blob: 5de1d0588e80eef3c1b13a90bb6dd475a381c893 [file] [log] [blame]
//===-- DeclBase.h - Base Classes for representing declarations -*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the Decl and DeclContext interfaces.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_AST_DECLBASE_H
#define LLVM_CLANG_AST_DECLBASE_H
#include "clang/AST/AttrIterator.h"
#include "clang/AST/DeclarationName.h"
#include "clang/Basic/Specifiers.h"
#include "clang/Basic/VersionTuple.h"
#include "llvm/ADT/PointerUnion.h"
#include "llvm/ADT/iterator.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/PrettyStackTrace.h"
namespace clang {
class ASTMutationListener;
class BlockDecl;
class CXXRecordDecl;
class CompoundStmt;
class DeclContext;
class DeclarationName;
class DependentDiagnostic;
class EnumDecl;
class ExportDecl;
class FunctionDecl;
class FunctionType;
enum Linkage : unsigned char;
class LinkageComputer;
class LinkageSpecDecl;
class Module;
class NamedDecl;
class NamespaceDecl;
class ObjCCategoryDecl;
class ObjCCategoryImplDecl;
class ObjCContainerDecl;
class ObjCImplDecl;
class ObjCImplementationDecl;
class ObjCInterfaceDecl;
class ObjCMethodDecl;
class ObjCProtocolDecl;
struct PrintingPolicy;
class RecordDecl;
class Stmt;
class StoredDeclsMap;
class TemplateDecl;
class TranslationUnitDecl;
class UsingDirectiveDecl;
}
namespace clang {
/// \brief Captures the result of checking the availability of a
/// declaration.
enum AvailabilityResult {
AR_Available = 0,
AR_NotYetIntroduced,
AR_Deprecated,
AR_Unavailable
};
/// Decl - This represents one declaration (or definition), e.g. a variable,
/// typedef, function, struct, etc.
///
/// Note: There are objects tacked on before the *beginning* of Decl
/// (and its subclasses) in its Decl::operator new(). Proper alignment
/// of all subclasses (not requiring more than the alignment of Decl) is
/// asserted in DeclBase.cpp.
class LLVM_ALIGNAS(/*alignof(uint64_t)*/ 8) Decl {
public:
/// \brief Lists the kind of concrete classes of Decl.
enum Kind {
#define DECL(DERIVED, BASE) DERIVED,
#define ABSTRACT_DECL(DECL)
#define DECL_RANGE(BASE, START, END) \
first##BASE = START, last##BASE = END,
#define LAST_DECL_RANGE(BASE, START, END) \
first##BASE = START, last##BASE = END
#include "clang/AST/DeclNodes.inc"
};
/// \brief A placeholder type used to construct an empty shell of a
/// decl-derived type that will be filled in later (e.g., by some
/// deserialization method).
struct EmptyShell { };
/// IdentifierNamespace - The different namespaces in which
/// declarations may appear. According to C99 6.2.3, there are
/// four namespaces, labels, tags, members and ordinary
/// identifiers. C++ describes lookup completely differently:
/// certain lookups merely "ignore" certain kinds of declarations,
/// usually based on whether the declaration is of a type, etc.
///
/// These are meant as bitmasks, so that searches in
/// C++ can look into the "tag" namespace during ordinary lookup.
///
/// Decl currently provides 15 bits of IDNS bits.
enum IdentifierNamespace {
/// Labels, declared with 'x:' and referenced with 'goto x'.
IDNS_Label = 0x0001,
/// Tags, declared with 'struct foo;' and referenced with
/// 'struct foo'. All tags are also types. This is what
/// elaborated-type-specifiers look for in C.
/// This also contains names that conflict with tags in the
/// same scope but that are otherwise ordinary names (non-type
/// template parameters and indirect field declarations).
IDNS_Tag = 0x0002,
/// Types, declared with 'struct foo', typedefs, etc.
/// This is what elaborated-type-specifiers look for in C++,
/// but note that it's ill-formed to find a non-tag.
IDNS_Type = 0x0004,
/// Members, declared with object declarations within tag
/// definitions. In C, these can only be found by "qualified"
/// lookup in member expressions. In C++, they're found by
/// normal lookup.
IDNS_Member = 0x0008,
/// Namespaces, declared with 'namespace foo {}'.
/// Lookup for nested-name-specifiers find these.
IDNS_Namespace = 0x0010,
/// Ordinary names. In C, everything that's not a label, tag,
/// member, or function-local extern ends up here.
IDNS_Ordinary = 0x0020,
/// Objective C \@protocol.
IDNS_ObjCProtocol = 0x0040,
/// This declaration is a friend function. A friend function
/// declaration is always in this namespace but may also be in
/// IDNS_Ordinary if it was previously declared.
IDNS_OrdinaryFriend = 0x0080,
/// This declaration is a friend class. A friend class
/// declaration is always in this namespace but may also be in
/// IDNS_Tag|IDNS_Type if it was previously declared.
IDNS_TagFriend = 0x0100,
/// This declaration is a using declaration. A using declaration
/// *introduces* a number of other declarations into the current
/// scope, and those declarations use the IDNS of their targets,
/// but the actual using declarations go in this namespace.
IDNS_Using = 0x0200,
/// This declaration is a C++ operator declared in a non-class
/// context. All such operators are also in IDNS_Ordinary.
/// C++ lexical operator lookup looks for these.
IDNS_NonMemberOperator = 0x0400,
/// This declaration is a function-local extern declaration of a
/// variable or function. This may also be IDNS_Ordinary if it
/// has been declared outside any function. These act mostly like
/// invisible friend declarations, but are also visible to unqualified
/// lookup within the scope of the declaring function.
IDNS_LocalExtern = 0x0800,
/// This declaration is an OpenMP user defined reduction construction.
IDNS_OMPReduction = 0x1000
};
/// ObjCDeclQualifier - 'Qualifiers' written next to the return and
/// parameter types in method declarations. Other than remembering
/// them and mangling them into the method's signature string, these
/// are ignored by the compiler; they are consumed by certain
/// remote-messaging frameworks.
///
/// in, inout, and out are mutually exclusive and apply only to
/// method parameters. bycopy and byref are mutually exclusive and
/// apply only to method parameters (?). oneway applies only to
/// results. All of these expect their corresponding parameter to
/// have a particular type. None of this is currently enforced by
/// clang.
///
/// This should be kept in sync with ObjCDeclSpec::ObjCDeclQualifier.
enum ObjCDeclQualifier {
OBJC_TQ_None = 0x0,
OBJC_TQ_In = 0x1,
OBJC_TQ_Inout = 0x2,
OBJC_TQ_Out = 0x4,
OBJC_TQ_Bycopy = 0x8,
OBJC_TQ_Byref = 0x10,
OBJC_TQ_Oneway = 0x20,
/// The nullability qualifier is set when the nullability of the
/// result or parameter was expressed via a context-sensitive
/// keyword.
OBJC_TQ_CSNullability = 0x40
};
protected:
// Enumeration values used in the bits stored in NextInContextAndBits.
enum {
/// \brief Whether this declaration is a top-level declaration (function,
/// global variable, etc.) that is lexically inside an objc container
/// definition.
TopLevelDeclInObjCContainerFlag = 0x01,
/// \brief Whether this declaration is private to the module in which it was
/// defined.
ModulePrivateFlag = 0x02
};
/// \brief The next declaration within the same lexical
/// DeclContext. These pointers form the linked list that is
/// traversed via DeclContext's decls_begin()/decls_end().
///
/// The extra two bits are used for the TopLevelDeclInObjCContainer and
/// ModulePrivate bits.
llvm::PointerIntPair<Decl *, 2, unsigned> NextInContextAndBits;
private:
friend class DeclContext;
struct MultipleDC {
DeclContext *SemanticDC;
DeclContext *LexicalDC;
};
/// DeclCtx - Holds either a DeclContext* or a MultipleDC*.
/// For declarations that don't contain C++ scope specifiers, it contains
/// the DeclContext where the Decl was declared.
/// For declarations with C++ scope specifiers, it contains a MultipleDC*
/// with the context where it semantically belongs (SemanticDC) and the
/// context where it was lexically declared (LexicalDC).
