| // Copyright 2008 Google Inc. All Rights Reserved. |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are |
| // met: |
| // |
| // * Redistributions of source code must retain the above copyright |
| // notice, this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above |
| // copyright notice, this list of conditions and the following disclaimer |
| // in the documentation and/or other materials provided with the |
| // distribution. |
| // * Neither the name of Google Inc. nor the names of its |
| // contributors may be used to endorse or promote products derived from |
| // this software without specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| // |
| // Internals shared between the Snappy implementation and its unittest. |
| |
| #ifndef THIRD_PARTY_SNAPPY_SNAPPY_INTERNAL_H_ |
| #define THIRD_PARTY_SNAPPY_SNAPPY_INTERNAL_H_ |
| |
| #include "snappy-stubs-internal.h" |
| |
| #if SNAPPY_HAVE_SSSE3 |
| // Please do not replace with <x86intrin.h> or with headers that assume more |
| // advanced SSE versions without checking with all the OWNERS. |
| #include <emmintrin.h> |
| #include <tmmintrin.h> |
| #endif |
| |
| #if SNAPPY_HAVE_NEON |
| #include <arm_neon.h> |
| #endif |
| |
| #if SNAPPY_HAVE_SSSE3 || SNAPPY_HAVE_NEON |
| #define SNAPPY_HAVE_VECTOR_BYTE_SHUFFLE 1 |
| #else |
| #define SNAPPY_HAVE_VECTOR_BYTE_SHUFFLE 0 |
| #endif |
| |
| namespace snappy { |
| namespace internal { |
| |
| #if SNAPPY_HAVE_VECTOR_BYTE_SHUFFLE |
| #if SNAPPY_HAVE_SSSE3 |
| using V128 = __m128i; |
| #elif SNAPPY_HAVE_NEON |
| using V128 = uint8x16_t; |
| #endif |
| |
| // Load 128 bits of integer data. `src` must be 16-byte aligned. |
| inline V128 V128_Load(const V128* src); |
| |
| // Load 128 bits of integer data. `src` does not need to be aligned. |
| inline V128 V128_LoadU(const V128* src); |
| |
| // Store 128 bits of integer data. `dst` does not need to be aligned. |
| inline void V128_StoreU(V128* dst, V128 val); |
| |
| // Shuffle packed 8-bit integers using a shuffle mask. |
| // Each packed integer in the shuffle mask must be in [0,16). |
| inline V128 V128_Shuffle(V128 input, V128 shuffle_mask); |
| |
| // Constructs V128 with 16 chars |c|. |
| inline V128 V128_DupChar(char c); |
| |
| #if SNAPPY_HAVE_SSSE3 |
| inline V128 V128_Load(const V128* src) { return _mm_load_si128(src); } |
| |
| inline V128 V128_LoadU(const V128* src) { return _mm_loadu_si128(src); } |
| |
| inline void V128_StoreU(V128* dst, V128 val) { _mm_storeu_si128(dst, val); } |
| |
| inline V128 V128_Shuffle(V128 input, V128 shuffle_mask) { |
| return _mm_shuffle_epi8(input, shuffle_mask); |
| } |
| |
| inline V128 V128_DupChar(char c) { return _mm_set1_epi8(c); } |
| |
| #elif SNAPPY_HAVE_NEON |
| inline V128 V128_Load(const V128* src) { |
| return vld1q_u8(reinterpret_cast<const uint8_t*>(src)); |
| } |
| |
| inline V128 V128_LoadU(const V128* src) { |
| return vld1q_u8(reinterpret_cast<const uint8_t*>(src)); |
| } |
| |
| inline void V128_StoreU(V128* dst, V128 val) { |
| vst1q_u8(reinterpret_cast<uint8_t*>(dst), val); |
| } |
| |
| inline V128 V128_Shuffle(V128 input, V128 shuffle_mask) { |
| assert(vminvq_u8(shuffle_mask) >= 0 && vmaxvq_u8(shuffle_mask) <= 15); |
| return vqtbl1q_u8(input, shuffle_mask); |
| } |
| |
| inline V128 V128_DupChar(char c) { return vdupq_n_u8(c); } |
| #endif |
| #endif // SNAPPY_HAVE_VECTOR_BYTE_SHUFFLE |
| |
| // Working memory performs a single allocation to hold all scratch space |
| // required for compression. |
| class WorkingMemory { |
