Diag(D.getIdentifierLoc(),
diag::err_parameters_retval_cannot_have_fp16_type) << 1;
D.setInvalidType(true);
}
}
// Methods cannot return interface types. All ObjC objects are
// passed by reference.
if (T->isObjCObjectType()) {
SourceLocation DiagLoc, FixitLoc;
if (TInfo) {
DiagLoc = TInfo->getTypeLoc().getLocStart();
FixitLoc = S.getLocForEndOfToken(TInfo->getTypeLoc().getLocEnd());
} else {
DiagLoc = D.getDeclSpec().getTypeSpecTypeLoc();
FixitLoc = S.getLocForEndOfToken(D.getDeclSpec().getLocEnd());
}
S.Diag(DiagLoc, diag::err_object_cannot_be_passed_returned_by_value)
<< 0 << T
<< FixItHint::CreateInsertion(FixitLoc, "*");
T = Context.getObjCObjectPointerType(T);
if (TInfo) {
TypeLocBuilder TLB;
TLB.pushFullCopy(TInfo->getTypeLoc());
ObjCObjectPointerTypeLoc TLoc = TLB.push<ObjCObjectPointerTypeLoc>(T);
TLoc.setStarLoc(FixitLoc);
TInfo = TLB.getTypeSourceInfo(Context, T);
}
D.setInvalidType(true);
}
// cv-qualifiers on return types are pointless except when the type is a
// class type in C++.
if ((T.getCVRQualifiers() || T->isAtomicType()) &&
!(S.getLangOpts().CPlusPlus &&
(T->isDependentType() || T->isRecordType()))) {
if (T->isVoidType() && !S.getLangOpts().CPlusPlus &&
D.getFunctionDefinitionKind() == FDK_Definition) {
// [6.9.1/3] qualified void return is invalid on a C
// function definition. Apparently ok on declarations and
// in C++ though (!)
S.Diag(DeclType.Loc, diag::err_func_returning_qualified_void) << T;
} else
diagnoseRedundantReturnTypeQualifiers(S, T, D, chunkIndex);
}
// Objective-C ARC ownership qualifiers are ignored on the function
// return type (by type canonicalization). Complain if this attribute
// was written here.
if (T.getQualifiers().hasObjCLifetime()) {
SourceLocation AttrLoc;
if (chunkIndex + 1 < D.getNumTypeObjects()) {
DeclaratorChunk ReturnTypeChunk = D.getTypeObject(chunkIndex + 1);
for (const AttributeList *Attr = ReturnTypeChunk.getAttrs();
Attr; Attr = Attr->getNext()) {
if (Attr->getKind() == AttributeList::AT_ObjCOwnership) {
AttrLoc = Attr->getLoc();
break;
}
}
}
if (AttrLoc.isInvalid()) {
for (const AttributeList *Attr
= D.getDeclSpec().getAttributes().getList();
Attr; Attr = Attr->getNext()) {
if (Attr->getKind() == AttributeList::AT_ObjCOwnership) {
AttrLoc = Attr->getLoc();
break;
}
}
}
if (AttrLoc.isValid()) {
// The ownership attributes are almost always written via
// the predefined
// __strong/__weak/__autoreleasing/__unsafe_unretained.
if (AttrLoc.isMacroID())
AttrLoc = S.SourceMgr.getImmediateExpansionRange(AttrLoc).first;
S.Diag(AttrLoc, diag::warn_arc_lifetime_result_type)
<< T.getQualifiers().getObjCLifetime();
}
}
if (LangOpts.CPlusPlus && D.getDeclSpec().hasTagDefinition()) {
// C++ [dcl.fct]p6:
// Types shall not be defined in return or parameter types.
TagDecl *Tag = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
S.Diag(Tag->getLocation(), diag::err_type_defined_in_result_type)
<< Context.getTypeDeclType(Tag);
}
// Exception specs are not allowed in typedefs. Complain, but add it
// anyway.
if (IsTypedefName && FTI.getExceptionSpecType())
S.Diag(FTI.getExceptionSpecLocBeg(),
diag::err_exception_spec_in_typedef)
<< (D.getContext() == Declarator::AliasDeclContext ||
D.getContext() == Declarator::AliasTemplateContext);
// If we see "T var();" or "T var(T());" at block scope, it is probably
// an attempt to initialize a variable, not a function declaration.
if (FTI.isAmbiguous)
warnAboutAmbiguousFunction(S, D, DeclType, T);
FunctionType::ExtInfo EI(getCCForDeclaratorChunk(S, D, FTI, chunkIndex));
if (!FTI.NumParams && !FTI.isVariadic && !LangOpts.CPlusPlus) {
// Simple void foo(), where the incoming T is the result type.
T = Context.getFunctionNoProtoType(T, EI);
} else {
// We allow a zero-parameter variadic function in C if the
// function is marked with the "overloadable" attribute. Scan
// for this attribute now.
if (!FTI.NumParams && FTI.isVariadic && !LangOpts.CPlusPlus) {
bool Overloadable = false;
for (const AttributeList *Attrs = D.getAttributes();
Attrs; Attrs = Attrs->getNext()) {
if (Attrs->getKind() == AttributeList::AT_Overloadable) {
Overloadable = true;
break;
}
}
if (!Overloadable)
S.Diag(FTI.getEllipsisLoc(), diag::err_ellipsis_first_param);
}
if (FTI.NumParams && FTI.Params[0].Param == nullptr) {
// C99 6.7.5.3p3: Reject int(x,y,z) when it's not a function
// definition.
S.Diag(FTI.Params[0].IdentLoc,
diag::err_ident_list_in_fn_declaration);
D.setInvalidType(true);
// Recover by creating a K&R-style function type.
T = Context.getFunctionNoProtoType(T, EI);
break;
}
FunctionProtoType::ExtProtoInfo EPI;
EPI.ExtInfo = EI;
EPI.Variadic = FTI.isVariadic;
EPI.HasTrailingReturn = FTI.hasTrailingReturnType();
EPI.TypeQuals = FTI.TypeQuals;
EPI.RefQualifier = !FTI.hasRefQualifier()? RQ_None
: FTI.RefQualifierIsLValueRef? RQ_LValue
: RQ_RValue;
// Otherwise, we have a function with a parameter list that is
// potentially variadic.
SmallVector<QualType, 16> ParamTys;
ParamTys.reserve(FTI.NumParams);
SmallVector<bool, 16> ConsumedParameters;
ConsumedParameters.reserve(FTI.NumParams);
bool HasAnyConsumedParameters = false;
for (unsigned i = 0, e = FTI.NumParams; i != e; ++i) {
ParmVarDecl *Param = cast<ParmVarDecl>(FTI.Params[i].Param);
QualType ParamTy = Param->getType();
assert(!ParamTy.isNull() && "Couldn't parse type?");
// Look for 'void'. void is allowed only as a single parameter to a
// function with no other parameters (C99 6.7.5.3p10). We record
// int(void) as a FunctionProtoType with an empty parameter list.
if (ParamTy->isVoidType()) {
// If this is something like 'float(int, void)', reject it. 'void'
// is an incomplete type (C99 6.2.5p19) and function decls cannot
// have parameters of incomplete type.
if (FTI.NumParams != 1 || FTI.isVariadic) {
S.Diag(DeclType.Loc, diag::err_void_only_param);
ParamTy = Context.IntTy;
Param->setType(ParamTy);
} else if (FTI.Params[i].Ident) {
// Reject, but continue to parse 'int(void abc)'.
S.Diag(FTI.Params[i].IdentLoc, diag::err_param_with_void_type);
ParamTy = Context.IntTy;
Param->setType(ParamTy);
} else {
// Reject, but continue to parse 'float(const void)'.
if (ParamTy.hasQualifiers())
S.Diag(DeclType.Loc, diag::err_void_param_qualified);
// Do not add 'void' to the list.
break;
}
} else if (ParamTy->isHalfType()) {
// Disallow half FP parameters.
// FIXME: This really should be in BuildFunctionType.
if (S.getLangOpts().OpenCL) {
if (!S.getOpenCLOptions().cl_khr_fp16) {
S.Diag(Param->getLocation(),
diag::err_opencl_half_param) << ParamTy;
D.setInvalidType();
Param->setInvalidDecl();
}
} else if (!S.getLangOpts().HalfArgsAndReturns) {
S.Diag(Param->getLocation(),
diag::err_parameters_retval_cannot_have_fp16_type) << 0;
D.setInvalidType();
}
} else if (!FTI.hasPrototype) {
if (ParamTy->isPromotableIntegerType()) {
ParamTy = Context.getPromotedIntegerType(ParamTy);
Param->setKNRPromoted(true);
} else if (const BuiltinType* BTy = ParamTy->getAs<BuiltinType>()) {
if (BTy->getKind() == BuiltinType::Float) {
ParamTy = Context.DoubleTy;
Param->setKNRPromoted(true);
}
}
}
if (LangOpts.ObjCAutoRefCount) {
bool Consumed = Param->hasAttr<NSConsumedAttr>();
ConsumedParameters.push_back(Consumed);
HasAnyConsumedParameters |= Consumed;
}
ParamTys.push_back(ParamTy);
}
if (HasAnyConsumedParameters)
EPI.ConsumedParameters = ConsumedParameters.data();
SmallVector<QualType, 4> Exceptions;
SmallVector<ParsedType, 2> DynamicExceptions;
SmallVector<SourceRange, 2> DynamicExceptionRanges;
Expr *NoexceptExpr = nullptr;
if (FTI.getExceptionSpecType() == EST_Dynamic) {
// FIXME: It's rather inefficient to have to split into two vectors
// here.
unsigned N = FTI.NumExceptions;
DynamicExceptions.reserve(N);
DynamicExceptionRanges.reserve(N);
for (unsigned I = 0; I != N; ++I) {
DynamicExceptions.push_back(FTI.Exceptions[I].Ty);
DynamicExceptionRanges.push_back(FTI.Exceptions[I].Range);
}
} else if (FTI.getExceptionSpecType() == EST_ComputedNoexcept) {
NoexceptExpr = FTI.NoexceptExpr;
}
S.checkExceptionSpecification(D.isFunctionDeclarationContext(),
FTI.getExceptionSpecType(),
DynamicExceptions,
DynamicExceptionRanges,
NoexceptExpr,
Exceptions,
EPI.ExceptionSpec);
T = Context.getFunctionType(T, ParamTys, EPI);
}
break;
}
case DeclaratorChunk::MemberPointer:
// The scope spec must refer to a class, or be dependent.
CXXScopeSpec &SS = DeclType.Mem.Scope();
QualType ClsType;
// Handle pointer nullability.
inferPointerNullability(SimplePointerKind::MemberPointer,
DeclType.Loc, DeclType.getAttrListRef());
if (SS.isInvalid()) {
// Avoid emitting extra errors if we already errored on the scope.
D.setInvalidType(true);
} else if (S.isDependentScopeSpecifier(SS) ||
dyn_cast_or_null<CXXRecordDecl>(S.computeDeclContext(SS))) {
NestedNameSpecifier *NNS = SS.getScopeRep();
NestedNameSpecifier *NNSPrefix = NNS->getPrefix();
switch (NNS->getKind()) {
case NestedNameSpecifier::Identifier:
ClsType = Context.getDependentNameType(ETK_None, NNSPrefix,
NNS->getAsIdentifier());
break;
case NestedNameSpecifier::Namespace:
case NestedNameSpecifier::NamespaceAlias:
case NestedNameSpecifier::Global:
case NestedNameSpecifier::Super:
llvm_unreachable("Nested-name-specifier must name a type");
case NestedNameSpecifier::TypeSpec:
case NestedNameSpecifier::TypeSpecWithTemplate:
ClsType = QualType(NNS->getAsType(), 0);
// Note: if the NNS has a prefix and ClsType is a nondependent
// TemplateSpecializationType, then the NNS prefix is NOT included
// in ClsType; hence we wrap ClsType into an ElaboratedType.
// NOTE: in particular, no wrap occurs if ClsType already is an
// Elaborated, DependentName, or DependentTemplateSpecialization.
if (NNSPrefix && isa<TemplateSpecializationType>(NNS->getAsType()))
ClsType = Context.getElaboratedType(ETK_None, NNSPrefix, ClsType);
break;
}
} else {
S.Diag(DeclType.Mem.Scope().getBeginLoc(),
diag::err_illegal_decl_mempointer_in_nonclass)
<< (D.getIdentifier() ? D.getIdentifier()->getName() : "type name")
<< DeclType.Mem.Scope().getRange();
D.setInvalidType(true);
}
if (!ClsType.isNull())
T = S.BuildMemberPointerType(T, ClsType, DeclType.Loc,
D.getIdentifier());
if (T.isNull()) {
T = Context.IntTy;
D.setInvalidType(true);
} else if (DeclType.Mem.TypeQuals) {
T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Mem.TypeQuals);
}
break;
}
if (T.isNull()) {
D.setInvalidType(true);
T = Context.IntTy;
}
// See if there are any attributes on this declarator chunk.
if (AttributeList *attrs = const_cast<AttributeList*>(DeclType.getAttrs()))
processTypeAttrs(state, T, TAL_DeclChunk, attrs);
}
assert(!T.isNull() && "T must not be null after this point");
if (LangOpts.CPlusPlus && T->isFunctionType()) {
const FunctionProtoType *FnTy = T->getAs<FunctionProtoType>();
assert(FnTy && "Why oh why is there not a FunctionProtoType here?");
// C++ 8.3.5p4:
// A cv-qualifier-seq shall only be part of the function type
// for a nonstatic member function, the function type to which a pointer
// to member refers, or the top-level function type of a function typedef
// declaration.
//
// Core issue 547 also allows cv-qualifiers on function types that are
// top-level template type arguments.
bool FreeFunction;
if (!D.getCXXScopeSpec().isSet()) {
FreeFunction = ((D.getContext() != Declarator::MemberContext &&
D.getContext() != Declarator::LambdaExprContext) ||
D.getDeclSpec().isFriendSpecified());
} else {
DeclContext *DC = S.computeDeclContext(D.getCXXScopeSpec());
FreeFunction = (DC && !DC->isRecord());
}
// C++11 [dcl.fct]p6 (w/DR1417):
// An attempt to specify a function type with a cv-qualifier-seq or a
// ref-qualifier (including by typedef-name) is ill-formed unless it is:
// - the function type for a non-static member function,
// - the function type to which a pointer to member refers,
// - the top-level function type of a function typedef declaration or
// alias-declaration,
// - the type-id in the default argument of a type-parameter, or
// - the type-id of a template-argument for a type-parameter
//
// FIXME: Checking this here is insufficient. We accept-invalid on:
//
// template<typename T> struct S { void f(T); };
// S<int() const> s;
//
// ... for instance.
if (IsQualifiedFunction &&
!(!FreeFunction &&
D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static) &&
!IsTypedefName &&
D.getContext() != Declarator::TemplateTypeArgContext) {
SourceLocation Loc = D.getLocStart();
SourceRange RemovalRange;
unsigned I;
if (D.isFunctionDeclarator(I)) {
SmallVector<SourceLocation, 4> RemovalLocs;
const DeclaratorChunk &Chunk = D.getTypeObject(I);
assert(Chunk.Kind == DeclaratorChunk::Function);
if (Chunk.Fun.hasRefQualifier())
RemovalLocs.push_back(Chunk.Fun.getRefQualifierLoc());
if (Chunk.Fun.TypeQuals & Qualifiers::Const)
RemovalLocs.push_back(Chunk.Fun.getConstQualifierLoc());
if (Chunk.Fun.TypeQuals & Qualifiers::Volatile)
RemovalLocs.push_back(Chunk.Fun.getVolatileQualifierLoc());
if (Chunk.Fun.TypeQuals & Qualifiers::Restrict)
RemovalLocs.push_back(Chunk.Fun.getRestrictQualifierLoc());
if (!RemovalLocs.empty()) {
std::sort(RemovalLocs.begin(), RemovalLocs.end(),
BeforeThanCompare<SourceLocation>(S.getSourceManager()));
RemovalRange = SourceRange(RemovalLocs.front(), RemovalLocs.back());
Loc = RemovalLocs.front();
}
}
S.Diag(Loc, diag::err_invalid_qualified_function_type)
<< FreeFunction << D.isFunctionDeclarator() << T
<< getFunctionQualifiersAsString(FnTy)
<< FixItHint::CreateRemoval(RemovalRange);
// Strip the cv-qualifiers and ref-qualifiers from the type.