/// e.g.:
///
/// namespace A {
/// void f(); // SemanticDC == LexicalDC == 'namespace A'
/// }
/// void A::f(); // SemanticDC == namespace 'A'
/// // LexicalDC == global namespace
llvm::PointerUnion<DeclContext*, MultipleDC*> DeclCtx;
inline bool isInSemaDC() const { return DeclCtx.is<DeclContext*>(); }
inline bool isOutOfSemaDC() const { return DeclCtx.is<MultipleDC*>(); }
inline MultipleDC *getMultipleDC() const {
return DeclCtx.get<MultipleDC*>();
}
inline DeclContext *getSemanticDC() const {
return DeclCtx.get<DeclContext*>();
}
/// Loc - The location of this decl.
SourceLocation Loc;
/// DeclKind - This indicates which class this is.
unsigned DeclKind : 7;
/// InvalidDecl - This indicates a semantic error occurred.
unsigned InvalidDecl : 1;
/// HasAttrs - This indicates whether the decl has attributes or not.
unsigned HasAttrs : 1;
/// Implicit - Whether this declaration was implicitly generated by
/// the implementation rather than explicitly written by the user.
unsigned Implicit : 1;
/// \brief Whether this declaration was "used", meaning that a definition is
/// required.
unsigned Used : 1;
/// \brief Whether this declaration was "referenced".
/// The difference with 'Used' is whether the reference appears in a
/// evaluated context or not, e.g. functions used in uninstantiated templates
/// are regarded as "referenced" but not "used".
unsigned Referenced : 1;
/// \brief Whether statistic collection is enabled.
static bool StatisticsEnabled;
protected:
/// Access - Used by C++ decls for the access specifier.
// NOTE: VC++ treats enums as signed, avoid using the AccessSpecifier enum
unsigned Access : 2;
friend class CXXClassMemberWrapper;
/// \brief Whether this declaration was loaded from an AST file.
unsigned FromASTFile : 1;
/// \brief Whether this declaration is hidden from normal name lookup, e.g.,
/// because it is was loaded from an AST file is either module-private or
/// because its submodule has not been made visible.
unsigned Hidden : 1;
/// IdentifierNamespace - This specifies what IDNS_* namespace this lives in.
unsigned IdentifierNamespace : 13;
/// \brief If 0, we have not computed the linkage of this declaration.
/// Otherwise, it is the linkage + 1.
mutable unsigned CacheValidAndLinkage : 3;
friend class ASTDeclWriter;
friend class ASTDeclReader;
friend class ASTReader;
friend class LinkageComputer;
template<typename decl_type> friend class Redeclarable;
/// \brief Allocate memory for a deserialized declaration.
///
/// This routine must be used to allocate memory for any declaration that is
/// deserialized from a module file.
///
/// \param Size The size of the allocated object.
/// \param Ctx The context in which we will allocate memory.
/// \param ID The global ID of the deserialized declaration.
/// \param Extra The amount of extra space to allocate after the object.
void *operator new(std::size_t Size, const ASTContext &Ctx, unsigned ID,
std::size_t Extra = 0);
/// \brief Allocate memory for a non-deserialized declaration.
void *operator new(std::size_t Size, const ASTContext &Ctx,
DeclContext *Parent, std::size_t Extra = 0);
private:
bool AccessDeclContextSanity() const;
protected:
Decl(Kind DK, DeclContext *DC, SourceLocation L)
: NextInContextAndBits(), DeclCtx(DC),
Loc(L), DeclKind(DK), InvalidDecl(0),
HasAttrs(false), Implicit(false), Used(false), Referenced(false),
Access(AS_none), FromASTFile(0), Hidden(DC && cast<Decl>(DC)->Hidden),
IdentifierNamespace(getIdentifierNamespaceForKind(DK)),
CacheValidAndLinkage(0)
{
if (StatisticsEnabled) add(DK);
}
Decl(Kind DK, EmptyShell Empty)
: NextInContextAndBits(), DeclKind(DK), InvalidDecl(0),
HasAttrs(false), Implicit(false), Used(false), Referenced(false),
Access(AS_none), FromASTFile(0), Hidden(0),
IdentifierNamespace(getIdentifierNamespaceForKind(DK)),
CacheValidAndLinkage(0)
{
if (StatisticsEnabled) add(DK);
}
virtual ~Decl();
/// \brief Update a potentially out-of-date declaration.
void updateOutOfDate(IdentifierInfo &II) const;
Linkage getCachedLinkage() const {
return Linkage(CacheValidAndLinkage - 1);
}
void setCachedLinkage(Linkage L) const {
CacheValidAndLinkage = L + 1;
}
bool hasCachedLinkage() const {
return CacheValidAndLinkage;
}
public:
/// \brief Source range that this declaration covers.
virtual SourceRange getSourceRange() const LLVM_READONLY {
return SourceRange(getLocation(), getLocation());
}
SourceLocation getLocStart() const LLVM_READONLY {
return getSourceRange().getBegin();
}
SourceLocation getLocEnd() const LLVM_READONLY {
return getSourceRange().getEnd();
}
SourceLocation getLocation() const { return Loc; }
void setLocation(SourceLocation L) { Loc = L; }
Kind getKind() const { return static_cast<Kind>(DeclKind); }
const char *getDeclKindName() const;
Decl *getNextDeclInContext() { return NextInContextAndBits.getPointer(); }
const Decl *getNextDeclInContext() const {return NextInContextAndBits.getPointer();}
DeclContext *getDeclContext() {
if (isInSemaDC())
return getSemanticDC();
return getMultipleDC()->SemanticDC;
}
const DeclContext *getDeclContext() const {
return const_cast<Decl*>(this)->getDeclContext();
}
/// Find the innermost non-closure ancestor of this declaration,
/// walking up through blocks, lambdas, etc. If that ancestor is
/// not a code context (!isFunctionOrMethod()), returns null.
///
/// A declaration may be its own non-closure context.
Decl *getNonClosureContext();
const Decl *getNonClosureContext() const {
return const_cast<Decl*>(this)->getNonClosureContext();
}
TranslationUnitDecl *getTranslationUnitDecl();
const TranslationUnitDecl *getTranslationUnitDecl() const {
return const_cast<Decl*>(this)->getTranslationUnitDecl();
}
bool isInAnonymousNamespace() const;
bool isInStdNamespace() const;
ASTContext &getASTContext() const LLVM_READONLY;
void setAccess(AccessSpecifier AS) {
Access = AS;
assert(AccessDeclContextSanity());
}
AccessSpecifier getAccess() const {
assert(AccessDeclContextSanity());
return AccessSpecifier(Access);
}
/// \brief Retrieve the access specifier for this declaration, even though
/// it may not yet have been properly set.
AccessSpecifier getAccessUnsafe() const {
return AccessSpecifier(Access);
}
bool hasAttrs() const { return HasAttrs; }
void setAttrs(const AttrVec& Attrs) {
return setAttrsImpl(Attrs, getASTContext());
}
AttrVec &getAttrs() {
return const_cast<AttrVec&>(const_cast<const Decl*>(this)->getAttrs());
}
const AttrVec &getAttrs() const;
void dropAttrs();
void addAttr(Attr *A) {
if (hasAttrs())
getAttrs().push_back(A);
else
setAttrs(AttrVec(1, A));
}
typedef AttrVec::const_iterator attr_iterator;
typedef llvm::iterator_range<attr_iterator> attr_range;
attr_range attrs() const {
return attr_range(attr_begin(), attr_end());
}
attr_iterator attr_begin() const {
return hasAttrs() ? getAttrs().begin() : nullptr;
}
attr_iterator attr_end() const {
return hasAttrs() ? getAttrs().end() : nullptr;
}
template <typename T>
void dropAttr() {
if (!HasAttrs) return;
AttrVec &Vec = getAttrs();
Vec.erase(std::remove_if(Vec.begin(), Vec.end(), isa<T, Attr*>), Vec.end());
if (Vec.empty())
HasAttrs = false;
}
template <typename T>
llvm::iterator_range<specific_attr_iterator<T>> specific_attrs() const {
return llvm::make_range(specific_attr_begin<T>(), specific_attr_end<T>());
}
template <typename T>
specific_attr_iterator<T> specific_attr_begin() const {
return specific_attr_iterator<T>(attr_begin());
}
template <typename T>
specific_attr_iterator<T> specific_attr_end() const {
return specific_attr_iterator<T>(attr_end());
}
template<typename T> T *getAttr() const {
return hasAttrs() ? getSpecificAttr<T>(getAttrs()) : nullptr;
}
template<typename T> bool hasAttr() const {
return hasAttrs() && hasSpecificAttr<T>(getAttrs());
}
/// getMaxAlignment - return the maximum alignment specified by attributes
/// on this decl, 0 if there are none.
unsigned getMaxAlignment() const;
/// setInvalidDecl - Indicates the Decl had a semantic error. This
/// allows for graceful error recovery.
void setInvalidDecl(bool Invalid = true);
bool isInvalidDecl() const { return (bool) InvalidDecl; }
/// isImplicit - Indicates whether the declaration was implicitly
/// generated by the implementation. If false, this declaration
/// was written explicitly in the source code.
bool isImplicit() const { return Implicit; }
void setImplicit(bool I = true) { Implicit = I; }
/// \brief Whether *any* (re-)declaration of the entity was used, meaning that
/// a definition is required.