| public: |
| explicit WorkingMemory(size_t input_size); |
| ~WorkingMemory(); |
| |
| // Allocates and clears a hash table using memory in "*this", |
| // stores the number of buckets in "*table_size" and returns a pointer to |
| // the base of the hash table. |
| uint16_t* GetHashTable(size_t fragment_size, int* table_size) const; |
| char* GetScratchInput() const { return input_; } |
| char* GetScratchOutput() const { return output_; } |
| |
| private: |
| char* mem_; // the allocated memory, never nullptr |
| size_t size_; // the size of the allocated memory, never 0 |
| uint16_t* table_; // the pointer to the hashtable |
| char* input_; // the pointer to the input scratch buffer |
| char* output_; // the pointer to the output scratch buffer |
| |
| // No copying |
| WorkingMemory(const WorkingMemory&); |
| void operator=(const WorkingMemory&); |
| }; |
| |
| // Flat array compression that does not emit the "uncompressed length" |
| // prefix. Compresses "input" string to the "*op" buffer. |
| // |
| // REQUIRES: "input_length <= kBlockSize" |
| // REQUIRES: "op" points to an array of memory that is at least |
| // "MaxCompressedLength(input_length)" in size. |
| // REQUIRES: All elements in "table[0..table_size-1]" are initialized to zero. |
| // REQUIRES: "table_size" is a power of two |
| // |
| // Returns an "end" pointer into "op" buffer. |
| // "end - op" is the compressed size of "input". |
| char* CompressFragment(const char* input, |
| size_t input_length, |
| char* op, |
| uint16_t* table, |
| const int table_size); |
| |
| // Find the largest n such that |
| // |
| // s1[0,n-1] == s2[0,n-1] |
| // and n <= (s2_limit - s2). |
| // |
| // Return make_pair(n, n < 8). |
| // Does not read *s2_limit or beyond. |
| // Does not read *(s1 + (s2_limit - s2)) or beyond. |
| // Requires that s2_limit >= s2. |
| // |
| // In addition populate *data with the next 5 bytes from the end of the match. |
| // This is only done if 8 bytes are available (s2_limit - s2 >= 8). The point is |
| // that on some arch's this can be done faster in this routine than subsequent |
| // loading from s2 + n. |
| // |
| // Separate implementation for 64-bit, little-endian cpus. |
| #if !SNAPPY_IS_BIG_ENDIAN && \ |
| (defined(__x86_64__) || defined(_M_X64) || defined(ARCH_PPC) || \ |
| defined(ARCH_ARM)) |
| static inline std::pair<size_t, bool> FindMatchLength(const char* s1, |
| const char* s2, |
| const char* s2_limit, |
| uint64_t* data) { |
| assert(s2_limit >= s2); |
| size_t matched = 0; |
| |
| // This block isn't necessary for correctness; we could just start looping |
| // immediately. As an optimization though, it is useful. It creates some not |
| // uncommon code paths that determine, without extra effort, whether the match |
| // length is less than 8. In short, we are hoping to avoid a conditional |
| // branch, and perhaps get better code layout from the C++ compiler. |
| if (SNAPPY_PREDICT_TRUE(s2 <= s2_limit - 16)) { |
| uint64_t a1 = UNALIGNED_LOAD64(s1); |
| uint64_t a2 = UNALIGNED_LOAD64(s2); |
| if (SNAPPY_PREDICT_TRUE(a1 != a2)) { |
| // This code is critical for performance. The reason is that it determines |
| // how much to advance `ip` (s2). This obviously depends on both the loads |
| // from the `candidate` (s1) and `ip`. Furthermore the next `candidate` |
| // depends on the advanced `ip` calculated here through a load, hash and |
| // new candidate hash lookup (a lot of cycles). This makes s1 (ie. |