FunctionProtoType::ExtProtoInfo EPI = FnTy->getExtProtoInfo();
EPI.TypeQuals = 0;
EPI.RefQualifier = RQ_None;
T = Context.getFunctionType(FnTy->getReturnType(), FnTy->getParamTypes(),
EPI);
// Rebuild any parens around the identifier in the function type.
for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
if (D.getTypeObject(i).Kind != DeclaratorChunk::Paren)
break;
T = S.BuildParenType(T);
}
}
}
// Apply any undistributed attributes from the declarator.
if (AttributeList *attrs = D.getAttributes())
processTypeAttrs(state, T, TAL_DeclName, attrs);
// Diagnose any ignored type attributes.
state.diagnoseIgnoredTypeAttrs(T);
// C++0x [dcl.constexpr]p9:
// A constexpr specifier used in an object declaration declares the object
// as const.
if (D.getDeclSpec().isConstexprSpecified() && T->isObjectType()) {
T.addConst();
}
// If there was an ellipsis in the declarator, the declaration declares a
// parameter pack whose type may be a pack expansion type.
if (D.hasEllipsis()) {
// C++0x [dcl.fct]p13:
// A declarator-id or abstract-declarator containing an ellipsis shall
// only be used in a parameter-declaration. Such a parameter-declaration
// is a parameter pack (14.5.3). [...]
switch (D.getContext()) {
case Declarator::PrototypeContext:
case Declarator::LambdaExprParameterContext:
// C++0x [dcl.fct]p13:
// [...] When it is part of a parameter-declaration-clause, the
// parameter pack is a function parameter pack (14.5.3). The type T
// of the declarator-id of the function parameter pack shall contain
// a template parameter pack; each template parameter pack in T is
// expanded by the function parameter pack.
//
// We represent function parameter packs as function parameters whose
// type is a pack expansion.
if (!T->containsUnexpandedParameterPack()) {
S.Diag(D.getEllipsisLoc(),
diag::err_function_parameter_pack_without_parameter_packs)
<< T << D.getSourceRange();
D.setEllipsisLoc(SourceLocation());
} else {
T = Context.getPackExpansionType(T, None);
}
break;
case Declarator::TemplateParamContext:
// C++0x [temp.param]p15:
// If a template-parameter is a [...] is a parameter-declaration that
// declares a parameter pack (8.3.5), then the template-parameter is a
// template parameter pack (14.5.3).
//
// Note: core issue 778 clarifies that, if there are any unexpanded
// parameter packs in the type of the non-type template parameter, then
// it expands those parameter packs.
if (T->containsUnexpandedParameterPack())
T = Context.getPackExpansionType(T, None);
else
S.Diag(D.getEllipsisLoc(),
LangOpts.CPlusPlus11
? diag::warn_cxx98_compat_variadic_templates
: diag::ext_variadic_templates);
break;
case Declarator::FileContext:
case Declarator::KNRTypeListContext:
case Declarator::ObjCParameterContext: // FIXME: special diagnostic here?
case Declarator::ObjCResultContext: // FIXME: special diagnostic here?
case Declarator::TypeNameContext:
case Declarator::CXXNewContext:
case Declarator::AliasDeclContext:
case Declarator::AliasTemplateContext:
case Declarator::MemberContext:
case Declarator::BlockContext:
case Declarator::ForContext:
case Declarator::ConditionContext:
case Declarator::CXXCatchContext:
case Declarator::ObjCCatchContext:
case Declarator::BlockLiteralContext:
case Declarator::LambdaExprContext:
case Declarator::ConversionIdContext:
case Declarator::TrailingReturnContext:
case Declarator::TemplateTypeArgContext:
// FIXME: We may want to allow parameter packs in block-literal contexts
// in the future.
S.Diag(D.getEllipsisLoc(),
diag::err_ellipsis_in_declarator_not_parameter);
D.setEllipsisLoc(SourceLocation());
break;
}
}
assert(!T.isNull() && "T must not be null at the end of this function");
if (D.isInvalidType())
return Context.getTrivialTypeSourceInfo(T);
return S.GetTypeSourceInfoForDeclarator(D, T, TInfo);
}
/// GetTypeForDeclarator - Convert the type for the specified
/// declarator to Type instances.
///
/// The result of this call will never be null, but the associated
/// type may be a null type if there's an unrecoverable error.
TypeSourceInfo *Sema::GetTypeForDeclarator(Declarator &D, Scope *S) {
// Determine the type of the declarator. Not all forms of declarator
// have a type.
TypeProcessingState state(*this, D);
TypeSourceInfo *ReturnTypeInfo = nullptr;
QualType T = GetDeclSpecTypeForDeclarator(state, ReturnTypeInfo);
if (D.isPrototypeContext() && getLangOpts().ObjCAutoRefCount)
inferARCWriteback(state, T);
return GetFullTypeForDeclarator(state, T, ReturnTypeInfo);
}
static void transferARCOwnershipToDeclSpec(Sema &S,
QualType &declSpecTy,
Qualifiers::ObjCLifetime ownership) {
if (declSpecTy->isObjCRetainableType() &&
declSpecTy.getObjCLifetime() == Qualifiers::OCL_None) {
Qualifiers qs;
qs.addObjCLifetime(ownership);
declSpecTy = S.Context.getQualifiedType(declSpecTy, qs);
}
}
static void transferARCOwnershipToDeclaratorChunk(TypeProcessingState &state,
Qualifiers::ObjCLifetime ownership,
unsigned chunkIndex) {
Sema &S = state.getSema();
Declarator &D = state.getDeclarator();
// Look for an explicit lifetime attribute.
DeclaratorChunk &chunk = D.getTypeObject(chunkIndex);
for (const AttributeList *attr = chunk.getAttrs(); attr;
attr = attr->getNext())
if (attr->getKind() == AttributeList::AT_ObjCOwnership)
return;
const char *attrStr = nullptr;
switch (ownership) {
case Qualifiers::OCL_None: llvm_unreachable("no ownership!");
case Qualifiers::OCL_ExplicitNone: attrStr = "none"; break;
case Qualifiers::OCL_Strong: attrStr = "strong"; break;
case Qualifiers::OCL_Weak: attrStr = "weak"; break;
case Qualifiers::OCL_Autoreleasing: attrStr = "autoreleasing"; break;
}
IdentifierLoc *Arg = new (S.Context) IdentifierLoc;
Arg->Ident = &S.Context.Idents.get(attrStr);
Arg->Loc = SourceLocation();
ArgsUnion Args(Arg);
// If there wasn't one, add one (with an invalid source location
// so that we don't make an AttributedType for it).
AttributeList *attr = D.getAttributePool()
.create(&S.Context.Idents.get("objc_ownership"), SourceLocation(),
/*scope*/ nullptr, SourceLocation(),
/*args*/ &Args, 1, AttributeList::AS_GNU);
spliceAttrIntoList(*attr, chunk.getAttrListRef());
// TODO: mark whether we did this inference?
}
/// \brief Used for transferring ownership in casts resulting in l-values.
static void transferARCOwnership(TypeProcessingState &state,
QualType &declSpecTy,
Qualifiers::ObjCLifetime ownership) {
Sema &S = state.getSema();
Declarator &D = state.getDeclarator();
int inner = -1;
bool hasIndirection = false;
for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
DeclaratorChunk &chunk = D.getTypeObject(i);
switch (chunk.Kind) {
case DeclaratorChunk::Paren:
// Ignore parens.
break;
case DeclaratorChunk::Array:
case DeclaratorChunk::Reference:
case DeclaratorChunk::Pointer:
if (inner != -1)
hasIndirection = true;
inner = i;
break;
case DeclaratorChunk::BlockPointer:
if (inner != -1)
transferARCOwnershipToDeclaratorChunk(state, ownership, i);
return;
case DeclaratorChunk::Function:
case DeclaratorChunk::MemberPointer:
return;
}
}
if (inner == -1)
return;
DeclaratorChunk &chunk = D.getTypeObject(inner);
if (chunk.Kind == DeclaratorChunk::Pointer) {
if (declSpecTy->isObjCRetainableType())
return transferARCOwnershipToDeclSpec(S, declSpecTy, ownership);
if (declSpecTy->isObjCObjectType() && hasIndirection)
return transferARCOwnershipToDeclaratorChunk(state, ownership, inner);
} else {
assert(chunk.Kind == DeclaratorChunk::Array ||
chunk.Kind == DeclaratorChunk::Reference);
return transferARCOwnershipToDeclSpec(S, declSpecTy, ownership);
}
}
TypeSourceInfo *Sema::GetTypeForDeclaratorCast(Declarator &D, QualType FromTy) {
TypeProcessingState state(*this, D);
TypeSourceInfo *ReturnTypeInfo = nullptr;
QualType declSpecTy = GetDeclSpecTypeForDeclarator(state, ReturnTypeInfo);
if (getLangOpts().ObjC1) {
Qualifiers::ObjCLifetime ownership = Context.getInnerObjCOwnership(FromTy);
if (ownership != Qualifiers::OCL_None)
transferARCOwnership(state, declSpecTy, ownership);
}
return GetFullTypeForDeclarator(state, declSpecTy, ReturnTypeInfo);
}
/// Map an AttributedType::Kind to an AttributeList::Kind.
static AttributeList::Kind getAttrListKind(AttributedType::Kind kind) {
switch (kind) {
case AttributedType::attr_address_space:
return AttributeList::AT_AddressSpace;
case AttributedType::attr_regparm:
return AttributeList::AT_Regparm;
case AttributedType::attr_vector_size:
return AttributeList::AT_VectorSize;
case AttributedType::attr_neon_vector_type:
return AttributeList::AT_NeonVectorType;
case AttributedType::attr_neon_polyvector_type:
return AttributeList::AT_NeonPolyVectorType;
case AttributedType::attr_objc_gc:
return AttributeList::AT_ObjCGC;
case AttributedType::attr_objc_ownership:
case AttributedType::attr_objc_inert_unsafe_unretained:
return AttributeList::AT_ObjCOwnership;
case AttributedType::attr_noreturn:
return AttributeList::AT_NoReturn;
case AttributedType::attr_cdecl:
return AttributeList::AT_CDecl;
case AttributedType::attr_fastcall:
return AttributeList::AT_FastCall;
case AttributedType::attr_stdcall:
return AttributeList::AT_StdCall;
case AttributedType::attr_thiscall:
return AttributeList::AT_ThisCall;
case AttributedType::attr_pascal:
return AttributeList::AT_Pascal;
case AttributedType::attr_vectorcall:
return AttributeList::AT_VectorCall;
case AttributedType::attr_pcs:
case AttributedType::attr_pcs_vfp:
return AttributeList::AT_Pcs;
case AttributedType::attr_inteloclbicc:
return AttributeList::AT_IntelOclBicc;
case AttributedType::attr_ms_abi:
return AttributeList::AT_MSABI;
case AttributedType::attr_sysv_abi:
return AttributeList::AT_SysVABI;
case AttributedType::attr_ptr32:
return AttributeList::AT_Ptr32;
case AttributedType::attr_ptr64:
return AttributeList::AT_Ptr64;
case AttributedType::attr_sptr:
return AttributeList::AT_SPtr;
case AttributedType::attr_uptr:
return AttributeList::AT_UPtr;
case AttributedType::attr_nonnull:
return AttributeList::AT_TypeNonNull;
case AttributedType::attr_nullable:
return AttributeList::AT_TypeNullable;
case AttributedType::attr_null_unspecified:
return AttributeList::AT_TypeNullUnspecified;
case AttributedType::attr_objc_kindof:
return AttributeList::AT_ObjCKindOf;
}
llvm_unreachable("unexpected attribute kind!");
}
static void fillAttributedTypeLoc(AttributedTypeLoc TL,
const AttributeList *attrs,
const AttributeList *DeclAttrs = nullptr) {
// DeclAttrs and attrs cannot be both empty.
assert((attrs || DeclAttrs) &&
"no type attributes in the expected location!");
AttributeList::Kind parsedKind = getAttrListKind(TL.getAttrKind());
// Try to search for an attribute of matching kind in attrs list.
while (attrs && attrs->getKind() != parsedKind)
attrs = attrs->getNext();
if (!attrs) {
// No matching type attribute in attrs list found.
// Try searching through C++11 attributes in the declarator attribute list.
while (DeclAttrs && (!DeclAttrs->isCXX11Attribute() ||
DeclAttrs->getKind() != parsedKind))
DeclAttrs = DeclAttrs->getNext();
attrs = DeclAttrs;
}
assert(attrs && "no matching type attribute in expected location!");
TL.setAttrNameLoc(attrs->getLoc());
if (TL.hasAttrExprOperand()) {
assert(attrs->isArgExpr(0) && "mismatched attribute operand kind");
TL.setAttrExprOperand(attrs->getArgAsExpr(0));
} else if (TL.hasAttrEnumOperand()) {
assert((attrs->isArgIdent(0) || attrs->isArgExpr(0)) &&
"unexpected attribute operand kind");
if (attrs->isArgIdent(0))
TL.setAttrEnumOperandLoc(attrs->getArgAsIdent(0)->Loc);
else
TL.setAttrEnumOperandLoc(attrs->getArgAsExpr(0)->getExprLoc());
}
// FIXME: preserve this information to here.
if (TL.hasAttrOperand())
TL.setAttrOperandParensRange(SourceRange());
}
namespace {
class TypeSpecLocFiller : public TypeLocVisitor<TypeSpecLocFiller> {
ASTContext &Context;
const DeclSpec &DS;
public:
TypeSpecLocFiller(ASTContext &Context, const DeclSpec &DS)
: Context(Context), DS(DS) {}
void VisitAttributedTypeLoc(AttributedTypeLoc TL) {
fillAttributedTypeLoc(TL, DS.getAttributes().getList());
Visit(TL.getModifiedLoc());
}
void VisitQualifiedTypeLoc(QualifiedTypeLoc TL) {
Visit(TL.getUnqualifiedLoc());
}
void VisitTypedefTypeLoc(TypedefTypeLoc TL) {
TL.setNameLoc(DS.getTypeSpecTypeLoc());
}
void VisitObjCInterfaceTypeLoc(ObjCInterfaceTypeLoc TL) {
TL.setNameLoc(DS.getTypeSpecTypeLoc());
// FIXME. We should have DS.getTypeSpecTypeEndLoc(). But, it requires
// addition field. What we have is good enough for dispay of location
// of 'fixit' on interface name.