///
/// \param CheckUsedAttr When true, also consider the "used" attribute
/// (in addition to the "used" bit set by \c setUsed()) when determining
/// whether the function is used.
bool isUsed(bool CheckUsedAttr = true) const;
/// \brief Set whether the declaration is used, in the sense of odr-use.
///
/// This should only be used immediately after creating a declaration.
/// It intentionally doesn't notify any listeners.
void setIsUsed() { getCanonicalDecl()->Used = true; }
/// \brief Mark the declaration used, in the sense of odr-use.
///
/// This notifies any mutation listeners in addition to setting a bit
/// indicating the declaration is used.
void markUsed(ASTContext &C);
/// \brief Whether any declaration of this entity was referenced.
bool isReferenced() const;
/// \brief Whether this declaration was referenced. This should not be relied
/// upon for anything other than debugging.
bool isThisDeclarationReferenced() const { return Referenced; }
void setReferenced(bool R = true) { Referenced = R; }
/// \brief Whether this declaration is a top-level declaration (function,
/// global variable, etc.) that is lexically inside an objc container
/// definition.
bool isTopLevelDeclInObjCContainer() const {
return NextInContextAndBits.getInt() & TopLevelDeclInObjCContainerFlag;
}
void setTopLevelDeclInObjCContainer(bool V = true) {
unsigned Bits = NextInContextAndBits.getInt();
if (V)
Bits |= TopLevelDeclInObjCContainerFlag;
else
Bits &= ~TopLevelDeclInObjCContainerFlag;
NextInContextAndBits.setInt(Bits);
}
/// \brief Whether this declaration was marked as being private to the
/// module in which it was defined.
bool isModulePrivate() const {
return NextInContextAndBits.getInt() & ModulePrivateFlag;
}
/// \brief Whether this declaration is exported (by virtue of being lexically
/// within an ExportDecl or by being a NamespaceDecl).
bool isExported() const;
/// Return true if this declaration has an attribute which acts as
/// definition of the entity, such as 'alias' or 'ifunc'.
bool hasDefiningAttr() const;
/// Return this declaration's defining attribute if it has one.
const Attr *getDefiningAttr() const;
protected:
/// \brief Specify whether this declaration was marked as being private
/// to the module in which it was defined.
void setModulePrivate(bool MP = true) {
unsigned Bits = NextInContextAndBits.getInt();
if (MP)
Bits |= ModulePrivateFlag;
else
Bits &= ~ModulePrivateFlag;
NextInContextAndBits.setInt(Bits);
}
/// \brief Set the owning module ID.
void setOwningModuleID(unsigned ID) {
assert(isFromASTFile() && "Only works on a deserialized declaration");
*((unsigned*)this - 2) = ID;
}
public:
/// \brief Determine the availability of the given declaration.
///
/// This routine will determine the most restrictive availability of
/// the given declaration (e.g., preferring 'unavailable' to
/// 'deprecated').
///
/// \param Message If non-NULL and the result is not \c
/// AR_Available, will be set to a (possibly empty) message
/// describing why the declaration has not been introduced, is
/// deprecated, or is unavailable.
///
/// \param EnclosingVersion The version to compare with. If empty, assume the
/// deployment target version.
AvailabilityResult
getAvailability(std::string *Message = nullptr,
VersionTuple EnclosingVersion = VersionTuple()) const;
/// \brief Determine whether this declaration is marked 'deprecated'.
///
/// \param Message If non-NULL and the declaration is deprecated,
/// this will be set to the message describing why the declaration
/// was deprecated (which may be empty).
bool isDeprecated(std::string *Message = nullptr) const {
return getAvailability(Message) == AR_Deprecated;
}
/// \brief Determine whether this declaration is marked 'unavailable'.
///
/// \param Message If non-NULL and the declaration is unavailable,
/// this will be set to the message describing why the declaration
/// was made unavailable (which may be empty).
bool isUnavailable(std::string *Message = nullptr) const {
return getAvailability(Message) == AR_Unavailable;
}
/// \brief Determine whether this is a weak-imported symbol.
///
/// Weak-imported symbols are typically marked with the
/// 'weak_import' attribute, but may also be marked with an
/// 'availability' attribute where we're targing a platform prior to
/// the introduction of this feature.
bool isWeakImported() const;
/// \brief Determines whether this symbol can be weak-imported,
/// e.g., whether it would be well-formed to add the weak_import
/// attribute.
///
/// \param IsDefinition Set to \c true to indicate that this
/// declaration cannot be weak-imported because it has a definition.
bool canBeWeakImported(bool &IsDefinition) const;
/// \brief Determine whether this declaration came from an AST file (such as
/// a precompiled header or module) rather than having been parsed.
bool isFromASTFile() const { return FromASTFile; }
/// \brief Retrieve the global declaration ID associated with this
/// declaration, which specifies where in the
unsigned getGlobalID() const {
if (isFromASTFile())
return *((const unsigned*)this - 1);
return 0;
}
/// \brief Retrieve the global ID of the module that owns this particular
/// declaration.
unsigned getOwningModuleID() const {
if (isFromASTFile())
return *((const unsigned*)this - 2);
return 0;
}
private:
Module *getOwningModuleSlow() const;
protected:
bool hasLocalOwningModuleStorage() const;
public:
/// \brief Get the imported owning module, if this decl is from an imported
/// (non-local) module.
Module *getImportedOwningModule() const {
if (!isFromASTFile())
return nullptr;
return getOwningModuleSlow();
}
/// \brief Get the local owning module, if known. Returns nullptr if owner is
/// not yet known or declaration is not from a module.
Module *getLocalOwningModule() const {
if (isFromASTFile() || !Hidden)
return nullptr;
return reinterpret_cast<Module *const *>(this)[-1];
}
void setLocalOwningModule(Module *M) {
assert(!isFromASTFile() && Hidden && hasLocalOwningModuleStorage() &&
"should not have a cached owning module");
reinterpret_cast<Module **>(this)[-1] = M;
}
unsigned getIdentifierNamespace() const {
return IdentifierNamespace;
}
bool isInIdentifierNamespace(unsigned NS) const {
return getIdentifierNamespace() & NS;
}
static unsigned getIdentifierNamespaceForKind(Kind DK);
bool hasTagIdentifierNamespace() const {
return isTagIdentifierNamespace(getIdentifierNamespace());
}
static bool isTagIdentifierNamespace(unsigned NS) {
// TagDecls have Tag and Type set and may also have TagFriend.
return (NS & ~IDNS_TagFriend) == (IDNS_Tag | IDNS_Type);
}
/// getLexicalDeclContext - The declaration context where this Decl was
/// lexically declared (LexicalDC). May be different from
/// getDeclContext() (SemanticDC).
/// e.g.:
///
/// namespace A {
/// void f(); // SemanticDC == LexicalDC == 'namespace A'
/// }
/// void A::f(); // SemanticDC == namespace 'A'
/// // LexicalDC == global namespace
DeclContext *getLexicalDeclContext() {
if (isInSemaDC())
return getSemanticDC();
return getMultipleDC()->LexicalDC;
}
const DeclContext *getLexicalDeclContext() const {
return const_cast<Decl*>(this)->getLexicalDeclContext();
}
/// Determine whether this declaration is declared out of line (outside its
/// semantic context).
virtual bool isOutOfLine() const;
/// setDeclContext - Set both the semantic and lexical DeclContext
/// to DC.
void setDeclContext(DeclContext *DC);
void setLexicalDeclContext(DeclContext *DC);
/// isDefinedOutsideFunctionOrMethod - This predicate returns true if this
/// scoped decl is defined outside the current function or method. This is
/// roughly global variables and functions, but also handles enums (which
/// could be defined inside or outside a function etc).
bool isDefinedOutsideFunctionOrMethod() const {
return getParentFunctionOrMethod() == nullptr;
}
/// \brief Returns true if this declaration lexically is inside a function.
/// It recognizes non-defining declarations as well as members of local
/// classes:
/// \code
/// void foo() { void bar(); }
/// void foo2() { class ABC { void bar(); }; }
/// \endcode
bool isLexicallyWithinFunctionOrMethod() const;
/// \brief If this decl is defined inside a function/method/block it returns
/// the corresponding DeclContext, otherwise it returns null.
const DeclContext *getParentFunctionOrMethod() const;
DeclContext *getParentFunctionOrMethod() {
return const_cast<DeclContext*>(
const_cast<const Decl*>(this)->getParentFunctionOrMethod());
}
/// \brief Retrieves the "canonical" declaration of the given declaration.
virtual Decl *getCanonicalDecl() { return this; }
const Decl *getCanonicalDecl() const {
return const_cast<Decl*>(this)->getCanonicalDecl();
}
/// \brief Whether this particular Decl is a canonical one.
bool isCanonicalDecl() const { return getCanonicalDecl() == this; }
protected:
/// \brief Returns the next redeclaration or itself if this is the only decl.
///
/// Decl subclasses that can be redeclared should override this method so that
/// Decl::redecl_iterator can iterate over them.
virtual Decl *getNextRedeclarationImpl() { return this; }
/// \brief Implementation of getPreviousDecl(), to be overridden by any
/// subclass that has a redeclaration chain.
virtual Decl *getPreviousDeclImpl() { return nullptr; }
/// \brief Implementation of getMostRecentDecl(), to be overridden by any
/// subclass that has a redeclaration chain.
virtual Decl *getMostRecentDeclImpl() { return this; }
public:
/// \brief Iterates through all the redeclarations of the same decl.
class redecl_iterator {
/// Current - The current declaration.
Decl *Current;
Decl *Starter;
public:
typedef Decl *value_type;
typedef const value_type &reference;
typedef const value_type *pointer;
typedef std::forward_iterator_tag iterator_category;
typedef std::ptrdiff_t difference_type;
redecl_iterator() : Current(nullptr) { }
explicit redecl_iterator(Decl *C) : Current(C), Starter(C) { }
reference operator*() const { return Current; }
value_type operator->() const { return Current; }
redecl_iterator& operator++() {
assert(Current && "Advancing while iterator has reached end");
// Get either previous decl or latest decl.
Decl *Next = Current->getNextRedeclarationImpl();
assert(Next && "Should return next redeclaration or itself, never null!");
Current = (Next != Starter) ? Next : nullptr;
return *this;
}
redecl_iterator operator++(int) {
redecl_iterator tmp(*this);
++(*this);
return tmp;
}
friend bool operator==(redecl_iterator x, redecl_iterator y) {
return x.Current == y.Current;
}
friend bool operator!=(redecl_iterator x, redecl_iterator y) {
return x.Current != y.Current;
}
};
typedef llvm::iterator_range<redecl_iterator> redecl_range;
/// \brief Returns an iterator range for all the redeclarations of the same
/// decl. It will iterate at least once (when this decl is the only one).
redecl_range redecls() const {
return redecl_range(redecls_begin(), redecls_end());
}
redecl_iterator redecls_begin() const {
return redecl_iterator(const_cast<Decl *>(this));
}
redecl_iterator redecls_end() const { return redecl_iterator(); }
/// \brief Retrieve the previous declaration that declares the same entity
/// as this declaration, or NULL if there is no previous declaration.
Decl *getPreviousDecl() { return getPreviousDeclImpl(); }
/// \brief Retrieve the most recent declaration that declares the same entity
/// as this declaration, or NULL if there is no previous declaration.
const Decl *getPreviousDecl() const {
return const_cast<Decl *>(this)->getPreviousDeclImpl();
}
/// \brief True if this is the first declaration in its redeclaration chain.
bool isFirstDecl() const {
return getPreviousDecl() == nullptr;
}
/// \brief Retrieve the most recent declaration that declares the same entity
/// as this declaration (which may be this declaration).
Decl *getMostRecentDecl() { return getMostRecentDeclImpl(); }
/// \brief Retrieve the most recent declaration that declares the same entity
/// as this declaration (which may be this declaration).
const Decl *getMostRecentDecl() const {
return const_cast<Decl *>(this)->getMostRecentDeclImpl();
}
/// getBody - If this Decl represents a declaration for a body of code,
/// such as a function or method definition, this method returns the
/// top-level Stmt* of that body. Otherwise this method returns null.
virtual Stmt* getBody() const { return nullptr; }
/// \brief Returns true if this \c Decl represents a declaration for a body of
/// code, such as a function or method definition.
/// Note that \c hasBody can also return true if any redeclaration of this
/// \c Decl represents a declaration for a body of code.
virtual bool hasBody() const { return getBody() != nullptr; }
/// getBodyRBrace - Gets the right brace of the body, if a body exists.
/// This works whether the body is a CompoundStmt or a CXXTryStmt.
SourceLocation getBodyRBrace() const;
// global temp stats (until we have a per-module visitor)
static void add(Kind k);
static void EnableStatistics();
static void PrintStats();
/// isTemplateParameter - Determines whether this declaration is a
/// template parameter.
bool isTemplateParameter() const;
/// isTemplateParameter - Determines whether this declaration is a
/// template parameter pack.
bool isTemplateParameterPack() const;
/// \brief Whether this declaration is a parameter pack.
bool isParameterPack() const;
/// \brief returns true if this declaration is a template
bool isTemplateDecl() const;
/// \brief Whether this declaration is a function or function template.
bool isFunctionOrFunctionTemplate() const {
return (DeclKind >= Decl::firstFunction &&
DeclKind <= Decl::lastFunction) ||
DeclKind == FunctionTemplate;
}
/// \brief If this is a declaration that describes some template, this
/// method returns that template declaration.
TemplateDecl *getDescribedTemplate() const;
/// \brief Returns the function itself, or the templated function if this is a
/// function template.
FunctionDecl *getAsFunction() LLVM_READONLY;
const FunctionDecl *getAsFunction() const {
return const_cast<Decl *>(this)->getAsFunction();
}
/// \brief Changes the namespace of this declaration to reflect that it's
/// a function-local extern declaration.
///
/// These declarations appear in the lexical context of the extern
/// declaration, but in the semantic context of the enclosing namespace
/// scope.
void setLocalExternDecl() {
assert((IdentifierNamespace == IDNS_Ordinary ||
IdentifierNamespace == IDNS_OrdinaryFriend) &&
"namespace is not ordinary");
Decl *Prev = getPreviousDecl();
IdentifierNamespace &= ~IDNS_Ordinary;
IdentifierNamespace |= IDNS_LocalExtern;
if (Prev && Prev->getIdentifierNamespace() & IDNS_Ordinary)
IdentifierNamespace |= IDNS_Ordinary;
}
/// \brief Determine whether this is a block-scope declaration with linkage.
/// This will either be a local variable declaration declared 'extern', or a
/// local function declaration.
bool isLocalExternDecl() {
return IdentifierNamespace & IDNS_LocalExtern;
}
/// \brief Changes the namespace of this declaration to reflect that it's
/// the object of a friend declaration.