TL.setNameEndLoc(DS.getLocEnd());
}
void VisitObjCObjectTypeLoc(ObjCObjectTypeLoc TL) {
TypeSourceInfo *RepTInfo = nullptr;
Sema::GetTypeFromParser(DS.getRepAsType(), &RepTInfo);
TL.copy(RepTInfo->getTypeLoc());
}
void VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) {
TypeSourceInfo *RepTInfo = nullptr;
Sema::GetTypeFromParser(DS.getRepAsType(), &RepTInfo);
TL.copy(RepTInfo->getTypeLoc());
}
void VisitTemplateSpecializationTypeLoc(TemplateSpecializationTypeLoc TL) {
TypeSourceInfo *TInfo = nullptr;
Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
// If we got no declarator info from previous Sema routines,
// just fill with the typespec loc.
if (!TInfo) {
TL.initialize(Context, DS.getTypeSpecTypeNameLoc());
return;
}
TypeLoc OldTL = TInfo->getTypeLoc();
if (TInfo->getType()->getAs<ElaboratedType>()) {
ElaboratedTypeLoc ElabTL = OldTL.castAs<ElaboratedTypeLoc>();
TemplateSpecializationTypeLoc NamedTL = ElabTL.getNamedTypeLoc()
.castAs<TemplateSpecializationTypeLoc>();
TL.copy(NamedTL);
} else {
TL.copy(OldTL.castAs<TemplateSpecializationTypeLoc>());
assert(TL.getRAngleLoc() == OldTL.castAs<TemplateSpecializationTypeLoc>().getRAngleLoc());
}
}
void VisitTypeOfExprTypeLoc(TypeOfExprTypeLoc TL) {
assert(DS.getTypeSpecType() == DeclSpec::TST_typeofExpr);
TL.setTypeofLoc(DS.getTypeSpecTypeLoc());
TL.setParensRange(DS.getTypeofParensRange());
}
void VisitTypeOfTypeLoc(TypeOfTypeLoc TL) {
assert(DS.getTypeSpecType() == DeclSpec::TST_typeofType);
TL.setTypeofLoc(DS.getTypeSpecTypeLoc());
TL.setParensRange(DS.getTypeofParensRange());
assert(DS.getRepAsType());
TypeSourceInfo *TInfo = nullptr;
Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
TL.setUnderlyingTInfo(TInfo);
}
void VisitUnaryTransformTypeLoc(UnaryTransformTypeLoc TL) {
// FIXME: This holds only because we only have one unary transform.
assert(DS.getTypeSpecType() == DeclSpec::TST_underlyingType);
TL.setKWLoc(DS.getTypeSpecTypeLoc());
TL.setParensRange(DS.getTypeofParensRange());
assert(DS.getRepAsType());
TypeSourceInfo *TInfo = nullptr;
Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
TL.setUnderlyingTInfo(TInfo);
}
void VisitBuiltinTypeLoc(BuiltinTypeLoc TL) {
// By default, use the source location of the type specifier.
TL.setBuiltinLoc(DS.getTypeSpecTypeLoc());
if (TL.needsExtraLocalData()) {
// Set info for the written builtin specifiers.
TL.getWrittenBuiltinSpecs() = DS.getWrittenBuiltinSpecs();
// Try to have a meaningful source location.
if (TL.getWrittenSignSpec() != TSS_unspecified)
// Sign spec loc overrides the others (e.g., 'unsigned long').
TL.setBuiltinLoc(DS.getTypeSpecSignLoc());
else if (TL.getWrittenWidthSpec() != TSW_unspecified)
// Width spec loc overrides type spec loc (e.g., 'short int').
TL.setBuiltinLoc(DS.getTypeSpecWidthLoc());
}
}
void VisitElaboratedTypeLoc(ElaboratedTypeLoc TL) {
ElaboratedTypeKeyword Keyword
= TypeWithKeyword::getKeywordForTypeSpec(DS.getTypeSpecType());
if (DS.getTypeSpecType() == TST_typename) {
TypeSourceInfo *TInfo = nullptr;
Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
if (TInfo) {
TL.copy(TInfo->getTypeLoc().castAs<ElaboratedTypeLoc>());
return;
}
}
TL.setElaboratedKeywordLoc(Keyword != ETK_None
? DS.getTypeSpecTypeLoc()
: SourceLocation());
const CXXScopeSpec& SS = DS.getTypeSpecScope();
TL.setQualifierLoc(SS.getWithLocInContext(Context));
Visit(TL.getNextTypeLoc().getUnqualifiedLoc());
}
void VisitDependentNameTypeLoc(DependentNameTypeLoc TL) {
assert(DS.getTypeSpecType() == TST_typename);
TypeSourceInfo *TInfo = nullptr;
Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
assert(TInfo);
TL.copy(TInfo->getTypeLoc().castAs<DependentNameTypeLoc>());
}
void VisitDependentTemplateSpecializationTypeLoc(
DependentTemplateSpecializationTypeLoc TL) {
assert(DS.getTypeSpecType() == TST_typename);
TypeSourceInfo *TInfo = nullptr;
Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
assert(TInfo);
TL.copy(
TInfo->getTypeLoc().castAs<DependentTemplateSpecializationTypeLoc>());
}
void VisitTagTypeLoc(TagTypeLoc TL) {
TL.setNameLoc(DS.getTypeSpecTypeNameLoc());
}
void VisitAtomicTypeLoc(AtomicTypeLoc TL) {
// An AtomicTypeLoc can come from either an _Atomic(...) type specifier
// or an _Atomic qualifier.
if (DS.getTypeSpecType() == DeclSpec::TST_atomic) {
TL.setKWLoc(DS.getTypeSpecTypeLoc());
TL.setParensRange(DS.getTypeofParensRange());
TypeSourceInfo *TInfo = nullptr;
Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
assert(TInfo);
TL.getValueLoc().initializeFullCopy(TInfo->getTypeLoc());
} else {
TL.setKWLoc(DS.getAtomicSpecLoc());
// No parens, to indicate this was spelled as an _Atomic qualifier.
TL.setParensRange(SourceRange());
Visit(TL.getValueLoc());
}
}
void VisitTypeLoc(TypeLoc TL) {
// FIXME: add other typespec types and change this to an assert.
TL.initialize(Context, DS.getTypeSpecTypeLoc());
}
};
class DeclaratorLocFiller : public TypeLocVisitor<DeclaratorLocFiller> {
ASTContext &Context;
const DeclaratorChunk &Chunk;
public:
DeclaratorLocFiller(ASTContext &Context, const DeclaratorChunk &Chunk)
: Context(Context), Chunk(Chunk) {}
void VisitQualifiedTypeLoc(QualifiedTypeLoc TL) {
llvm_unreachable("qualified type locs not expected here!");
}
void VisitDecayedTypeLoc(DecayedTypeLoc TL) {
llvm_unreachable("decayed type locs not expected here!");
}
void VisitAttributedTypeLoc(AttributedTypeLoc TL) {
fillAttributedTypeLoc(TL, Chunk.getAttrs());
}
void VisitAdjustedTypeLoc(AdjustedTypeLoc TL) {
// nothing
}
void VisitBlockPointerTypeLoc(BlockPointerTypeLoc TL) {
assert(Chunk.Kind == DeclaratorChunk::BlockPointer);
TL.setCaretLoc(Chunk.Loc);
}
void VisitPointerTypeLoc(PointerTypeLoc TL) {
assert(Chunk.Kind == DeclaratorChunk::Pointer);
TL.setStarLoc(Chunk.Loc);
}
void VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) {
assert(Chunk.Kind == DeclaratorChunk::Pointer);
TL.setStarLoc(Chunk.Loc);
}
void VisitMemberPointerTypeLoc(MemberPointerTypeLoc TL) {
assert(Chunk.Kind == DeclaratorChunk::MemberPointer);
const CXXScopeSpec& SS = Chunk.Mem.Scope();
NestedNameSpecifierLoc NNSLoc = SS.getWithLocInContext(Context);
const Type* ClsTy = TL.getClass();
QualType ClsQT = QualType(ClsTy, 0);
TypeSourceInfo *ClsTInfo = Context.CreateTypeSourceInfo(ClsQT, 0);
// Now copy source location info into the type loc component.
TypeLoc ClsTL = ClsTInfo->getTypeLoc();
switch (NNSLoc.getNestedNameSpecifier()->getKind()) {
case NestedNameSpecifier::Identifier:
assert(isa<DependentNameType>(ClsTy) && "Unexpected TypeLoc");
{
DependentNameTypeLoc DNTLoc = ClsTL.castAs<DependentNameTypeLoc>();
DNTLoc.setElaboratedKeywordLoc(SourceLocation());
DNTLoc.setQualifierLoc(NNSLoc.getPrefix());
DNTLoc.setNameLoc(NNSLoc.getLocalBeginLoc());
}
break;
case NestedNameSpecifier::TypeSpec:
case NestedNameSpecifier::TypeSpecWithTemplate:
if (isa<ElaboratedType>(ClsTy)) {
ElaboratedTypeLoc ETLoc = ClsTL.castAs<ElaboratedTypeLoc>();
ETLoc.setElaboratedKeywordLoc(SourceLocation());
ETLoc.setQualifierLoc(NNSLoc.getPrefix());
TypeLoc NamedTL = ETLoc.getNamedTypeLoc();
NamedTL.initializeFullCopy(NNSLoc.getTypeLoc());
} else {
ClsTL.initializeFullCopy(NNSLoc.getTypeLoc());
}
break;
case NestedNameSpecifier::Namespace:
case NestedNameSpecifier::NamespaceAlias:
case NestedNameSpecifier::Global:
case NestedNameSpecifier::Super:
llvm_unreachable("Nested-name-specifier must name a type");
}
// Finally fill in MemberPointerLocInfo fields.
TL.setStarLoc(Chunk.Loc);
TL.setClassTInfo(ClsTInfo);
}
void VisitLValueReferenceTypeLoc(LValueReferenceTypeLoc TL) {
assert(Chunk.Kind == DeclaratorChunk::Reference);
// 'Amp' is misleading: this might have been originally
/// spelled with AmpAmp.
TL.setAmpLoc(Chunk.Loc);
}
void VisitRValueReferenceTypeLoc(RValueReferenceTypeLoc TL) {
assert(Chunk.Kind == DeclaratorChunk::Reference);
assert(!Chunk.Ref.LValueRef);
TL.setAmpAmpLoc(Chunk.Loc);
}
void VisitArrayTypeLoc(ArrayTypeLoc TL) {
assert(Chunk.Kind == DeclaratorChunk::Array);
TL.setLBracketLoc(Chunk.Loc);
TL.setRBracketLoc(Chunk.EndLoc);
TL.setSizeExpr(static_cast<Expr*>(Chunk.Arr.NumElts));
}
void VisitFunctionTypeLoc(FunctionTypeLoc TL) {
assert(Chunk.Kind == DeclaratorChunk::Function);
TL.setLocalRangeBegin(Chunk.Loc);
TL.setLocalRangeEnd(Chunk.EndLoc);
const DeclaratorChunk::FunctionTypeInfo &FTI = Chunk.Fun;
TL.setLParenLoc(FTI.getLParenLoc());
TL.setRParenLoc(FTI.getRParenLoc());
for (unsigned i = 0, e = TL.getNumParams(), tpi = 0; i != e; ++i) {
ParmVarDecl *Param = cast<ParmVarDecl>(FTI.Params[i].Param);
TL.setParam(tpi++, Param);
}
// FIXME: exception specs
}
void VisitParenTypeLoc(ParenTypeLoc TL) {
assert(Chunk.Kind == DeclaratorChunk::Paren);
TL.setLParenLoc(Chunk.Loc);
TL.setRParenLoc(Chunk.EndLoc);
}
void VisitTypeLoc(TypeLoc TL) {
llvm_unreachable("unsupported TypeLoc kind in declarator!");
}
};
}
static void fillAtomicQualLoc(AtomicTypeLoc ATL, const DeclaratorChunk &Chunk) {
SourceLocation Loc;
switch (Chunk.Kind) {
case DeclaratorChunk::Function:
case DeclaratorChunk::Array:
case DeclaratorChunk::Paren:
llvm_unreachable("cannot be _Atomic qualified");
case DeclaratorChunk::Pointer:
Loc = SourceLocation::getFromRawEncoding(Chunk.Ptr.AtomicQualLoc);
break;
case DeclaratorChunk::BlockPointer:
case DeclaratorChunk::Reference:
case DeclaratorChunk::MemberPointer:
// FIXME: Provide a source location for the _Atomic keyword.
break;
}
ATL.setKWLoc(Loc);
ATL.setParensRange(SourceRange());
}
/// \brief Create and instantiate a TypeSourceInfo with type source information.
///
/// \param T QualType referring to the type as written in source code.
///
/// \param ReturnTypeInfo For declarators whose return type does not show
/// up in the normal place in the declaration specifiers (such as a C++
/// conversion function), this pointer will refer to a type source information
/// for that return type.
TypeSourceInfo *
Sema::GetTypeSourceInfoForDeclarator(Declarator &D, QualType T,
TypeSourceInfo *ReturnTypeInfo) {
TypeSourceInfo *TInfo = Context.CreateTypeSourceInfo(T);
UnqualTypeLoc CurrTL = TInfo->getTypeLoc().getUnqualifiedLoc();
const AttributeList *DeclAttrs = D.getAttributes();
// Handle parameter packs whose type is a pack expansion.
if (isa<PackExpansionType>(T)) {
CurrTL.castAs<PackExpansionTypeLoc>().setEllipsisLoc(D.getEllipsisLoc());
CurrTL = CurrTL.getNextTypeLoc().getUnqualifiedLoc();
}
for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
// An AtomicTypeLoc might be produced by an atomic qualifier in this
// declarator chunk.
if (AtomicTypeLoc ATL = CurrTL.getAs<AtomicTypeLoc>()) {
fillAtomicQualLoc(ATL, D.getTypeObject(i));
CurrTL = ATL.getValueLoc().getUnqualifiedLoc();
}
while (AttributedTypeLoc TL = CurrTL.getAs<AttributedTypeLoc>()) {
fillAttributedTypeLoc(TL, D.getTypeObject(i).getAttrs(), DeclAttrs);
CurrTL = TL.getNextTypeLoc().getUnqualifiedLoc();
}
// FIXME: Ordering here?
while (AdjustedTypeLoc TL = CurrTL.getAs<AdjustedTypeLoc>())
CurrTL = TL.getNextTypeLoc().getUnqualifiedLoc();
DeclaratorLocFiller(Context, D.getTypeObject(i)).Visit(CurrTL);
CurrTL = CurrTL.getNextTypeLoc().getUnqualifiedLoc();
}
// If we have different source information for the return type, use
// that. This really only applies to C++ conversion functions.
if (ReturnTypeInfo) {
TypeLoc TL = ReturnTypeInfo->getTypeLoc();
assert(TL.getFullDataSize() == CurrTL.getFullDataSize());
memcpy(CurrTL.getOpaqueData(), TL.getOpaqueData(), TL.getFullDataSize());
} else {
TypeSpecLocFiller(Context, D.getDeclSpec()).Visit(CurrTL);
}
return TInfo;
}
/// \brief Create a LocInfoType to hold the given QualType and TypeSourceInfo.