///
/// These declarations appear in the lexical context of the friending
/// class, but in the semantic context of the actual entity. This property
/// applies only to a specific decl object; other redeclarations of the
/// same entity may not (and probably don't) share this property.
void setObjectOfFriendDecl(bool PerformFriendInjection = false) {
unsigned OldNS = IdentifierNamespace;
assert((OldNS & (IDNS_Tag | IDNS_Ordinary |
IDNS_TagFriend | IDNS_OrdinaryFriend |
IDNS_LocalExtern)) &&
"namespace includes neither ordinary nor tag");
assert(!(OldNS & ~(IDNS_Tag | IDNS_Ordinary | IDNS_Type |
IDNS_TagFriend | IDNS_OrdinaryFriend |
IDNS_LocalExtern)) &&
"namespace includes other than ordinary or tag");
Decl *Prev = getPreviousDecl();
IdentifierNamespace &= ~(IDNS_Ordinary | IDNS_Tag | IDNS_Type);
if (OldNS & (IDNS_Tag | IDNS_TagFriend)) {
IdentifierNamespace |= IDNS_TagFriend;
if (PerformFriendInjection ||
(Prev && Prev->getIdentifierNamespace() & IDNS_Tag))
IdentifierNamespace |= IDNS_Tag | IDNS_Type;
}
if (OldNS & (IDNS_Ordinary | IDNS_OrdinaryFriend | IDNS_LocalExtern)) {
IdentifierNamespace |= IDNS_OrdinaryFriend;
if (PerformFriendInjection ||
(Prev && Prev->getIdentifierNamespace() & IDNS_Ordinary))
IdentifierNamespace |= IDNS_Ordinary;
}
}
enum FriendObjectKind {
FOK_None, ///< Not a friend object.
FOK_Declared, ///< A friend of a previously-declared entity.
FOK_Undeclared ///< A friend of a previously-undeclared entity.
};
/// \brief Determines whether this declaration is the object of a
/// friend declaration and, if so, what kind.
///
/// There is currently no direct way to find the associated FriendDecl.
FriendObjectKind getFriendObjectKind() const {
unsigned mask =
(IdentifierNamespace & (IDNS_TagFriend | IDNS_OrdinaryFriend));
if (!mask) return FOK_None;
return (IdentifierNamespace & (IDNS_Tag | IDNS_Ordinary) ? FOK_Declared
: FOK_Undeclared);
}
/// Specifies that this declaration is a C++ overloaded non-member.
void setNonMemberOperator() {
assert(getKind() == Function || getKind() == FunctionTemplate);
assert((IdentifierNamespace & IDNS_Ordinary) &&
"visible non-member operators should be in ordinary namespace");
IdentifierNamespace |= IDNS_NonMemberOperator;
}
static bool classofKind(Kind K) { return true; }
static DeclContext *castToDeclContext(const Decl *);
static Decl *castFromDeclContext(const DeclContext *);
void print(raw_ostream &Out, unsigned Indentation = 0,
bool PrintInstantiation = false) const;
void print(raw_ostream &Out, const PrintingPolicy &Policy,
unsigned Indentation = 0, bool PrintInstantiation = false) const;
static void printGroup(Decl** Begin, unsigned NumDecls,
raw_ostream &Out, const PrintingPolicy &Policy,
unsigned Indentation = 0);
// Debuggers don't usually respect default arguments.
void dump() const;
// Same as dump(), but forces color printing.
void dumpColor() const;
void dump(raw_ostream &Out) const;
/// \brief Looks through the Decl's underlying type to extract a FunctionType
/// when possible. Will return null if the type underlying the Decl does not
/// have a FunctionType.
const FunctionType *getFunctionType(bool BlocksToo = true) const;
private:
void setAttrsImpl(const AttrVec& Attrs, ASTContext &Ctx);
void setDeclContextsImpl(DeclContext *SemaDC, DeclContext *LexicalDC,
ASTContext &Ctx);
protected:
ASTMutationListener *getASTMutationListener() const;
};
/// \brief Determine whether two declarations declare the same entity.
inline bool declaresSameEntity(const Decl *D1, const Decl *D2) {
if (!D1 || !D2)
return false;
if (D1 == D2)
return true;
return D1->getCanonicalDecl() == D2->getCanonicalDecl();
}
/// PrettyStackTraceDecl - If a crash occurs, indicate that it happened when
/// doing something to a specific decl.
class PrettyStackTraceDecl : public llvm::PrettyStackTraceEntry {
const Decl *TheDecl;
SourceLocation Loc;
SourceManager &SM;
const char *Message;
public:
PrettyStackTraceDecl(const Decl *theDecl, SourceLocation L,
SourceManager &sm, const char *Msg)
: TheDecl(theDecl), Loc(L), SM(sm), Message(Msg) {}
void print(raw_ostream &OS) const override;
};
/// \brief The results of name lookup within a DeclContext. This is either a
/// single result (with no stable storage) or a collection of results (with
/// stable storage provided by the lookup table).
class DeclContextLookupResult {
typedef ArrayRef<NamedDecl *> ResultTy;
ResultTy Result;
// If there is only one lookup result, it would be invalidated by
// reallocations of the name table, so store it separately.
NamedDecl *Single;
static NamedDecl *const SingleElementDummyList;
public:
DeclContextLookupResult() : Result(), Single() {}
DeclContextLookupResult(ArrayRef<NamedDecl *> Result)
: Result(Result), Single() {}
DeclContextLookupResult(NamedDecl *Single)
: Result(SingleElementDummyList), Single(Single) {}
class iterator;
typedef llvm::iterator_adaptor_base<iterator, ResultTy::iterator,
std::random_access_iterator_tag,
NamedDecl *const> IteratorBase;
class iterator : public IteratorBase {
value_type SingleElement;
public:
iterator() : IteratorBase(), SingleElement() {}
explicit iterator(pointer Pos, value_type Single = nullptr)
: IteratorBase(Pos), SingleElement(Single) {}
reference operator*() const {
return SingleElement ? SingleElement : IteratorBase::operator*();
}
};
typedef iterator const_iterator;
typedef iterator::pointer pointer;
typedef iterator::reference reference;
iterator begin() const { return iterator(Result.begin(), Single); }
iterator end() const { return iterator(Result.end(), Single); }
bool empty() const { return Result.empty(); }
pointer data() const { return Single ? &Single : Result.data(); }
size_t size() const { return Single ? 1 : Result.size(); }
reference front() const { return Single ? Single : Result.front(); }
reference back() const { return Single ? Single : Result.back(); }
reference operator[](size_t N) const { return Single ? Single : Result[N]; }
// FIXME: Remove this from the interface
DeclContextLookupResult slice(size_t N) const {
DeclContextLookupResult Sliced = Result.slice(N);
Sliced.Single = Single;
return Sliced;
}
};
/// DeclContext - This is used only as base class of specific decl types that
/// can act as declaration contexts. These decls are (only the top classes
/// that directly derive from DeclContext are mentioned, not their subclasses):
///
/// TranslationUnitDecl
/// NamespaceDecl
/// FunctionDecl
/// TagDecl
/// ObjCMethodDecl
/// ObjCContainerDecl
/// LinkageSpecDecl
/// ExportDecl
/// BlockDecl
/// OMPDeclareReductionDecl
///
class DeclContext {
/// DeclKind - This indicates which class this is.
unsigned DeclKind : 8;
/// \brief Whether this declaration context also has some external
/// storage that contains additional declarations that are lexically
/// part of this context.
mutable bool ExternalLexicalStorage : 1;
/// \brief Whether this declaration context also has some external
/// storage that contains additional declarations that are visible
/// in this context.
mutable bool ExternalVisibleStorage : 1;
/// \brief Whether this declaration context has had external visible
/// storage added since the last lookup. In this case, \c LookupPtr's
/// invariant may not hold and needs to be fixed before we perform
/// another lookup.
mutable bool NeedToReconcileExternalVisibleStorage : 1;
/// \brief If \c true, this context may have local lexical declarations
/// that are missing from the lookup table.
mutable bool HasLazyLocalLexicalLookups : 1;
/// \brief If \c true, the external source may have lexical declarations
/// that are missing from the lookup table.
mutable bool HasLazyExternalLexicalLookups : 1;
/// \brief If \c true, lookups should only return identifier from
/// DeclContext scope (for example TranslationUnit). Used in
/// LookupQualifiedName()
mutable bool UseQualifiedLookup : 1;
/// \brief Pointer to the data structure used to lookup declarations
/// within this context (or a DependentStoredDeclsMap if this is a
/// dependent context). We maintain the invariant that, if the map
/// contains an entry for a DeclarationName (and we haven't lazily
/// omitted anything), then it contains all relevant entries for that
/// name (modulo the hasExternalDecls() flag).
mutable StoredDeclsMap *LookupPtr;
protected:
/// FirstDecl - The first declaration stored within this declaration
/// context.
mutable Decl *FirstDecl;
/// LastDecl - The last declaration stored within this declaration
/// context. FIXME: We could probably cache this value somewhere
/// outside of the DeclContext, to reduce the size of DeclContext by
/// another pointer.
mutable Decl *LastDecl;
friend class ExternalASTSource;
friend class ASTDeclReader;
friend class ASTWriter;
/// \brief Build up a chain of declarations.