ParsedType Sema::CreateParsedType(QualType T, TypeSourceInfo *TInfo) {
// FIXME: LocInfoTypes are "transient", only needed for passing to/from Parser
// and Sema during declaration parsing. Try deallocating/caching them when
// it's appropriate, instead of allocating them and keeping them around.
LocInfoType *LocT = (LocInfoType*)BumpAlloc.Allocate(sizeof(LocInfoType),
TypeAlignment);
new (LocT) LocInfoType(T, TInfo);
assert(LocT->getTypeClass() != T->getTypeClass() &&
"LocInfoType's TypeClass conflicts with an existing Type class");
return ParsedType::make(QualType(LocT, 0));
}
void LocInfoType::getAsStringInternal(std::string &Str,
const PrintingPolicy &Policy) const {
llvm_unreachable("LocInfoType leaked into the type system; an opaque TypeTy*"
" was used directly instead of getting the QualType through"
" GetTypeFromParser");
}
TypeResult Sema::ActOnTypeName(Scope *S, Declarator &D) {
// C99 6.7.6: Type names have no identifier. This is already validated by
// the parser.
assert(D.getIdentifier() == nullptr &&
"Type name should have no identifier!");
TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
QualType T = TInfo->getType();
if (D.isInvalidType())
return true;
// Make sure there are no unused decl attributes on the declarator.
// We don't want to do this for ObjC parameters because we're going
// to apply them to the actual parameter declaration.
// Likewise, we don't want to do this for alias declarations, because
// we are actually going to build a declaration from this eventually.
if (D.getContext() != Declarator::ObjCParameterContext &&
D.getContext() != Declarator::AliasDeclContext &&
D.getContext() != Declarator::AliasTemplateContext)
checkUnusedDeclAttributes(D);
if (getLangOpts().CPlusPlus) {
// Check that there are no default arguments (C++ only).
CheckExtraCXXDefaultArguments(D);
}
return CreateParsedType(T, TInfo);
}
ParsedType Sema::ActOnObjCInstanceType(SourceLocation Loc) {
QualType T = Context.getObjCInstanceType();
TypeSourceInfo *TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
return CreateParsedType(T, TInfo);
}
//===----------------------------------------------------------------------===//
// Type Attribute Processing
//===----------------------------------------------------------------------===//
/// HandleAddressSpaceTypeAttribute - Process an address_space attribute on the
/// specified type. The attribute contains 1 argument, the id of the address
/// space for the type.
static void HandleAddressSpaceTypeAttribute(QualType &Type,
const AttributeList &Attr, Sema &S){
// If this type is already address space qualified, reject it.
// ISO/IEC TR 18037 S5.3 (amending C99 6.7.3): "No type shall be qualified by
// qualifiers for two or more different address spaces."
if (Type.getAddressSpace()) {
S.Diag(Attr.getLoc(), diag::err_attribute_address_multiple_qualifiers);
Attr.setInvalid();
return;
}
// ISO/IEC TR 18037 S5.3 (amending C99 6.7.3): "A function type shall not be
// qualified by an address-space qualifier."
if (Type->isFunctionType()) {
S.Diag(Attr.getLoc(), diag::err_attribute_address_function_type);
Attr.setInvalid();
return;
}
unsigned ASIdx;
if (Attr.getKind() == AttributeList::AT_AddressSpace) {
// Check the attribute arguments.
if (Attr.getNumArgs() != 1) {
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
<< Attr.getName() << 1;
Attr.setInvalid();
return;
}
Expr *ASArgExpr = static_cast<Expr *>(Attr.getArgAsExpr(0));
llvm::APSInt addrSpace(32);
if (ASArgExpr->isTypeDependent() || ASArgExpr->isValueDependent() ||
!ASArgExpr->isIntegerConstantExpr(addrSpace, S.Context)) {
S.Diag(Attr.getLoc(), diag::err_attribute_argument_type)
<< Attr.getName() << AANT_ArgumentIntegerConstant
<< ASArgExpr->getSourceRange();
Attr.setInvalid();
return;
}
// Bounds checking.
if (addrSpace.isSigned()) {
if (addrSpace.isNegative()) {
S.Diag(Attr.getLoc(), diag::err_attribute_address_space_negative)
<< ASArgExpr->getSourceRange();
Attr.setInvalid();
return;
}
addrSpace.setIsSigned(false);
}
llvm::APSInt max(addrSpace.getBitWidth());
max = Qualifiers::MaxAddressSpace;
if (addrSpace > max) {
S.Diag(Attr.getLoc(), diag::err_attribute_address_space_too_high)
<< int(Qualifiers::MaxAddressSpace) << ASArgExpr->getSourceRange();
Attr.setInvalid();
return;
}
ASIdx = static_cast<unsigned>(addrSpace.getZExtValue());
} else {
// The keyword-based type attributes imply which address space to use.
switch (Attr.getKind()) {
case AttributeList::AT_OpenCLGlobalAddressSpace:
ASIdx = LangAS::opencl_global; break;
case AttributeList::AT_OpenCLLocalAddressSpace:
ASIdx = LangAS::opencl_local; break;
case AttributeList::AT_OpenCLConstantAddressSpace:
ASIdx = LangAS::opencl_constant; break;
case AttributeList::AT_OpenCLGenericAddressSpace:
ASIdx = LangAS::opencl_generic; break;
default:
assert(Attr.getKind() == AttributeList::AT_OpenCLPrivateAddressSpace);
ASIdx = 0; break;
}
}
Type = S.Context.getAddrSpaceQualType(Type, ASIdx);
}
/// Does this type have a "direct" ownership qualifier? That is,
/// is it written like "__strong id", as opposed to something like
/// "typeof(foo)", where that happens to be strong?
static bool hasDirectOwnershipQualifier(QualType type) {
// Fast path: no qualifier at all.
assert(type.getQualifiers().hasObjCLifetime());
while (true) {
// __strong id
if (const AttributedType *attr = dyn_cast<AttributedType>(type)) {
if (attr->getAttrKind() == AttributedType::attr_objc_ownership)
return true;
type = attr->getModifiedType();
// X *__strong (...)
} else if (const ParenType *paren = dyn_cast<ParenType>(type)) {
type = paren->getInnerType();
// That's it for things we want to complain about. In particular,
// we do not want to look through typedefs, typeof(expr),
// typeof(type), or any other way that the type is somehow
// abstracted.
} else {
return false;
}
}
}
/// handleObjCOwnershipTypeAttr - Process an objc_ownership
/// attribute on the specified type.
///
/// Returns 'true' if the attribute was handled.
static bool handleObjCOwnershipTypeAttr(TypeProcessingState &state,
AttributeList &attr,
QualType &type) {
bool NonObjCPointer = false;
if (!type->isDependentType() && !type->isUndeducedType()) {
if (const PointerType *ptr = type->getAs<PointerType>()) {
QualType pointee = ptr->getPointeeType();
if (pointee->isObjCRetainableType() || pointee->isPointerType())
return false;
// It is important not to lose the source info that there was an attribute
// applied to non-objc pointer. We will create an attributed type but
// its type will be the same as the original type.
NonObjCPointer = true;
} else if (!type->isObjCRetainableType()) {
return false;
}
// Don't accept an ownership attribute in the declspec if it would
// just be the return type of a block pointer.
if (state.isProcessingDeclSpec()) {
Declarator &D = state.getDeclarator();
if (maybeMovePastReturnType(D, D.getNumTypeObjects(),
/*onlyBlockPointers=*/true))
return false;
}
}
Sema &S = state.getSema();
SourceLocation AttrLoc = attr.getLoc();
if (AttrLoc.isMacroID())
AttrLoc = S.getSourceManager().getImmediateExpansionRange(AttrLoc).first;
if (!attr.isArgIdent(0)) {
S.Diag(AttrLoc, diag::err_attribute_argument_type)
<< attr.getName() << AANT_ArgumentString;
attr.setInvalid();
return true;
}
IdentifierInfo *II = attr.getArgAsIdent(0)->Ident;
Qualifiers::ObjCLifetime lifetime;
if (II->isStr("none"))
lifetime = Qualifiers::OCL_ExplicitNone;
else if (II->isStr("strong"))
lifetime = Qualifiers::OCL_Strong;
else if (II->isStr("weak"))
lifetime = Qualifiers::OCL_Weak;
else if (II->isStr("autoreleasing"))
lifetime = Qualifiers::OCL_Autoreleasing;
else {
S.Diag(AttrLoc, diag::warn_attribute_type_not_supported)
<< attr.getName() << II;
attr.setInvalid();
return true;
}
// Just ignore lifetime attributes other than __weak and __unsafe_unretained
// outside of ARC mode.
if (!S.getLangOpts().ObjCAutoRefCount &&
lifetime != Qualifiers::OCL_Weak &&
lifetime != Qualifiers::OCL_ExplicitNone) {
return true;
}
SplitQualType underlyingType = type.split();
// Check for redundant/conflicting ownership qualifiers.
if (Qualifiers::ObjCLifetime previousLifetime
= type.getQualifiers().getObjCLifetime()) {
// If it's written directly, that's an error.
if (hasDirectOwnershipQualifier(type)) {
S.Diag(AttrLoc, diag::err_attr_objc_ownership_redundant)
<< type;
return true;
}
// Otherwise, if the qualifiers actually conflict, pull sugar off
// until we reach a type that is directly qualified.
if (previousLifetime != lifetime) {
// This should always terminate: the canonical type is
// qualified, so some bit of sugar must be hiding it.
while (!underlyingType.Quals.hasObjCLifetime()) {
underlyingType = underlyingType.getSingleStepDesugaredType();
}
underlyingType.Quals.removeObjCLifetime();
}
}
underlyingType.Quals.addObjCLifetime(lifetime);
if (NonObjCPointer) {
StringRef name = attr.getName()->getName();
switch (lifetime) {
case Qualifiers::OCL_None:
case Qualifiers::OCL_ExplicitNone:
break;
case Qualifiers::OCL_Strong: name = "__strong"; break;
case Qualifiers::OCL_Weak: name = "__weak"; break;
case Qualifiers::OCL_Autoreleasing: name = "__autoreleasing"; break;
}
S.Diag(AttrLoc, diag::warn_type_attribute_wrong_type) << name
<< TDS_ObjCObjOrBlock << type;
}
// Don't actually add the __unsafe_unretained qualifier in non-ARC files,
// because having both 'T' and '__unsafe_unretained T' exist in the type
// system causes unfortunate widespread consistency problems. (For example,
// they're not considered compatible types, and we mangle them identicially
// as template arguments.) These problems are all individually fixable,
// but it's easier to just not add the qualifier and instead sniff it out
// in specific places using isObjCInertUnsafeUnretainedType().
//
// Doing this does means we miss some trivial consistency checks that
// would've triggered in ARC, but that's better than trying to solve all
// the coexistence problems with __unsafe_unretained.
if (!S.getLangOpts().ObjCAutoRefCount &&
lifetime == Qualifiers::OCL_ExplicitNone) {
type = S.Context.getAttributedType(
AttributedType::attr_objc_inert_unsafe_unretained,
type, type);
return true;
}
QualType origType = type;
if (!NonObjCPointer)
type = S.Context.getQualifiedType(underlyingType);
// If we have a valid source location for the attribute, use an
// AttributedType instead.
if (AttrLoc.isValid())
type = S.Context.getAttributedType(AttributedType::attr_objc_ownership,
origType, type);
auto diagnoseOrDelay = [](Sema &S, SourceLocation loc,
unsigned diagnostic, QualType type) {
if (S.DelayedDiagnostics.shouldDelayDiagnostics()) {
S.DelayedDiagnostics.add(
sema::DelayedDiagnostic::makeForbiddenType(
S.getSourceManager().getExpansionLoc(loc),
diagnostic, type, /*ignored*/ 0));
} else {
S.Diag(loc, diagnostic);
}
};
// Sometimes, __weak isn't allowed.
if (lifetime == Qualifiers::OCL_Weak &&
!S.getLangOpts().ObjCWeak && !NonObjCPointer) {
// Use a specialized diagnostic if the runtime just doesn't support them.
unsigned diagnostic =
(S.getLangOpts().ObjCWeakRuntime ? diag::err_arc_weak_disabled
: diag::err_arc_weak_no_runtime);
// In any case, delay the diagnostic until we know what we're parsing.
diagnoseOrDelay(S, AttrLoc, diagnostic, type);
attr.setInvalid();
return true;
}
// Forbid __weak for class objects marked as
// objc_arc_weak_reference_unavailable
if (lifetime == Qualifiers::OCL_Weak) {
if (const ObjCObjectPointerType *ObjT =
type->getAs<ObjCObjectPointerType>()) {
if (ObjCInterfaceDecl *Class = ObjT->getInterfaceDecl()) {
if (Class->isArcWeakrefUnavailable()) {
S.Diag(AttrLoc, diag::err_arc_unsupported_weak_class);
S.Diag(ObjT->getInterfaceDecl()->getLocation(),
diag::note_class_declared);
}
}
}
}
return true;
}
/// handleObjCGCTypeAttr - Process the __attribute__((objc_gc)) type
/// attribute on the specified type. Returns true to indicate that
/// the attribute was handled, false to indicate that the type does
/// not permit the attribute.
static bool handleObjCGCTypeAttr(TypeProcessingState &state,
AttributeList &attr,
QualType &type) {
Sema &S = state.getSema();
// Delay if this isn't some kind of pointer.
if (!type->isPointerType() &&
!type->isObjCObjectPointerType() &&
!type->isBlockPointerType())
return false;
if (type.getObjCGCAttr() != Qualifiers::GCNone) {
S.Diag(attr.getLoc(), diag::err_attribute_multiple_objc_gc);
attr.setInvalid();
return true;
}
// Check the attribute arguments.
if (!attr.isArgIdent(0)) {
S.Diag(attr.getLoc(), diag::err_attribute_argument_type)
<< attr.getName() << AANT_ArgumentString;
attr.setInvalid();
return true;
}
Qualifiers::GC GCAttr;
if (attr.getNumArgs() > 1) {
S.Diag(attr.getLoc(), diag::err_attribute_wrong_number_arguments)
<< attr.getName() << 1;
attr.setInvalid();
return true;
}
IdentifierInfo *II = attr.getArgAsIdent(0)->Ident;
if (II->isStr("weak"))
GCAttr = Qualifiers::Weak;
else if (II->isStr("strong"))
GCAttr = Qualifiers::Strong;
else {
S.Diag(attr.getLoc(), diag::warn_attribute_type_not_supported)
<< attr.getName() << II;
attr.setInvalid();
return true;
}
QualType origType = type;
type = S.Context.getObjCGCQualType(origType, GCAttr);
// Make an attributed type to preserve the source information.
if (attr.getLoc().isValid())
type = S.Context.getAttributedType(AttributedType::attr_objc_gc,
origType, type);
return true;
}
namespace {
/// A helper class to unwrap a type down to a function for the
/// purposes of applying attributes there.
///
/// Use:
/// FunctionTypeUnwrapper unwrapped(SemaRef, T);
/// if (unwrapped.isFunctionType()) {
/// const FunctionType *fn = unwrapped.get();
/// // change fn somehow
/// T = unwrapped.wrap(fn);
/// }
struct FunctionTypeUnwrapper {
enum WrapKind {
Desugar,
Parens,
Pointer,
BlockPointer,
Reference,
MemberPointer
};
QualType Original;
const FunctionType *Fn;
SmallVector<unsigned char /*WrapKind*/, 8> Stack;
FunctionTypeUnwrapper(Sema &S, QualType T) : Original(T) {
while (true) {
const Type *Ty = T.getTypePtr();
if (isa<FunctionType>(Ty)) {
Fn = cast<FunctionType>(Ty);
return;
} else if (isa<ParenType>(Ty)) {
T = cast<ParenType>(Ty)->getInnerType();
Stack.push_back(Parens);
} else if (isa<PointerType>(Ty)) {
T = cast<PointerType>(Ty)->getPointeeType();
Stack.push_back(Pointer);
} else if (isa<BlockPointerType>(Ty)) {
T = cast<BlockPointerType>(Ty)->getPointeeType();
Stack.push_back(BlockPointer);
} else if (isa<MemberPointerType>(Ty)) {
T = cast<MemberPointerType>(Ty)->getPointeeType();
Stack.push_back(MemberPointer);
} else if (isa<ReferenceType>(Ty)) {
T = cast<ReferenceType>(Ty)->getPointeeType();
Stack.push_back(Reference);
} else {
const Type *DTy = Ty->getUnqualifiedDesugaredType();
if (Ty == DTy) {
Fn = nullptr;
return;
}
T = QualType(DTy, 0);
Stack.push_back(Desugar);
}
}
}
bool isFunctionType() const { return (Fn != nullptr); }
const FunctionType *get() const { return Fn; }
QualType wrap(Sema &S, const FunctionType *New) {
// If T wasn't modified from the unwrapped type, do nothing.
if (New == get()) return Original;
Fn = New;
return wrap(S.Context, Original, 0);
}
private:
QualType wrap(ASTContext &C, QualType Old, unsigned I) {
if (I == Stack.size())
return C.getQualifiedType(Fn, Old.getQualifiers());
// Build up the inner type, applying the qualifiers from the old
// type to the new type.
SplitQualType SplitOld = Old.split();
// As a special case, tail-recurse if there are no qualifiers.
if (SplitOld.Quals.empty())
return wrap(C, SplitOld.Ty, I);
return C.getQualifiedType(wrap(C, SplitOld.Ty, I), SplitOld.Quals);
}
QualType wrap(ASTContext &C, const Type *Old, unsigned I) {
if (I == Stack.size()) return QualType(Fn, 0);
switch (static_cast<WrapKind>(Stack[I++])) {
case Desugar:
// This is the point at which we potentially lose source
// information.
return wrap(C, Old->getUnqualifiedDesugaredType(), I);
case Parens: {
QualType New = wrap(C, cast<ParenType>(Old)->getInnerType(), I);
return C.getParenType(New);
}
case Pointer: {
QualType New = wrap(C, cast<PointerType>(Old)->getPointeeType(), I);
return C.getPointerType(New);
}
case BlockPointer: {
QualType New = wrap(C, cast<BlockPointerType>(Old)->getPointeeType(),I);
return C.getBlockPointerType(New);
}
case MemberPointer: {
const MemberPointerType *OldMPT = cast<MemberPointerType>(Old);
QualType New = wrap(C, OldMPT->getPointeeType(), I);
return C.getMemberPointerType(New, OldMPT->getClass());
}
case Reference: {
const ReferenceType *OldRef = cast<ReferenceType>(Old);
QualType New = wrap(C, OldRef->getPointeeType(), I);
if (isa<LValueReferenceType>(OldRef))
return C.getLValueReferenceType(New, OldRef->isSpelledAsLValue());
else
return C.getRValueReferenceType(New);
}
}
llvm_unreachable("unknown wrapping kind");
}
};
}
static bool handleMSPointerTypeQualifierAttr(TypeProcessingState &State,
AttributeList &Attr,
QualType &Type) {
Sema &S = State.getSema();
AttributeList::Kind Kind = Attr.getKind();
QualType Desugared = Type;
const AttributedType *AT = dyn_cast<AttributedType>(Type);
while (AT) {
AttributedType::Kind CurAttrKind = AT->getAttrKind();
// You cannot specify duplicate type attributes, so if the attribute has
// already been applied, flag it.
if (getAttrListKind(CurAttrKind) == Kind) {
S.Diag(Attr.getLoc(), diag::warn_duplicate_attribute_exact)
<< Attr.getName();
return true;
}
// You cannot have both __sptr and __uptr on the same type, nor can you
// have __ptr32 and __ptr64.
if ((CurAttrKind == AttributedType::attr_ptr32 &&
Kind == AttributeList::AT_Ptr64) ||
(CurAttrKind == AttributedType::attr_ptr64 &&
Kind == AttributeList::AT_Ptr32)) {
S.Diag(Attr.getLoc(), diag::err_attributes_are_not_compatible)
<< "'__ptr32'" << "'__ptr64'";
return true;
} else if ((CurAttrKind == AttributedType::attr_sptr &&
Kind == AttributeList::AT_UPtr) ||
(CurAttrKind == AttributedType::attr_uptr &&
Kind == AttributeList::AT_SPtr)) {
S.Diag(Attr.getLoc(), diag::err_attributes_are_not_compatible)
<< "'__sptr'" << "'__uptr'";
return true;
}
Desugared = AT->getEquivalentType();
AT = dyn_cast<AttributedType>(Desugared);
}
// Pointer type qualifiers can only operate on pointer types, but not
// pointer-to-member types.
if (!isa<PointerType>(Desugared)) {
S.Diag(Attr.getLoc(), Type->isMemberPointerType() ?
diag::err_attribute_no_member_pointers :
diag::err_attribute_pointers_only) << Attr.getName();
return true;
}
AttributedType::Kind TAK;
switch (Kind) {
default: llvm_unreachable("Unknown attribute kind");
case AttributeList::AT_Ptr32: TAK = AttributedType::attr_ptr32; break;
case AttributeList::AT_Ptr64: TAK = AttributedType::attr_ptr64; break;
case AttributeList::AT_SPtr: TAK = AttributedType::attr_sptr; break;
case AttributeList::AT_UPtr: TAK = AttributedType::attr_uptr; break;
}
Type = S.Context.getAttributedType(TAK, Type, Type);
return false;
}
bool Sema::checkNullabilityTypeSpecifier(QualType &type,
NullabilityKind nullability,
SourceLocation nullabilityLoc,
bool isContextSensitive,
bool implicit) {
if (!implicit) {
// We saw a nullability type specifier. If this is the first one for
// this file, note that.
FileID file = getNullabilityCompletenessCheckFileID(*this, nullabilityLoc);
if (!file.isInvalid()) {
FileNullability &fileNullability = NullabilityMap[file];
if (!fileNullability.SawTypeNullability) {
// If we have already seen a pointer declarator without a nullability
// annotation, complain about it.
if (fileNullability.PointerLoc.isValid()) {
Diag(fileNullability.PointerLoc, diag::warn_nullability_missing)
<< static_cast<unsigned>(fileNullability.PointerKind);
}
fileNullability.SawTypeNullability = true;
}
}
}
// Check for existing nullability attributes on the type.
QualType desugared = type;
while (auto attributed = dyn_cast<AttributedType>(desugared.getTypePtr())) {
// Check whether there is already a null
if (auto existingNullability = attributed->getImmediateNullability()) {
// Duplicated nullability.
if (nullability == *existingNullability) {
if (implicit)
break;
Diag(nullabilityLoc, diag::warn_nullability_duplicate)
<< DiagNullabilityKind(nullability, isContextSensitive)
<< FixItHint::CreateRemoval(nullabilityLoc);
break;
}
// Conflicting nullability.
Diag(nullabilityLoc, diag::err_nullability_conflicting)
<< DiagNullabilityKind(nullability, isContextSensitive)
<< DiagNullabilityKind(*existingNullability, false);
return true;
}
desugared = attributed->getModifiedType();
}
// If there is already a different nullability specifier, complain.
// This (unlike the code above) looks through typedefs that might
// have nullability specifiers on them, which means we cannot
// provide a useful Fix-It.
if (auto existingNullability = desugared->getNullability(Context)) {
if (nullability != *existingNullability && !implicit) {
Diag(nullabilityLoc, diag::err_nullability_conflicting)
<< DiagNullabilityKind(nullability, isContextSensitive)
<< DiagNullabilityKind(*existingNullability, false);
// Try to find the typedef with the existing nullability specifier.
if (auto typedefType = desugared->getAs<TypedefType>()) {
TypedefNameDecl *typedefDecl = typedefType->getDecl();
QualType underlyingType = typedefDecl->getUnderlyingType();
if (auto typedefNullability
= AttributedType::stripOuterNullability(underlyingType)) {
if (*typedefNullability == *existingNullability) {
Diag(typedefDecl->getLocation(), diag::note_nullability_here)
<< DiagNullabilityKind(*existingNullability, false);
}
}
}
return true;
}
}
// If this definitely isn't a pointer type, reject the specifier.
if (!desugared->canHaveNullability()) {
if (!implicit) {
Diag(nullabilityLoc, diag::err_nullability_nonpointer)
<< DiagNullabilityKind(nullability, isContextSensitive) << type;
}
return true;
}
// For the context-sensitive keywords/Objective-C property
// attributes, require that the type be a single-level pointer.
if (isContextSensitive) {
// Make sure that the pointee isn't itself a pointer type.
QualType pointeeType = desugared->getPointeeType();
if (pointeeType->isAnyPointerType() ||
pointeeType->isObjCObjectPointerType() ||
pointeeType->isMemberPointerType()) {
Diag(nullabilityLoc, diag::err_nullability_cs_multilevel)
<< DiagNullabilityKind(nullability, true)
<< type;
Diag(nullabilityLoc, diag::note_nullability_type_specifier)
<< DiagNullabilityKind(nullability, false)
<< type
<< FixItHint::CreateReplacement(nullabilityLoc,
getNullabilitySpelling(nullability));
return true;
}
}
// Form the attributed type.
type = Context.getAttributedType(
AttributedType::getNullabilityAttrKind(nullability), type, type);
return false;
}
bool Sema::checkObjCKindOfType(QualType &type, SourceLocation loc) {
// Find out if it's an Objective-C object or object pointer type;
const ObjCObjectPointerType *ptrType = type->getAs<ObjCObjectPointerType>();
const ObjCObjectType *objType = ptrType ? ptrType->getObjectType()
: type->getAs<ObjCObjectType>();
// If not, we can't apply __kindof.
if (!objType) {
// FIXME: Handle dependent types that aren't yet object types.
Diag(loc, diag::err_objc_kindof_nonobject)
<< type;
return true;
}
// Rebuild the "equivalent" type, which pushes __kindof down into
// the object type.
QualType equivType = Context.getObjCObjectType(objType->getBaseType(),
objType->getTypeArgsAsWritten(),
objType->getProtocols(),
/*isKindOf=*/true);
// If we started with an object pointer type, rebuild it.
if (ptrType) {
equivType = Context.getObjCObjectPointerType(equivType);
if (auto nullability = type->getNullability(Context)) {
auto attrKind = AttributedType::getNullabilityAttrKind(*nullability);
equivType = Context.getAttributedType(attrKind, equivType, equivType);
}
}
// Build the attributed type to record where __kindof occurred.
type = Context.getAttributedType(AttributedType::attr_objc_kindof,
type,
equivType);
return false;
}
/// Map a nullability attribute kind to a nullability kind.
static NullabilityKind mapNullabilityAttrKind(AttributeList::Kind kind) {
switch (kind) {
case AttributeList::AT_TypeNonNull:
return NullabilityKind::NonNull;
case AttributeList::AT_TypeNullable:
return NullabilityKind::Nullable;
case AttributeList::AT_TypeNullUnspecified:
return NullabilityKind::Unspecified;
default:
llvm_unreachable("not a nullability attribute kind");
}
}
/// Distribute a nullability type attribute that cannot be applied to
/// the type specifier to a pointer, block pointer, or member pointer
/// declarator, complaining if necessary.
///
/// \returns true if the nullability annotation was distributed, false
/// otherwise.
static bool distributeNullabilityTypeAttr(TypeProcessingState &state,
QualType type,
AttributeList &attr) {
Declarator &declarator = state.getDeclarator();
/// Attempt to move the attribute to the specified chunk.
auto moveToChunk = [&](DeclaratorChunk &chunk, bool inFunction) -> bool {
// If there is already a nullability attribute there, don't add
// one.
if (hasNullabilityAttr(chunk.getAttrListRef()))
return false;
// Complain about the nullability qualifier being in the wrong
// place.
enum {
PK_Pointer,
PK_BlockPointer,
PK_MemberPointer,
PK_FunctionPointer,
PK_MemberFunctionPointer,
} pointerKind
= chunk.Kind == DeclaratorChunk::Pointer ? (inFunction ? PK_FunctionPointer
: PK_Pointer)
: chunk.Kind == DeclaratorChunk::BlockPointer ? PK_BlockPointer
: inFunction? PK_MemberFunctionPointer : PK_MemberPointer;
auto diag = state.getSema().Diag(attr.getLoc(),
diag::warn_nullability_declspec)
<< DiagNullabilityKind(mapNullabilityAttrKind(attr.getKind()),
attr.isContextSensitiveKeywordAttribute())
<< type
<< static_cast<unsigned>(pointerKind);
// FIXME: MemberPointer chunks don't carry the location of the *.
if (chunk.Kind != DeclaratorChunk::MemberPointer) {
diag << FixItHint::CreateRemoval(attr.getLoc())
<< FixItHint::CreateInsertion(
state.getSema().getPreprocessor()
.getLocForEndOfToken(chunk.Loc),
" " + attr.getName()->getName().str() + " ");
}
moveAttrFromListToList(attr, state.getCurrentAttrListRef(),
chunk.getAttrListRef());
return true;
};
// Move it to the outermost pointer, member pointer, or block
// pointer declarator.
for (unsigned i = state.getCurrentChunkIndex(); i != 0; --i) {
DeclaratorChunk &chunk = declarator.getTypeObject(i-1);
switch (chunk.Kind) {
case DeclaratorChunk::Pointer:
case DeclaratorChunk::BlockPointer:
case DeclaratorChunk::MemberPointer:
return moveToChunk(chunk, false);
case DeclaratorChunk::Paren:
case DeclaratorChunk::Array:
continue;
case DeclaratorChunk::Function:
// Try to move past the return type to a function/block/member
// function pointer.
if (DeclaratorChunk *dest = maybeMovePastReturnType(
declarator, i,
/*onlyBlockPointers=*/false)) {
return moveToChunk(*dest, true);
}
return false;
// Don't walk through these.
case DeclaratorChunk::Reference:
return false;
}
}
return false;
}
static AttributedType::Kind getCCTypeAttrKind(AttributeList &Attr) {
assert(!Attr.isInvalid());
switch (Attr.getKind()) {
default:
llvm_unreachable("not a calling convention attribute");
case AttributeList::AT_CDecl:
return AttributedType::attr_cdecl;
case AttributeList::AT_FastCall:
return AttributedType::attr_fastcall;
case AttributeList::AT_StdCall:
return AttributedType::attr_stdcall;
case AttributeList::AT_ThisCall:
return AttributedType::attr_thiscall;
case AttributeList::AT_Pascal:
return AttributedType::attr_pascal;
case AttributeList::AT_VectorCall:
return AttributedType::attr_vectorcall;
case AttributeList::AT_Pcs: {
// The attribute may have had a fixit applied where we treated an
// identifier as a string literal. The contents of the string are valid,
// but the form may not be.