///
/// \returns the first/last pair of declarations.
static std::pair<Decl *, Decl *>
BuildDeclChain(ArrayRef<Decl*> Decls, bool FieldsAlreadyLoaded);
DeclContext(Decl::Kind K)
: DeclKind(K), ExternalLexicalStorage(false),
ExternalVisibleStorage(false),
NeedToReconcileExternalVisibleStorage(false),
HasLazyLocalLexicalLookups(false), HasLazyExternalLexicalLookups(false),
UseQualifiedLookup(false),
LookupPtr(nullptr), FirstDecl(nullptr), LastDecl(nullptr) {}
public:
~DeclContext();
Decl::Kind getDeclKind() const {
return static_cast<Decl::Kind>(DeclKind);
}
const char *getDeclKindName() const;
/// getParent - Returns the containing DeclContext.
DeclContext *getParent() {
return cast<Decl>(this)->getDeclContext();
}
const DeclContext *getParent() const {
return const_cast<DeclContext*>(this)->getParent();
}
/// getLexicalParent - Returns the containing lexical DeclContext. May be
/// different from getParent, e.g.:
///
/// namespace A {
/// struct S;
/// }
/// struct A::S {}; // getParent() == namespace 'A'
/// // getLexicalParent() == translation unit
///
DeclContext *getLexicalParent() {
return cast<Decl>(this)->getLexicalDeclContext();
}
const DeclContext *getLexicalParent() const {
return const_cast<DeclContext*>(this)->getLexicalParent();
}
DeclContext *getLookupParent();
const DeclContext *getLookupParent() const {
return const_cast<DeclContext*>(this)->getLookupParent();
}
ASTContext &getParentASTContext() const {
return cast<Decl>(this)->getASTContext();
}
bool isClosure() const {
return DeclKind == Decl::Block;
}
bool isObjCContainer() const {
switch (DeclKind) {
case Decl::ObjCCategory:
case Decl::ObjCCategoryImpl:
case Decl::ObjCImplementation:
case Decl::ObjCInterface:
case Decl::ObjCProtocol:
return true;
}
return false;
}
bool isFunctionOrMethod() const {
switch (DeclKind) {
case Decl::Block:
case Decl::Captured:
case Decl::ObjCMethod:
return true;
default:
return DeclKind >= Decl::firstFunction && DeclKind <= Decl::lastFunction;
}
}
/// \brief Test whether the context supports looking up names.
bool isLookupContext() const {
return !isFunctionOrMethod() && DeclKind != Decl::LinkageSpec &&
DeclKind != Decl::Export;
}
bool isFileContext() const {
return DeclKind == Decl::TranslationUnit || DeclKind == Decl::Namespace;
}
bool isTranslationUnit() const {
return DeclKind == Decl::TranslationUnit;
}
bool isRecord() const {
return DeclKind >= Decl::firstRecord && DeclKind <= Decl::lastRecord;
}
bool isNamespace() const {
return DeclKind == Decl::Namespace;
}
bool isStdNamespace() const;
bool isInlineNamespace() const;
/// \brief Determines whether this context is dependent on a
/// template parameter.
bool isDependentContext() const;
/// isTransparentContext - Determines whether this context is a
/// "transparent" context, meaning that the members declared in this
/// context are semantically declared in the nearest enclosing
/// non-transparent (opaque) context but are lexically declared in
/// this context. For example, consider the enumerators of an
/// enumeration type:
/// @code
/// enum E {
/// Val1
/// };
/// @endcode
/// Here, E is a transparent context, so its enumerator (Val1) will
/// appear (semantically) that it is in the same context of E.
/// Examples of transparent contexts include: enumerations (except for
/// C++0x scoped enums), and C++ linkage specifications.
bool isTransparentContext() const;
/// \brief Determines whether this context or some of its ancestors is a
/// linkage specification context that specifies C linkage.
bool isExternCContext() const;
/// \brief Retrieve the nearest enclosing C linkage specification context.
const LinkageSpecDecl *getExternCContext() const;
/// \brief Determines whether this context or some of its ancestors is a
/// linkage specification context that specifies C++ linkage.
bool isExternCXXContext() const;
/// \brief Determine whether this declaration context is equivalent
/// to the declaration context DC.
bool Equals(const DeclContext *DC) const {
return DC && this->getPrimaryContext() == DC->getPrimaryContext();
}
/// \brief Determine whether this declaration context encloses the
/// declaration context DC.
bool Encloses(const DeclContext *DC) const;
/// \brief Find the nearest non-closure ancestor of this context,
/// i.e. the innermost semantic parent of this context which is not
/// a closure. A context may be its own non-closure ancestor.
Decl *getNonClosureAncestor();
const Decl *getNonClosureAncestor() const {
return const_cast<DeclContext*>(this)->getNonClosureAncestor();
}
/// getPrimaryContext - There may be many different
/// declarations of the same entity (including forward declarations
/// of classes, multiple definitions of namespaces, etc.), each with
/// a different set of declarations. This routine returns the
/// "primary" DeclContext structure, which will contain the
/// information needed to perform name lookup into this context.
DeclContext *getPrimaryContext();
const DeclContext *getPrimaryContext() const {
return const_cast<DeclContext*>(this)->getPrimaryContext();
}
/// getRedeclContext - Retrieve the context in which an entity conflicts with
/// other entities of the same name, or where it is a redeclaration if the
/// two entities are compatible. This skips through transparent contexts.
DeclContext *getRedeclContext();
const DeclContext *getRedeclContext() const {
return const_cast<DeclContext *>(this)->getRedeclContext();
}
/// \brief Retrieve the nearest enclosing namespace context.
DeclContext *getEnclosingNamespaceContext();
const DeclContext *getEnclosingNamespaceContext() const {
return const_cast<DeclContext *>(this)->getEnclosingNamespaceContext();
}
/// \brief Retrieve the outermost lexically enclosing record context.
RecordDecl *getOuterLexicalRecordContext();
const RecordDecl *getOuterLexicalRecordContext() const {
return const_cast<DeclContext *>(this)->getOuterLexicalRecordContext();
}
/// \brief Test if this context is part of the enclosing namespace set of
/// the context NS, as defined in C++0x [namespace.def]p9. If either context
/// isn't a namespace, this is equivalent to Equals().
///
/// The enclosing namespace set of a namespace is the namespace and, if it is
/// inline, its enclosing namespace, recursively.
bool InEnclosingNamespaceSetOf(const DeclContext *NS) const;
/// \brief Collects all of the declaration contexts that are semantically
/// connected to this declaration context.
///
/// For declaration contexts that have multiple semantically connected but
/// syntactically distinct contexts, such as C++ namespaces, this routine
/// retrieves the complete set of such declaration contexts in source order.
/// For example, given:
///
/// \code
/// namespace N {
/// int x;
/// }
/// namespace N {
/// int y;
/// }
/// \endcode
///
/// The \c Contexts parameter will contain both definitions of N.
///
/// \param Contexts Will be cleared and set to the set of declaration
/// contexts that are semanticaly connected to this declaration context,
/// in source order, including this context (which may be the only result,
/// for non-namespace contexts).
void collectAllContexts(SmallVectorImpl<DeclContext *> &Contexts);
/// decl_iterator - Iterates through the declarations stored
/// within this context.
class decl_iterator {
/// Current - The current declaration.