StringRef Str;
if (Attr.isArgExpr(0))
Str = cast<StringLiteral>(Attr.getArgAsExpr(0))->getString();
else
Str = Attr.getArgAsIdent(0)->Ident->getName();
return llvm::StringSwitch<AttributedType::Kind>(Str)
.Case("aapcs", AttributedType::attr_pcs)
.Case("aapcs-vfp", AttributedType::attr_pcs_vfp);
}
case AttributeList::AT_IntelOclBicc:
return AttributedType::attr_inteloclbicc;
case AttributeList::AT_MSABI:
return AttributedType::attr_ms_abi;
case AttributeList::AT_SysVABI:
return AttributedType::attr_sysv_abi;
}
llvm_unreachable("unexpected attribute kind!");
}
/// Process an individual function attribute. Returns true to
/// indicate that the attribute was handled, false if it wasn't.
static bool handleFunctionTypeAttr(TypeProcessingState &state,
AttributeList &attr,
QualType &type) {
Sema &S = state.getSema();
FunctionTypeUnwrapper unwrapped(S, type);
if (attr.getKind() == AttributeList::AT_NoReturn) {
if (S.CheckNoReturnAttr(attr))
return true;
// Delay if this is not a function type.
if (!unwrapped.isFunctionType())
return false;
// Otherwise we can process right away.
FunctionType::ExtInfo EI = unwrapped.get()->getExtInfo().withNoReturn(true);
type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
return true;
}
// ns_returns_retained is not always a type attribute, but if we got
// here, we're treating it as one right now.
if (attr.getKind() == AttributeList::AT_NSReturnsRetained) {
assert(S.getLangOpts().ObjCAutoRefCount &&
"ns_returns_retained treated as type attribute in non-ARC");
if (attr.getNumArgs()) return true;
// Delay if this is not a function type.
if (!unwrapped.isFunctionType())
return false;
FunctionType::ExtInfo EI
= unwrapped.get()->getExtInfo().withProducesResult(true);
type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
return true;
}
if (attr.getKind() == AttributeList::AT_Regparm) {
unsigned value;
if (S.CheckRegparmAttr(attr, value))
return true;
// Delay if this is not a function type.
if (!unwrapped.isFunctionType())
return false;
// Diagnose regparm with fastcall.
const FunctionType *fn = unwrapped.get();
CallingConv CC = fn->getCallConv();
if (CC == CC_X86FastCall) {
S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible)
<< FunctionType::getNameForCallConv(CC)
<< "regparm";
attr.setInvalid();
return true;
}
FunctionType::ExtInfo EI =
unwrapped.get()->getExtInfo().withRegParm(value);
type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
return true;
}
// Delay if the type didn't work out to a function.
if (!unwrapped.isFunctionType()) return false;
// Otherwise, a calling convention.
CallingConv CC;
if (S.CheckCallingConvAttr(attr, CC))
return true;
const FunctionType *fn = unwrapped.get();
CallingConv CCOld = fn->getCallConv();
AttributedType::Kind CCAttrKind = getCCTypeAttrKind(attr);
if (CCOld != CC) {
// Error out on when there's already an attribute on the type
// and the CCs don't match.
const AttributedType *AT = S.getCallingConvAttributedType(type);
if (AT && AT->getAttrKind() != CCAttrKind) {
S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible)
<< FunctionType::getNameForCallConv(CC)
<< FunctionType::getNameForCallConv(CCOld);
attr.setInvalid();
return true;
}
}
// Diagnose use of callee-cleanup calling convention on variadic functions.
if (!supportsVariadicCall(CC)) {
const FunctionProtoType *FnP = dyn_cast<FunctionProtoType>(fn);
if (FnP && FnP->isVariadic()) {
unsigned DiagID = diag::err_cconv_varargs;
// stdcall and fastcall are ignored with a warning for GCC and MS
// compatibility.
if (CC == CC_X86StdCall || CC == CC_X86FastCall)
DiagID = diag::warn_cconv_varargs;
S.Diag(attr.getLoc(), DiagID) << FunctionType::getNameForCallConv(CC);
attr.setInvalid();
return true;
}
}
// Also diagnose fastcall with regparm.
if (CC == CC_X86FastCall && fn->getHasRegParm()) {
S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible)
<< "regparm" << FunctionType::getNameForCallConv(CC_X86FastCall);
attr.setInvalid();
return true;
}
// Modify the CC from the wrapped function type, wrap it all back, and then
// wrap the whole thing in an AttributedType as written. The modified type
// might have a different CC if we ignored the attribute.
FunctionType::ExtInfo EI = unwrapped.get()->getExtInfo().withCallingConv(CC);
QualType Equivalent =
unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
type = S.Context.getAttributedType(CCAttrKind, type, Equivalent);
return true;
}
bool Sema::hasExplicitCallingConv(QualType &T) {
QualType R = T.IgnoreParens();
while (const AttributedType *AT = dyn_cast<AttributedType>(R)) {
if (AT->isCallingConv())
return true;
R = AT->getModifiedType().IgnoreParens();
}
return false;
}
void Sema::adjustMemberFunctionCC(QualType &T, bool IsStatic, bool IsCtorOrDtor,
SourceLocation Loc) {
FunctionTypeUnwrapper Unwrapped(*this, T);
const FunctionType *FT = Unwrapped.get();
bool IsVariadic = (isa<FunctionProtoType>(FT) &&
cast<FunctionProtoType>(FT)->isVariadic());
CallingConv CurCC = FT->getCallConv();
CallingConv ToCC = Context.getDefaultCallingConvention(IsVariadic, !IsStatic);
if (CurCC == ToCC)
return;
// MS compiler ignores explicit calling convention attributes on structors. We
// should do the same.
if (Context.getTargetInfo().getCXXABI().isMicrosoft() && IsCtorOrDtor) {
// Issue a warning on ignored calling convention -- except of __stdcall.
// Again, this is what MS compiler does.
if (CurCC != CC_X86StdCall)
Diag(Loc, diag::warn_cconv_structors)
<< FunctionType::getNameForCallConv(CurCC);
// Default adjustment.
} else {
// Only adjust types with the default convention. For example, on Windows
// we should adjust a __cdecl type to __thiscall for instance methods, and a
// __thiscall type to __cdecl for static methods.
CallingConv DefaultCC =
Context.getDefaultCallingConvention(IsVariadic, IsStatic);
if (CurCC != DefaultCC || DefaultCC == ToCC)
return;
if (hasExplicitCallingConv(T))
return;
}
FT = Context.adjustFunctionType(FT, FT->getExtInfo().withCallingConv(ToCC));
QualType Wrapped = Unwrapped.wrap(*this, FT);
T = Context.getAdjustedType(T, Wrapped);
}
/// HandleVectorSizeAttribute - this attribute is only applicable to integral
/// and float scalars, although arrays, pointers, and function return values are
/// allowed in conjunction with this construct. Aggregates with this attribute
/// are invalid, even if they are of the same size as a corresponding scalar.
/// The raw attribute should contain precisely 1 argument, the vector size for
/// the variable, measured in bytes. If curType and rawAttr are well formed,
/// this routine will return a new vector type.
static void HandleVectorSizeAttr(QualType& CurType, const AttributeList &Attr,
Sema &S) {
// Check the attribute arguments.
if (Attr.getNumArgs() != 1) {
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
<< Attr.getName() << 1;
Attr.setInvalid();
return;
}
Expr *sizeExpr = static_cast<Expr *>(Attr.getArgAsExpr(0));
llvm::APSInt vecSize(32);
if (sizeExpr->isTypeDependent() || sizeExpr->isValueDependent() ||
!sizeExpr->isIntegerConstantExpr(vecSize, S.Context)) {
S.Diag(Attr.getLoc(), diag::err_attribute_argument_type)
<< Attr.getName() << AANT_ArgumentIntegerConstant
<< sizeExpr->getSourceRange();
Attr.setInvalid();
return;
}
// The base type must be integer (not Boolean or enumeration) or float, and
// can't already be a vector.
if (!CurType->isBuiltinType() || CurType->isBooleanType() ||
(!CurType->isIntegerType() && !CurType->isRealFloatingType())) {
S.Diag(Attr.getLoc(), diag::err_attribute_invalid_vector_type) << CurType;
Attr.setInvalid();
return;
}
unsigned typeSize = static_cast<unsigned>(S.Context.getTypeSize(CurType));
// vecSize is specified in bytes - convert to bits.
unsigned vectorSize = static_cast<unsigned>(vecSize.getZExtValue() * 8);
// the vector size needs to be an integral multiple of the type size.
if (vectorSize % typeSize) {
S.Diag(Attr.getLoc(), diag::err_attribute_invalid_size)
<< sizeExpr->getSourceRange();
Attr.setInvalid();
return;
}
if (VectorType::isVectorSizeTooLarge(vectorSize / typeSize)) {
S.Diag(Attr.getLoc(), diag::err_attribute_size_too_large)
<< sizeExpr->getSourceRange();
Attr.setInvalid();
return;
}
if (vectorSize == 0) {
S.Diag(Attr.getLoc(), diag::err_attribute_zero_size)
<< sizeExpr->getSourceRange();
Attr.setInvalid();
return;
}
// Success! Instantiate the vector type, the number of elements is > 0, and
// not required to be a power of 2, unlike GCC.
CurType = S.Context.getVectorType(CurType, vectorSize/typeSize,
VectorType::GenericVector);
}
/// \brief Process the OpenCL-like ext_vector_type attribute when it occurs on
/// a type.
static void HandleExtVectorTypeAttr(QualType &CurType,
const AttributeList &Attr,
Sema &S) {
// check the attribute arguments.
if (Attr.getNumArgs() != 1) {
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
<< Attr.getName() << 1;
return;
}
Expr *sizeExpr;
// Special case where the argument is a template id.
if (Attr.isArgIdent(0)) {
CXXScopeSpec SS;
SourceLocation TemplateKWLoc;
UnqualifiedId id;
id.setIdentifier(Attr.getArgAsIdent(0)->Ident, Attr.getLoc());
ExprResult Size = S.ActOnIdExpression(S.getCurScope(), SS, TemplateKWLoc,
id, false, false);
if (Size.isInvalid())
return;
sizeExpr = Size.get();
} else {
sizeExpr = Attr.getArgAsExpr(0);
}
// Create the vector type.
QualType T = S.BuildExtVectorType(CurType, sizeExpr, Attr.getLoc());
if (!T.isNull())
CurType = T;
}
static bool isPermittedNeonBaseType(QualType &Ty,
VectorType::VectorKind VecKind, Sema &S) {
const BuiltinType *BTy = Ty->getAs<BuiltinType>();
if (!BTy)
return false;
llvm::Triple Triple = S.Context.getTargetInfo().getTriple();
// Signed poly is mathematically wrong, but has been baked into some ABIs by
// now.
bool IsPolyUnsigned = Triple.getArch() == llvm::Triple::aarch64 ||
Triple.getArch() == llvm::Triple::aarch64_be;
if (VecKind == VectorType::NeonPolyVector) {
if (IsPolyUnsigned) {
// AArch64 polynomial vectors are unsigned and support poly64.
return BTy->getKind() == BuiltinType::UChar ||
BTy->getKind() == BuiltinType::UShort ||
BTy->getKind() == BuiltinType::ULong ||
BTy->getKind() == BuiltinType::ULongLong;
} else {
// AArch32 polynomial vector are signed.
return BTy->getKind() == BuiltinType::SChar ||
BTy->getKind() == BuiltinType::Short;
}
}
// Non-polynomial vector types: the usual suspects are allowed, as well as
// float64_t on AArch64.
bool Is64Bit = Triple.getArch() == llvm::Triple::aarch64 ||
Triple.getArch() == llvm::Triple::aarch64_be;
if (Is64Bit && BTy->getKind() == BuiltinType::Double)
return true;
return BTy->getKind() == BuiltinType::SChar ||
BTy->getKind() == BuiltinType::UChar ||
BTy->getKind() == BuiltinType::Short ||
BTy->getKind() == BuiltinType::UShort ||
BTy->getKind() == BuiltinType::Int ||
BTy->getKind() == BuiltinType::UInt ||
BTy->getKind() == BuiltinType::Long ||
BTy->getKind() == BuiltinType::ULong ||
BTy->getKind() == BuiltinType::LongLong ||
BTy->getKind() == BuiltinType::ULongLong ||
BTy->getKind() == BuiltinType::Float ||
BTy->getKind() == BuiltinType::Half;
}
/// HandleNeonVectorTypeAttr - The "neon_vector_type" and
/// "neon_polyvector_type" attributes are used to create vector types that
/// are mangled according to ARM's ABI. Otherwise, these types are identical
/// to those created with the "vector_size" attribute. Unlike "vector_size"
/// the argument to these Neon attributes is the number of vector elements,
/// not the vector size in bytes. The vector width and element type must
/// match one of the standard Neon vector types.
static void HandleNeonVectorTypeAttr(QualType& CurType,
const AttributeList &Attr, Sema &S,
VectorType::VectorKind VecKind) {
// Target must have NEON
if (!S.Context.getTargetInfo().hasFeature("neon")) {
S.Diag(Attr.getLoc(), diag::err_attribute_unsupported) << Attr.getName();
Attr.setInvalid();
return;
}
// Check the attribute arguments.
if (Attr.getNumArgs() != 1) {
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
<< Attr.getName() << 1;
Attr.setInvalid();
return;
}
// The number of elements must be an ICE.
Expr *numEltsExpr = static_cast<Expr *>(Attr.getArgAsExpr(0));
llvm::APSInt numEltsInt(32);
if (numEltsExpr->isTypeDependent() || numEltsExpr->isValueDependent() ||
!numEltsExpr->isIntegerConstantExpr(numEltsInt, S.Context)) {
S.Diag(Attr.getLoc(), diag::err_attribute_argument_type)
<< Attr.getName() << AANT_ArgumentIntegerConstant
<< numEltsExpr->getSourceRange();
Attr.setInvalid();
return;
}
// Only certain element types are supported for Neon vectors.
if (!isPermittedNeonBaseType(CurType, VecKind, S)) {
S.Diag(Attr.getLoc(), diag::err_attribute_invalid_vector_type) << CurType;
Attr.setInvalid();
return;
}
// The total size of the vector must be 64 or 128 bits.
unsigned typeSize = static_cast<unsigned>(S.Context.getTypeSize(CurType));
unsigned numElts = static_cast<unsigned>(numEltsInt.getZExtValue());
unsigned vecSize = typeSize * numElts;
if (vecSize != 64 && vecSize != 128) {
S.Diag(Attr.getLoc(), diag::err_attribute_bad_neon_vector_size) << CurType;
Attr.setInvalid();
return;
}
CurType = S.Context.getVectorType(CurType, numElts, VecKind);
}
static void processTypeAttrs(TypeProcessingState &state, QualType &type,
TypeAttrLocation TAL, AttributeList *attrs) {
// Scan through and apply attributes to this type where it makes sense. Some
// attributes (such as __address_space__, __vector_size__, etc) apply to the
// type, but others can be present in the type specifiers even though they
// apply to the decl. Here we apply type attributes and ignore the rest.
AttributeList *next;
do {
AttributeList &attr = *attrs;
next = attr.getNext();
// Skip attributes that were marked to be invalid.
if (attr.isInvalid())
continue;
if (attr.isCXX11Attribute()) {
// [[gnu::...]] attributes are treated as declaration attributes, so may
// not appertain to a DeclaratorChunk, even if we handle them as type
// attributes.
if (attr.getScopeName() && attr.getScopeName()->isStr("gnu")) {
if (TAL == TAL_DeclChunk) {
state.getSema().Diag(attr.getLoc(),
diag::warn_cxx11_gnu_attribute_on_type)
<< attr.getName();
continue;
}
} else if (TAL != TAL_DeclChunk) {
// Otherwise, only consider type processing for a C++11 attribute if
// it's actually been applied to a type.
continue;
}
}
// If this is an attribute we can handle, do so now,
// otherwise, add it to the FnAttrs list for rechaining.
switch (attr.getKind()) {
default:
// A C++11 attribute on a declarator chunk must appertain to a type.
if (attr.isCXX11Attribute() && TAL == TAL_DeclChunk) {
state.getSema().Diag(attr.getLoc(), diag::err_attribute_not_type_attr)
<< attr.getName();
attr.setUsedAsTypeAttr();
}
break;
case AttributeList::UnknownAttribute:
if (attr.isCXX11Attribute() && TAL == TAL_DeclChunk)
state.getSema().Diag(attr.getLoc(),
diag::warn_unknown_attribute_ignored)
<< attr.getName();
break;
case AttributeList::IgnoredAttribute:
break;
case AttributeList::AT_MayAlias:
// FIXME: This attribute needs to actually be handled, but if we ignore
// it it breaks large amounts of Linux software.
attr.setUsedAsTypeAttr();
break;
case AttributeList::AT_OpenCLPrivateAddressSpace:
case AttributeList::AT_OpenCLGlobalAddressSpace:
case AttributeList::AT_OpenCLLocalAddressSpace:
case AttributeList::AT_OpenCLConstantAddressSpace:
case AttributeList::AT_OpenCLGenericAddressSpace:
case AttributeList::AT_AddressSpace:
HandleAddressSpaceTypeAttribute(type, attr, state.getSema());
attr.setUsedAsTypeAttr();
break;
OBJC_POINTER_TYPE_ATTRS_CASELIST:
if (!handleObjCPointerTypeAttr(state, attr, type))
distributeObjCPointerTypeAttr(state, attr, type);
attr.setUsedAsTypeAttr();
break;
case AttributeList::AT_VectorSize:
HandleVectorSizeAttr(type, attr, state.getSema());
attr.setUsedAsTypeAttr();
break;
case AttributeList::AT_ExtVectorType:
HandleExtVectorTypeAttr(type, attr, state.getSema());
attr.setUsedAsTypeAttr();
break;
case AttributeList::AT_NeonVectorType:
HandleNeonVectorTypeAttr(type, attr, state.getSema(),
VectorType::NeonVector);
attr.setUsedAsTypeAttr();
break;
case AttributeList::AT_NeonPolyVectorType:
HandleNeonVectorTypeAttr(type, attr, state.getSema(),
VectorType::NeonPolyVector);
attr.setUsedAsTypeAttr();
break;
case AttributeList::AT_OpenCLImageAccess:
// FIXME: there should be some type checking happening here, I would
// imagine, but the original handler's checking was entirely superfluous.
attr.setUsedAsTypeAttr();
break;
MS_TYPE_ATTRS_CASELIST:
if (!handleMSPointerTypeQualifierAttr(state, attr, type))
attr.setUsedAsTypeAttr();
break;
NULLABILITY_TYPE_ATTRS_CASELIST:
// Either add nullability here or try to distribute it. We
// don't want to distribute the nullability specifier past any
// dependent type, because that complicates the user model.
if (type->canHaveNullability() || type->isDependentType() ||
!distributeNullabilityTypeAttr(state, type, attr)) {
if (state.getSema().checkNullabilityTypeSpecifier(
type,
mapNullabilityAttrKind(attr.getKind()),
attr.getLoc(),
attr.isContextSensitiveKeywordAttribute(),
/*implicit=*/false)) {
attr.setInvalid();
}
attr.setUsedAsTypeAttr();
}
break;
case AttributeList::AT_ObjCKindOf:
// '__kindof' must be part of the decl-specifiers.
switch (TAL) {
case TAL_DeclSpec:
break;
case TAL_DeclChunk:
case TAL_DeclName:
state.getSema().Diag(attr.getLoc(),
diag::err_objc_kindof_wrong_position)
<< FixItHint::CreateRemoval(attr.getLoc())
<< FixItHint::CreateInsertion(
state.getDeclarator().getDeclSpec().getLocStart(), "__kindof ");
break;
}
// Apply it regardless.
if (state.getSema().checkObjCKindOfType(type, attr.getLoc()))
attr.setInvalid();
attr.setUsedAsTypeAttr();
break;
case AttributeList::AT_NSReturnsRetained:
if (!state.getSema().getLangOpts().ObjCAutoRefCount)
break;
// fallthrough into the function attrs
FUNCTION_TYPE_ATTRS_CASELIST:
attr.setUsedAsTypeAttr();
// Never process function type attributes as part of the
// declaration-specifiers.
if (TAL == TAL_DeclSpec)
distributeFunctionTypeAttrFromDeclSpec(state, attr, type);
// Otherwise, handle the possible delays.
else if (!handleFunctionTypeAttr(state, attr, type))
distributeFunctionTypeAttr(state, attr, type);
break;
}
} while ((attrs = next));
}
/// \brief Ensure that the type of the given expression is complete.
///
/// This routine checks whether the expression \p E has a complete type. If the
/// expression refers to an instantiable construct, that instantiation is
/// performed as needed to complete its type. Furthermore
/// Sema::RequireCompleteType is called for the expression's type (or in the
/// case of a reference type, the referred-to type).
///
/// \param E The expression whose type is required to be complete.
/// \param Diagnoser The object that will emit a diagnostic if the type is
/// incomplete.
///
/// \returns \c true if the type of \p E is incomplete and diagnosed, \c false
/// otherwise.
bool Sema::RequireCompleteExprType(Expr *E, TypeDiagnoser &Diagnoser){
QualType T = E->getType();
// Fast path the case where the type is already complete.
if (!T->isIncompleteType())
// FIXME: The definition might not be visible.
return false;
// Incomplete array types may be completed by the initializer attached to
// their definitions. For static data members of class templates and for
// variable templates, we need to instantiate the definition to get this
// initializer and complete the type.
if (T->isIncompleteArrayType()) {
if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParens())) {
if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
if (isTemplateInstantiation(Var->getTemplateSpecializationKind())) {
SourceLocation PointOfInstantiation = E->getExprLoc();
if (MemberSpecializationInfo *MSInfo =
Var->getMemberSpecializationInfo()) {
// If we don't already have a point of instantiation, this is it.
if (MSInfo->getPointOfInstantiation().isInvalid()) {
MSInfo->setPointOfInstantiation(PointOfInstantiation);
// This is a modification of an existing AST node. Notify
// listeners.
if (ASTMutationListener *L = getASTMutationListener())
L->StaticDataMemberInstantiated(Var);
}
} else {
VarTemplateSpecializationDecl *VarSpec =
cast<VarTemplateSpecializationDecl>(Var);
if (VarSpec->getPointOfInstantiation().isInvalid())
VarSpec->setPointOfInstantiation(PointOfInstantiation);
}
InstantiateVariableDefinition(PointOfInstantiation, Var);
// Update the type to the newly instantiated definition's type both
// here and within the expression.
if (VarDecl *Def = Var->getDefinition()) {
DRE->setDecl(Def);
T = Def->getType();
DRE->setType(T);
E->setType(T);
}
// We still go on to try to complete the type independently, as it
// may also require instantiations or diagnostics if it remains
// incomplete.
}
}
}
}
// FIXME: Are there other cases which require instantiating something other
// than the type to complete the type of an expression?
// Look through reference types and complete the referred type.
if (const ReferenceType *Ref = T->getAs<ReferenceType>())
T = Ref->getPointeeType();
return RequireCompleteType(E->getExprLoc(), T, Diagnoser);
}
namespace {
struct TypeDiagnoserDiag : Sema::TypeDiagnoser {
unsigned DiagID;
TypeDiagnoserDiag(unsigned DiagID)
: Sema::TypeDiagnoser(DiagID == 0), DiagID(DiagID) {}
void diagnose(Sema &S, SourceLocation Loc, QualType T) override {
if (Suppressed) return;
S.Diag(Loc, DiagID) << T;
}
};
}
bool Sema::RequireCompleteExprType(Expr *E, unsigned DiagID) {
TypeDiagnoserDiag Diagnoser(DiagID);
return RequireCompleteExprType(E, Diagnoser);
}
/// @brief Ensure that the type T is a complete type.
///
/// This routine checks whether the type @p T is complete in any
/// context where a complete type is required. If @p T is a complete
/// type, returns false. If @p T is a class template specialization,
/// this routine then attempts to perform class template
/// instantiation. If instantiation fails, or if @p T is incomplete
/// and cannot be completed, issues the diagnostic @p diag (giving it
/// the type @p T) and returns true.
///
/// @param Loc The location in the source that the incomplete type
/// diagnostic should refer to.
///
/// @param T The type that this routine is examining for completeness.
///
/// @returns @c true if @p T is incomplete and a diagnostic was emitted,
/// @c false otherwise.
bool Sema::RequireCompleteType(SourceLocation Loc, QualType T,
TypeDiagnoser &Diagnoser) {
if (RequireCompleteTypeImpl(Loc, T, Diagnoser))
return true;
if (const TagType *Tag = T->getAs<TagType>()) {
if (!Tag->getDecl()->isCompleteDefinitionRequired()) {
Tag->getDecl()->setCompleteDefinitionRequired();
Consumer.HandleTagDeclRequiredDefinition(Tag->getDecl());
}
}
return false;
}
/// \brief Determine whether there is any declaration of \p D that was ever a
/// definition (perhaps before module merging) and is currently visible.
/// \param D The definition of the entity.
/// \param Suggested Filled in with the declaration that should be made visible
/// in order to provide a definition of this entity.
/// \param OnlyNeedComplete If \c true, we only need the type to be complete,
/// not defined. This only matters for enums with a fixed underlying
/// type, since in all other cases, a type is complete if and only if it
/// is defined.
bool Sema::hasVisibleDefinition(NamedDecl *D, NamedDecl **Suggested,
bool OnlyNeedComplete) {
// Easy case: if we don't have modules, all declarations are visible.
if (!getLangOpts().Modules && !getLangOpts().ModulesLocalVisibility)
return true;
// If this definition was instantiated from a template, map back to the
// pattern from which it was instantiated.
if (isa<TagDecl>(D) && cast<TagDecl>(D)->isBeingDefined()) {
// We're in the middle of defining it; this definition should be treated
// as visible.
return true;
} else if (auto *RD = dyn_cast<CXXRecordDecl>(D)) {
if (auto *Pattern = RD->getTemplateInstantiationPattern())
RD = Pattern;
D = RD->getDefinition();
} else if (auto *ED = dyn_cast<EnumDecl>(D)) {
while (auto *NewED = ED->getInstantiatedFromMemberEnum())
ED = NewED;
if (OnlyNeedComplete && ED->isFixed()) {
// If the enum has a fixed underlying type, and we're only looking for a
// complete type (not a definition), any visible declaration of it will
// do.
*Suggested = nullptr;
for (auto *Redecl : ED->redecls()) {
if (isVisible(Redecl))
return true;
if (Redecl->isThisDeclarationADefinition() ||
(Redecl->isCanonicalDecl() && !*Suggested))
*Suggested = Redecl;
}
return false;
}
D = ED->getDefinition();
}
assert(D && "missing definition for pattern of instantiated definition");
*Suggested = D;
if (isVisible(D))
return true;
// The external source may have additional definitions of this type that are
// visible, so complete the redeclaration chain now and ask again.
if (auto *Source = Context.getExternalSource()) {
Source->CompleteRedeclChain(D);
return isVisible(D);
}
return false;
}
/// Locks in the inheritance model for the given class and all of its bases.
static void assignInheritanceModel(Sema &S, CXXRecordDecl *RD) {
RD = RD->getMostRecentDecl();
if (!RD->hasAttr<MSInheritanceAttr>()) {
MSInheritanceAttr::Spelling IM;
switch (S.MSPointerToMemberRepresentationMethod) {
case LangOptions::PPTMK_BestCase:
IM = RD->calculateInheritanceModel();
break;
case LangOptions::PPTMK_FullGeneralitySingleInheritance:
IM = MSInheritanceAttr::Keyword_single_inheritance;
break;
case LangOptions::PPTMK_FullGeneralityMultipleInheritance:
IM = MSInheritanceAttr::Keyword_multiple_inheritance;
break;
case LangOptions::PPTMK_FullGeneralityVirtualInheritance:
IM = MSInheritanceAttr::Keyword_unspecified_inheritance;
break;
}
RD->addAttr(MSInheritanceAttr::CreateImplicit(
S.getASTContext(), IM,
/*BestCase=*/S.MSPointerToMemberRepresentationMethod ==
LangOptions::PPTMK_BestCase,
S.ImplicitMSInheritanceAttrLoc.isValid()
? S.ImplicitMSInheritanceAttrLoc
: RD->getSourceRange()));
}
}
/// \brief The implementation of RequireCompleteType
bool Sema::RequireCompleteTypeImpl(SourceLocation Loc, QualType T,
TypeDiagnoser &Diagnoser) {
// FIXME: Add this assertion to make sure we always get instantiation points.
// assert(!Loc.isInvalid() && "Invalid location in RequireCompleteType");
// FIXME: Add this assertion to help us flush out problems with
// checking for dependent types and type-dependent expressions.
//
// assert(!T->isDependentType() &&
// "Can't ask whether a dependent type is complete");
// We lock in the inheritance model once somebody has asked us to ensure
// that a pointer-to-member type is complete.
if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
if (const MemberPointerType *MPTy = T->getAs<MemberPointerType>()) {
if (!MPTy->getClass()->isDependentType()) {
RequireCompleteType(Loc, QualType(MPTy->getClass(), 0), 0);
assignInheritanceModel(*this, MPTy->getMostRecentCXXRecordDecl());
}
}
}
// If we have a complete type, we're done.