Decl *Current;
public:
typedef Decl *value_type;
typedef const value_type &reference;
typedef const value_type *pointer;
typedef std::forward_iterator_tag iterator_category;
typedef std::ptrdiff_t difference_type;
decl_iterator() : Current(nullptr) { }
explicit decl_iterator(Decl *C) : Current(C) { }
reference operator*() const { return Current; }
// This doesn't meet the iterator requirements, but it's convenient
value_type operator->() const { return Current; }
decl_iterator& operator++() {
Current = Current->getNextDeclInContext();
return *this;
}
decl_iterator operator++(int) {
decl_iterator tmp(*this);
++(*this);
return tmp;
}
friend bool operator==(decl_iterator x, decl_iterator y) {
return x.Current == y.Current;
}
friend bool operator!=(decl_iterator x, decl_iterator y) {
return x.Current != y.Current;
}
};
typedef llvm::iterator_range<decl_iterator> decl_range;
/// decls_begin/decls_end - Iterate over the declarations stored in
/// this context.
decl_range decls() const { return decl_range(decls_begin(), decls_end()); }
decl_iterator decls_begin() const;
decl_iterator decls_end() const { return decl_iterator(); }
bool decls_empty() const;
/// noload_decls_begin/end - Iterate over the declarations stored in this
/// context that are currently loaded; don't attempt to retrieve anything
/// from an external source.
decl_range noload_decls() const {
return decl_range(noload_decls_begin(), noload_decls_end());
}
decl_iterator noload_decls_begin() const { return decl_iterator(FirstDecl); }
decl_iterator noload_decls_end() const { return decl_iterator(); }
/// specific_decl_iterator - Iterates over a subrange of
/// declarations stored in a DeclContext, providing only those that
/// are of type SpecificDecl (or a class derived from it). This
/// iterator is used, for example, to provide iteration over just
/// the fields within a RecordDecl (with SpecificDecl = FieldDecl).
template<typename SpecificDecl>
class specific_decl_iterator {
/// Current - The current, underlying declaration iterator, which
/// will either be NULL or will point to a declaration of
/// type SpecificDecl.
DeclContext::decl_iterator Current;
/// SkipToNextDecl - Advances the current position up to the next
/// declaration of type SpecificDecl that also meets the criteria
/// required by Acceptable.
void SkipToNextDecl() {
while (*Current && !isa<SpecificDecl>(*Current))
++Current;
}
public:
typedef SpecificDecl *value_type;
// TODO: Add reference and pointer typedefs (with some appropriate proxy
// type) if we ever have a need for them.
typedef void reference;
typedef void pointer;
typedef std::iterator_traits<DeclContext::decl_iterator>::difference_type
difference_type;
typedef std::forward_iterator_tag iterator_category;
specific_decl_iterator() : Current() { }
/// specific_decl_iterator - Construct a new iterator over a
/// subset of the declarations the range [C,
/// end-of-declarations). If A is non-NULL, it is a pointer to a
/// member function of SpecificDecl that should return true for
/// all of the SpecificDecl instances that will be in the subset
/// of iterators. For example, if you want Objective-C instance
/// methods, SpecificDecl will be ObjCMethodDecl and A will be
/// &ObjCMethodDecl::isInstanceMethod.
explicit specific_decl_iterator(DeclContext::decl_iterator C) : Current(C) {
SkipToNextDecl();
}
value_type operator*() const { return cast<SpecificDecl>(*Current); }
// This doesn't meet the iterator requirements, but it's convenient
value_type operator->() const { return **this; }
specific_decl_iterator& operator++() {
++Current;
SkipToNextDecl();
return *this;
}
specific_decl_iterator operator++(int) {
specific_decl_iterator tmp(*this);
++(*this);
return tmp;
}
friend bool operator==(const specific_decl_iterator& x,
const specific_decl_iterator& y) {
return x.Current == y.Current;
}
friend bool operator!=(const specific_decl_iterator& x,
const specific_decl_iterator& y) {
return x.Current != y.Current;
}
};
/// \brief Iterates over a filtered subrange of declarations stored
/// in a DeclContext.
///
/// This iterator visits only those declarations that are of type
/// SpecificDecl (or a class derived from it) and that meet some
/// additional run-time criteria. This iterator is used, for
/// example, to provide access to the instance methods within an
/// Objective-C interface (with SpecificDecl = ObjCMethodDecl and
/// Acceptable = ObjCMethodDecl::isInstanceMethod).
template<typename SpecificDecl, bool (SpecificDecl::*Acceptable)() const>
class filtered_decl_iterator {
/// Current - The current, underlying declaration iterator, which
/// will either be NULL or will point to a declaration of
/// type SpecificDecl.
DeclContext::decl_iterator Current;
/// SkipToNextDecl - Advances the current position up to the next
/// declaration of type SpecificDecl that also meets the criteria
/// required by Acceptable.
void SkipToNextDecl() {
while (*Current &&
(!isa<SpecificDecl>(*Current) ||
(Acceptable && !(cast<SpecificDecl>(*Current)->*Acceptable)())))
++Current;
}
public:
typedef SpecificDecl *value_type;
// TODO: Add reference and pointer typedefs (with some appropriate proxy
// type) if we ever have a need for them.
typedef void reference;
typedef void pointer;
typedef std::iterator_traits<DeclContext::decl_iterator>::difference_type
difference_type;
typedef std::forward_iterator_tag iterator_category;
filtered_decl_iterator() : Current() { }
/// filtered_decl_iterator - Construct a new iterator over a
/// subset of the declarations the range [C,
/// end-of-declarations). If A is non-NULL, it is a pointer to a
/// member function of SpecificDecl that should return true for
/// all of the SpecificDecl instances that will be in the subset
/// of iterators. For example, if you want Objective-C instance
/// methods, SpecificDecl will be ObjCMethodDecl and A will be
/// &ObjCMethodDecl::isInstanceMethod.
explicit filtered_decl_iterator(DeclContext::decl_iterator C) : Current(C) {
SkipToNextDecl();
}
value_type operator*() const { return cast<SpecificDecl>(*Current); }
value_type operator->() const { return cast<SpecificDecl>(*Current); }
filtered_decl_iterator& operator++() {
++Current;
SkipToNextDecl();
return *this;
}
filtered_decl_iterator operator++(int) {
filtered_decl_iterator tmp(*this);
++(*this);
return tmp;
}
friend bool operator==(const filtered_decl_iterator& x,
const filtered_decl_iterator& y) {
return x.Current == y.Current;
}
friend bool operator!=(const filtered_decl_iterator& x,
const filtered_decl_iterator& y) {
return x.Current != y.Current;
}
};
/// @brief Add the declaration D into this context.
///
/// This routine should be invoked when the declaration D has first
/// been declared, to place D into the context where it was
/// (lexically) defined. Every declaration must be added to one
/// (and only one!) context, where it can be visited via
/// [decls_begin(), decls_end()). Once a declaration has been added
/// to its lexical context, the corresponding DeclContext owns the
/// declaration.
///
/// If D is also a NamedDecl, it will be made visible within its
/// semantic context via makeDeclVisibleInContext.
void addDecl(Decl *D);
/// @brief Add the declaration D into this context, but suppress
/// searches for external declarations with the same name.
///
/// Although analogous in function to addDecl, this removes an
/// important check. This is only useful if the Decl is being
/// added in response to an external search; in all other cases,
/// addDecl() is the right function to use.
/// See the ASTImporter for use cases.
void addDeclInternal(Decl *D);
/// @brief Add the declaration D to this context without modifying
/// any lookup tables.
///
/// This is useful for some operations in dependent contexts where
/// the semantic context might not be dependent; this basically
/// only happens with friends.
void addHiddenDecl(Decl *D);
/// @brief Removes a declaration from this context.
void removeDecl(Decl *D);
/// @brief Checks whether a declaration is in this context.
bool containsDecl(Decl *D) const;
typedef DeclContextLookupResult lookup_result;
typedef lookup_result::iterator lookup_iterator;
/// lookup - Find the declarations (if any) with the given Name in
/// this context. Returns a range of iterators that contains all of
/// the declarations with this name, with object, function, member,
/// and enumerator names preceding any tag name. Note that this
/// routine will not look into parent contexts.
lookup_result lookup(DeclarationName Name) const;
/// \brief Find the declarations with the given name that are visible
/// within this context; don't attempt to retrieve anything from an
/// external source.
lookup_result noload_lookup(DeclarationName Name);
/// \brief A simplistic name lookup mechanism that performs name lookup
/// into this declaration context without consulting the external source.
///
/// This function should almost never be used, because it subverts the
/// usual relationship between a DeclContext and the external source.
/// See the ASTImporter for the (few, but important) use cases.
///
/// FIXME: This is very inefficient; replace uses of it with uses of
/// noload_lookup.
void localUncachedLookup(DeclarationName Name,
SmallVectorImpl<NamedDecl *> &Results);
/// @brief Makes a declaration visible within this context.
///
/// This routine makes the declaration D visible to name lookup
/// within this context and, if this is a transparent context,
/// within its parent contexts up to the first enclosing
/// non-transparent context. Making a declaration visible within a
/// context does not transfer ownership of a declaration, and a
/// declaration can be visible in many contexts that aren't its
/// lexical context.
///
/// If D is a redeclaration of an existing declaration that is
/// visible from this context, as determined by
/// NamedDecl::declarationReplaces, the previous declaration will be
/// replaced with D.
void makeDeclVisibleInContext(NamedDecl *D);
/// all_lookups_iterator - An iterator that provides a view over the results
/// of looking up every possible name.
class all_lookups_iterator;
typedef llvm::iterator_range<all_lookups_iterator> lookups_range;
lookups_range lookups() const;
lookups_range noload_lookups() const;
/// \brief Iterators over all possible lookups within this context.
all_lookups_iterator lookups_begin() const;
all_lookups_iterator lookups_end() const;
/// \brief Iterators over all possible lookups within this context that are
/// currently loaded; don't attempt to retrieve anything from an external
/// source.
all_lookups_iterator noload_lookups_begin() const;
all_lookups_iterator noload_lookups_end() const;
struct udir_iterator;
typedef llvm::iterator_adaptor_base<udir_iterator, lookup_iterator,
std::random_access_iterator_tag,
UsingDirectiveDecl *> udir_iterator_base;
struct udir_iterator : udir_iterator_base {
udir_iterator(lookup_iterator I) : udir_iterator_base(I) {}
UsingDirectiveDecl *operator*() const;
};
typedef llvm::iterator_range<udir_iterator> udir_range;
udir_range using_directives() const;
// These are all defined in DependentDiagnostic.h.
class ddiag_iterator;
typedef llvm::iterator_range<DeclContext::ddiag_iterator> ddiag_range;
inline ddiag_range ddiags() const;
// Low-level accessors
/// \brief Mark that there are external lexical declarations that we need
/// to include in our lookup table (and that are not available as external
/// visible lookups). These extra lookup results will be found by walking
/// the lexical declarations of this context. This should be used only if
/// setHasExternalLexicalStorage() has been called on any decl context for
/// which this is the primary context.
void setMustBuildLookupTable() {
assert(this == getPrimaryContext() &&
"should only be called on primary context");
HasLazyExternalLexicalLookups = true;
}
/// \brief Retrieve the internal representation of the lookup structure.
/// This may omit some names if we are lazily building the structure.
StoredDeclsMap *getLookupPtr() const { return LookupPtr; }
/// \brief Ensure the lookup structure is fully-built and return it.
StoredDeclsMap *buildLookup();
/// \brief Whether this DeclContext has external storage containing
/// additional declarations that are lexically in this context.
bool hasExternalLexicalStorage() const { return ExternalLexicalStorage; }
/// \brief State whether this DeclContext has external storage for
/// declarations lexically in this context.
void setHasExternalLexicalStorage(bool ES = true) {
ExternalLexicalStorage = ES;
}
/// \brief Whether this DeclContext has external storage containing
/// additional declarations that are visible in this context.
bool hasExternalVisibleStorage() const { return ExternalVisibleStorage; }
/// \brief State whether this DeclContext has external storage for
/// declarations visible in this context.
void setHasExternalVisibleStorage(bool ES = true) {
ExternalVisibleStorage = ES;
if (ES && LookupPtr)
NeedToReconcileExternalVisibleStorage = true;
}
/// \brief Determine whether the given declaration is stored in the list of
/// declarations lexically within this context.
bool isDeclInLexicalTraversal(const Decl *D) const {
return D && (D->NextInContextAndBits.getPointer() || D == FirstDecl ||
D == LastDecl);
}
bool setUseQualifiedLookup(bool use = true) {
bool old_value = UseQualifiedLookup;
UseQualifiedLookup = use;
return old_value;
}
bool shouldUseQualifiedLookup() const {
return UseQualifiedLookup;
}
static bool classof(const Decl *D);
static bool classof(const DeclContext *D) { return true; }
void dumpDeclContext() const;
void dumpLookups() const;
void dumpLookups(llvm::raw_ostream &OS, bool DumpDecls = false) const;
private:
void reconcileExternalVisibleStorage() const;
bool LoadLexicalDeclsFromExternalStorage() const;
/// @brief Makes a declaration visible within this context, but
/// suppresses searches for external declarations with the same
/// name.
///
/// Analogous to makeDeclVisibleInContext, but for the exclusive
/// use of addDeclInternal().
void makeDeclVisibleInContextInternal(NamedDecl *D);
friend class DependentDiagnostic;
StoredDeclsMap *CreateStoredDeclsMap(ASTContext &C) const;
void buildLookupImpl(DeclContext *DCtx, bool Internal);
void makeDeclVisibleInContextWithFlags(NamedDecl *D, bool Internal,
bool Rediscoverable);
void makeDeclVisibleInContextImpl(NamedDecl *D, bool Internal);
};
inline bool Decl::isTemplateParameter() const {
return getKind() == TemplateTypeParm || getKind() == NonTypeTemplateParm ||
getKind() == TemplateTemplateParm;
}
// Specialization selected when ToTy is not a known subclass of DeclContext.
template <class ToTy,
bool IsKnownSubtype = ::std::is_base_of<DeclContext, ToTy>::value>
struct cast_convert_decl_context {
static const ToTy *doit(const DeclContext *Val) {
return static_cast<const ToTy*>(Decl::castFromDeclContext(Val));
}
static ToTy *doit(DeclContext *Val) {
return static_cast<ToTy*>(Decl::castFromDeclContext(Val));
}
};
// Specialization selected when ToTy is a known subclass of DeclContext.
template <class ToTy>
struct cast_convert_decl_context<ToTy, true> {
static const ToTy *doit(const DeclContext *Val) {
return static_cast<const ToTy*>(Val);
}
static ToTy *doit(DeclContext *Val) {
return static_cast<ToTy*>(Val);
}
};
} // end clang.
namespace llvm {
/// isa<T>(DeclContext*)
template <typename To>
struct isa_impl<To, ::clang::DeclContext> {
static bool doit(const ::clang::DeclContext &Val) {
return To::classofKind(Val.getDeclKind());
}
};
/// cast<T>(DeclContext*)
template<class ToTy>
struct cast_convert_val<ToTy,
const ::clang::DeclContext,const ::clang::DeclContext> {
static const ToTy &doit(const ::clang::DeclContext &Val) {
return *::clang::cast_convert_decl_context<ToTy>::doit(&Val);
}
};
template<class ToTy>
struct cast_convert_val<ToTy, ::clang::DeclContext, ::clang::DeclContext> {
static ToTy &doit(::clang::DeclContext &Val) {
return *::clang::cast_convert_decl_context<ToTy>::doit(&Val);
}
};
template<class ToTy>
struct cast_convert_val<ToTy,
const ::clang::DeclContext*, const ::clang::DeclContext*> {
static const ToTy *doit(const ::clang::DeclContext *Val) {
return ::clang::cast_convert_decl_context<ToTy>::doit(Val);
}
};
template<class ToTy>
struct cast_convert_val<ToTy, ::clang::DeclContext*, ::clang::DeclContext*> {
static ToTy *doit(::clang::DeclContext *Val) {
return ::clang::cast_convert_decl_context<ToTy>::doit(Val);
}
};
/// Implement cast_convert_val for Decl -> DeclContext conversions.
template<class FromTy>
struct cast_convert_val< ::clang::DeclContext, FromTy, FromTy> {
static ::clang::DeclContext &doit(const FromTy &Val) {
return *FromTy::castToDeclContext(&Val);
}
};
template<class FromTy>
struct cast_convert_val< ::clang::DeclContext, FromTy*, FromTy*> {
static ::clang::DeclContext *doit(const FromTy *Val) {
return FromTy::castToDeclContext(Val);
}
};
template<class FromTy>
struct cast_convert_val< const ::clang::DeclContext, FromTy, FromTy> {
static const ::clang::DeclContext &doit(const FromTy &Val) {
return *FromTy::castToDeclContext(&Val);
}
};
template<class FromTy>
struct cast_convert_val< const ::clang::DeclContext, FromTy*, FromTy*> {
static const ::clang::DeclContext *doit(const FromTy *Val) {
return FromTy::castToDeclContext(Val);
}
};
} // end namespace llvm
#endif