NamedDecl *Def = nullptr;
if (!T->isIncompleteType(&Def)) {
// If we know about the definition but it is not visible, complain.
NamedDecl *SuggestedDef = nullptr;
if (!Diagnoser.Suppressed && Def &&
!hasVisibleDefinition(Def, &SuggestedDef, /*OnlyNeedComplete*/true))
diagnoseMissingImport(Loc, SuggestedDef, /*NeedDefinition*/true);
return false;
}
const TagType *Tag = T->getAs<TagType>();
const ObjCInterfaceType *IFace = T->getAs<ObjCInterfaceType>();
// If there's an unimported definition of this type in a module (for
// instance, because we forward declared it, then imported the definition),
// import that definition now.
//
// FIXME: What about other cases where an import extends a redeclaration
// chain for a declaration that can be accessed through a mechanism other
// than name lookup (eg, referenced in a template, or a variable whose type
// could be completed by the module)?
if (Tag || IFace) {
NamedDecl *D =
Tag ? static_cast<NamedDecl *>(Tag->getDecl()) : IFace->getDecl();
// Avoid diagnosing invalid decls as incomplete.
if (D->isInvalidDecl())
return true;
// Give the external AST source a chance to complete the type.
if (auto *Source = Context.getExternalSource()) {
if (Tag)
Source->CompleteType(Tag->getDecl());
else
Source->CompleteType(IFace->getDecl());
// If the external source completed the type, go through the motions
// again to ensure we're allowed to use the completed type.
if (!T->isIncompleteType())
return RequireCompleteTypeImpl(Loc, T, Diagnoser);
}
}
// If we have a class template specialization or a class member of a
// class template specialization, or an array with known size of such,
// try to instantiate it.
QualType MaybeTemplate = T;
while (const ConstantArrayType *Array
= Context.getAsConstantArrayType(MaybeTemplate))
MaybeTemplate = Array->getElementType();
if (const RecordType *Record = MaybeTemplate->getAs<RecordType>()) {
if (ClassTemplateSpecializationDecl *ClassTemplateSpec
= dyn_cast<ClassTemplateSpecializationDecl>(Record->getDecl())) {
if (ClassTemplateSpec->getSpecializationKind() == TSK_Undeclared)
return InstantiateClassTemplateSpecialization(Loc, ClassTemplateSpec,
TSK_ImplicitInstantiation,
/*Complain=*/!Diagnoser.Suppressed);
} else if (CXXRecordDecl *Rec
= dyn_cast<CXXRecordDecl>(Record->getDecl())) {
CXXRecordDecl *Pattern = Rec->getInstantiatedFromMemberClass();
if (!Rec->isBeingDefined() && Pattern) {
MemberSpecializationInfo *MSI = Rec->getMemberSpecializationInfo();
assert(MSI && "Missing member specialization information?");
// This record was instantiated from a class within a template.
if (MSI->getTemplateSpecializationKind() != TSK_ExplicitSpecialization)
return InstantiateClass(Loc, Rec, Pattern,
getTemplateInstantiationArgs(Rec),
TSK_ImplicitInstantiation,
/*Complain=*/!Diagnoser.Suppressed);
}
}
}
if (Diagnoser.Suppressed)
return true;
// We have an incomplete type. Produce a diagnostic.
if (Ident___float128 &&
T == Context.getTypeDeclType(Context.getFloat128StubType())) {
Diag(Loc, diag::err_typecheck_decl_incomplete_type___float128);
return true;
}
Diagnoser.diagnose(*this, Loc, T);
// If the type was a forward declaration of a class/struct/union
// type, produce a note.
if (Tag && !Tag->getDecl()->isInvalidDecl())
Diag(Tag->getDecl()->getLocation(),
Tag->isBeingDefined() ? diag::note_type_being_defined
: diag::note_forward_declaration)
<< QualType(Tag, 0);
// If the Objective-C class was a forward declaration, produce a note.
if (IFace && !IFace->getDecl()->isInvalidDecl())
Diag(IFace->getDecl()->getLocation(), diag::note_forward_class);
// If we have external information that we can use to suggest a fix,
// produce a note.
if (ExternalSource)
ExternalSource->MaybeDiagnoseMissingCompleteType(Loc, T);
return true;
}
bool Sema::RequireCompleteType(SourceLocation Loc, QualType T,
unsigned DiagID) {
TypeDiagnoserDiag Diagnoser(DiagID);
return RequireCompleteType(Loc, T, Diagnoser);
}
/// \brief Get diagnostic %select index for tag kind for
/// literal type diagnostic message.
/// WARNING: Indexes apply to particular diagnostics only!
///
/// \returns diagnostic %select index.
static unsigned getLiteralDiagFromTagKind(TagTypeKind Tag) {
switch (Tag) {
case TTK_Struct: return 0;
case TTK_Interface: return 1;
case TTK_Class: return 2;
default: llvm_unreachable("Invalid tag kind for literal type diagnostic!");
}
}
/// @brief Ensure that the type T is a literal type.
///
/// This routine checks whether the type @p T is a literal type. If @p T is an
/// incomplete type, an attempt is made to complete it. If @p T is a literal
/// type, or @p AllowIncompleteType is true and @p T is an incomplete type,
/// returns false. Otherwise, this routine issues the diagnostic @p PD (giving
/// it the type @p T), along with notes explaining why the type is not a
/// literal type, and returns true.
///
/// @param Loc The location in the source that the non-literal type
/// diagnostic should refer to.
///
/// @param T The type that this routine is examining for literalness.
///
/// @param Diagnoser Emits a diagnostic if T is not a literal type.
///
/// @returns @c true if @p T is not a literal type and a diagnostic was emitted,
/// @c false otherwise.
bool Sema::RequireLiteralType(SourceLocation Loc, QualType T,
TypeDiagnoser &Diagnoser) {
assert(!T->isDependentType() && "type should not be dependent");
QualType ElemType = Context.getBaseElementType(T);
RequireCompleteType(Loc, ElemType, 0);
if (T->isLiteralType(Context))
return false;
if (Diagnoser.Suppressed)
return true;
Diagnoser.diagnose(*this, Loc, T);
if (T->isVariableArrayType())
return true;
const RecordType *RT = ElemType->getAs<RecordType>();
if (!RT)
return true;
const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
// A partially-defined class type can't be a literal type, because a literal
// class type must have a trivial destructor (which can't be checked until
// the class definition is complete).
if (!RD->isCompleteDefinition()) {
RequireCompleteType(Loc, ElemType, diag::note_non_literal_incomplete, T);
return true;
}
// If the class has virtual base classes, then it's not an aggregate, and
// cannot have any constexpr constructors or a trivial default constructor,
// so is non-literal. This is better to diagnose than the resulting absence
// of constexpr constructors.
if (RD->getNumVBases()) {
Diag(RD->getLocation(), diag::note_non_literal_virtual_base)
<< getLiteralDiagFromTagKind(RD->getTagKind()) << RD->getNumVBases();
for (const auto &I : RD->vbases())
Diag(I.getLocStart(), diag::note_constexpr_virtual_base_here)
<< I.getSourceRange();
} else if (!RD->isAggregate() && !RD->hasConstexprNonCopyMoveConstructor() &&
!RD->hasTrivialDefaultConstructor()) {
Diag(RD->getLocation(), diag::note_non_literal_no_constexpr_ctors) << RD;
} else if (RD->hasNonLiteralTypeFieldsOrBases()) {
for (const auto &I : RD->bases()) {
if (!I.getType()->isLiteralType(Context)) {
Diag(I.getLocStart(),
diag::note_non_literal_base_class)
<< RD << I.getType() << I.getSourceRange();
return true;
}
}
for (const auto *I : RD->fields()) {
if (!I->getType()->isLiteralType(Context) ||
I->getType().isVolatileQualified()) {
Diag(I->getLocation(), diag::note_non_literal_field)
<< RD << I << I->getType()
<< I->getType().isVolatileQualified();
return true;
}
}
} else if (!RD->hasTrivialDestructor()) {
// All fields and bases are of literal types, so have trivial destructors.
// If this class's destructor is non-trivial it must be user-declared.
CXXDestructorDecl *Dtor = RD->getDestructor();
assert(Dtor && "class has literal fields and bases but no dtor?");
if (!Dtor)
return true;
Diag(Dtor->getLocation(), Dtor->isUserProvided() ?
diag::note_non_literal_user_provided_dtor :
diag::note_non_literal_nontrivial_dtor) << RD;
if (!Dtor->isUserProvided())
SpecialMemberIsTrivial(Dtor, CXXDestructor, /*Diagnose*/true);
}
return true;
}
bool Sema::RequireLiteralType(SourceLocation Loc, QualType T, unsigned DiagID) {
TypeDiagnoserDiag Diagnoser(DiagID);
return RequireLiteralType(Loc, T, Diagnoser);
}
/// \brief Retrieve a version of the type 'T' that is elaborated by Keyword
/// and qualified by the nested-name-specifier contained in SS.
QualType Sema::getElaboratedType(ElaboratedTypeKeyword Keyword,
const CXXScopeSpec &SS, QualType T) {
if (T.isNull())
return T;
NestedNameSpecifier *NNS;
if (SS.isValid())
NNS = SS.getScopeRep();
else {
if (Keyword == ETK_None)
return T;
NNS = nullptr;
}
return Context.getElaboratedType(Keyword, NNS, T);
}
QualType Sema::BuildTypeofExprType(Expr *E, SourceLocation Loc) {
ExprResult ER = CheckPlaceholderExpr(E);
if (ER.isInvalid()) return QualType();
E = ER.get();
if (!E->isTypeDependent()) {
QualType T = E->getType();
if (const TagType *TT = T->getAs<TagType>())
DiagnoseUseOfDecl(TT->getDecl(), E->getExprLoc());
}
return Context.getTypeOfExprType(E);
}
/// getDecltypeForExpr - Given an expr, will return the decltype for
/// that expression, according to the rules in C++11
/// [dcl.type.simple]p4 and C++11 [expr.lambda.prim]p18.
static QualType getDecltypeForExpr(Sema &S, Expr *E) {
if (E->isTypeDependent())
return S.Context.DependentTy;
// C++11 [dcl.type.simple]p4:
// The type denoted by decltype(e) is defined as follows:
//
// - if e is an unparenthesized id-expression or an unparenthesized class
// member access (5.2.5), decltype(e) is the type of the entity named
// by e. If there is no such entity, or if e names a set of overloaded
// functions, the program is ill-formed;
//
// We apply the same rules for Objective-C ivar and property references.
if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
if (const ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl()))
return VD->getType();
} else if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
if (const FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()))
return FD->getType();
} else if (const ObjCIvarRefExpr *IR = dyn_cast<ObjCIvarRefExpr>(E)) {
return IR->getDecl()->getType();
} else if (const ObjCPropertyRefExpr *PR = dyn_cast<ObjCPropertyRefExpr>(E)) {
if (PR->isExplicitProperty())
return PR->getExplicitProperty()->getType();
} else if (auto *PE = dyn_cast<PredefinedExpr>(E)) {
return PE->getType();
}
// C++11 [expr.lambda.prim]p18:
// Every occurrence of decltype((x)) where x is a possibly
// parenthesized id-expression that names an entity of automatic
// storage duration is treated as if x were transformed into an
// access to a corresponding data member of the closure type that
// would have been declared if x were an odr-use of the denoted
// entity.
using namespace sema;
if (S.getCurLambda()) {
if (isa<ParenExpr>(E)) {
if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParens())) {
if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
QualType T = S.getCapturedDeclRefType(Var, DRE->getLocation());
if (!T.isNull())
return S.Context.getLValueReferenceType(T);
}
}
}
}
// C++11 [dcl.type.simple]p4:
// [...]
QualType T = E->getType();
switch (E->getValueKind()) {
// - otherwise, if e is an xvalue, decltype(e) is T&&, where T is the
// type of e;
case VK_XValue: T = S.Context.getRValueReferenceType(T); break;
// - otherwise, if e is an lvalue, decltype(e) is T&, where T is the
// type of e;
case VK_LValue: T = S.Context.getLValueReferenceType(T); break;
// - otherwise, decltype(e) is the type of e.
case VK_RValue: break;
}
return T;
}
QualType Sema::BuildDecltypeType(Expr *E, SourceLocation Loc,
bool AsUnevaluated) {
ExprResult ER = CheckPlaceholderExpr(E);
if (ER.isInvalid()) return QualType();
E = ER.get();
if (AsUnevaluated && ActiveTemplateInstantiations.empty() &&
E->HasSideEffects(Context, false)) {
// The expression operand for decltype is in an unevaluated expression
// context, so side effects could result in unintended consequences.
Diag(E->getExprLoc(), diag::warn_side_effects_unevaluated_context);
}
return Context.getDecltypeType(E, getDecltypeForExpr(*this, E));
}
QualType Sema::BuildUnaryTransformType(QualType BaseType,
UnaryTransformType::UTTKind UKind,
SourceLocation Loc) {
switch (UKind) {
case UnaryTransformType::EnumUnderlyingType:
if (!BaseType->isDependentType() && !BaseType->isEnumeralType()) {
Diag(Loc, diag::err_only_enums_have_underlying_types);
return QualType();
} else {
QualType Underlying = BaseType;
if (!BaseType->isDependentType()) {
// The enum could be incomplete if we're parsing its definition or
// recovering from an error.
NamedDecl *FwdDecl = nullptr;
if (BaseType->isIncompleteType(&FwdDecl)) {
Diag(Loc, diag::err_underlying_type_of_incomplete_enum) << BaseType;
Diag(FwdDecl->getLocation(), diag::note_forward_declaration) << FwdDecl;
return QualType();
}
EnumDecl *ED = BaseType->getAs<EnumType>()->getDecl();
assert(ED && "EnumType has no EnumDecl");
DiagnoseUseOfDecl(ED, Loc);
Underlying = ED->getIntegerType();
assert(!Underlying.isNull());
}
return Context.getUnaryTransformType(BaseType, Underlying,
UnaryTransformType::EnumUnderlyingType);
}
}
llvm_unreachable("unknown unary transform type");
}
QualType Sema::BuildAtomicType(QualType T, SourceLocation Loc) {
if (!T->isDependentType()) {
// FIXME: It isn't entirely clear whether incomplete atomic types
// are allowed or not; for simplicity, ban them for the moment.
if (RequireCompleteType(Loc, T, diag::err_atomic_specifier_bad_type, 0))
return QualType();
int DisallowedKind = -1;
if (T->isArrayType())
DisallowedKind = 1;
else if (T->isFunctionType())
DisallowedKind = 2;
else if (T->isReferenceType())
DisallowedKind = 3;
else if (T->isAtomicType())
DisallowedKind = 4;
else if (T.hasQualifiers())
DisallowedKind = 5;
else if (!T.isTriviallyCopyableType(Context))
// Some other non-trivially-copyable type (probably a C++ class)
DisallowedKind = 6;
if (DisallowedKind != -1) {
Diag(Loc, diag::err_atomic_specifier_bad_type) << DisallowedKind << T;
return QualType();
}
// FIXME: Do we need any handling for ARC here?
}
// Build the pointer type.
return Context.getAtomicType(T);
}