| // `candidate`) the variable that limits throughput. This is the reason we |
| // go through hoops to have this function update `data` for the next iter. |
| // The straightforward code would use *data, given by |
| // |
| // *data = UNALIGNED_LOAD64(s2 + matched_bytes) (Latency of 5 cycles), |
| // |
| // as input for the hash table lookup to find next candidate. However |
| // this forces the load on the data dependency chain of s1, because |
| // matched_bytes directly depends on s1. However matched_bytes is 0..7, so |
| // we can also calculate *data by |
| // |
| // *data = AlignRight(UNALIGNED_LOAD64(s2), UNALIGNED_LOAD64(s2 + 8), |
| // matched_bytes); |
| // |
| // The loads do not depend on s1 anymore and are thus off the bottleneck. |
| // The straightforward implementation on x86_64 would be to use |
| // |
| // shrd rax, rdx, cl (cl being matched_bytes * 8) |
| // |
| // unfortunately shrd with a variable shift has a 4 cycle latency. So this |
| // only wins 1 cycle. The BMI2 shrx instruction is a 1 cycle variable |
| // shift instruction but can only shift 64 bits. If we focus on just |
| // obtaining the least significant 4 bytes, we can obtain this by |
| // |
| // *data = ConditionalMove(matched_bytes < 4, UNALIGNED_LOAD64(s2), |
| // UNALIGNED_LOAD64(s2 + 4) >> ((matched_bytes & 3) * 8); |
| // |
| // Writen like above this is not a big win, the conditional move would be |
| // a cmp followed by a cmov (2 cycles) followed by a shift (1 cycle). |
| // However matched_bytes < 4 is equal to |
| // static_cast<uint32_t>(xorval) != 0. Writen that way, the conditional |
| // move (2 cycles) can execute in parallel with FindLSBSetNonZero64 |
| // (tzcnt), which takes 3 cycles. |
| uint64_t xorval = a1 ^ a2; |
| int shift = Bits::FindLSBSetNonZero64(xorval); |
| size_t matched_bytes = shift >> 3; |
| uint64_t a3 = UNALIGNED_LOAD64(s2 + 4); |
| #ifndef __x86_64__ |
| a2 = static_cast<uint32_t>(xorval) == 0 ? a3 : a2; |
| #else |
| // Ideally this would just be |
| // |
| // a2 = static_cast<uint32_t>(xorval) == 0 ? a3 : a2; |
| // |
| // However clang correctly infers that the above statement participates on |
| // a critical data dependency chain and thus, unfortunately, refuses to |
| // use a conditional move (it's tuned to cut data dependencies). In this |
| // case there is a longer parallel chain anyway AND this will be fairly |
| // unpredictable. |
| asm("testl %k2, %k2\n\t" |
| "cmovzq %1, %0\n\t" |
| : "+r"(a2) |
| : "r"(a3), "r"(xorval) |
| : "cc"); |
| #endif |
| *data = a2 >> (shift & (3 * 8)); |
| return std::pair<size_t, bool>(matched_bytes, true); |
| } else { |
| matched = 8; |
| s2 += 8; |
| } |
| } |
| |
| // Find out how long the match is. We loop over the data 64 bits at a |
| // time until we find a 64-bit block that doesn't match; then we find |
| // the first non-matching bit and use that to calculate the total |
| // length of the match. |
| while (SNAPPY_PREDICT_TRUE(s2 <= s2_limit - 16)) { |
| uint64_t a1 = UNALIGNED_LOAD64(s1 + matched); |
| uint64_t a2 = UNALIGNED_LOAD64(s2); |
| if (a1 == a2) { |
| s2 += 8; |
| matched += 8; |
| } else { |
| uint64_t xorval = a1 ^ a2; |
| int shift = Bits::FindLSBSetNonZero64(xorval); |
| size_t matched_bytes = shift >> 3; |
| uint64_t a3 = UNALIGNED_LOAD64(s2 + 4); |
| #ifndef __x86_64__ |
| a2 = static_cast<uint32_t>(xorval) == 0 ? a3 : a2; |
| #else |
| asm("testl %k2, %k2\n\t" |
| "cmovzq %1, %0\n\t" |
| : "+r"(a2) |
| : "r"(a3), "r"(xorval) |
| : "cc"); |
| #endif |
| *data = a2 >> (shift & (3 * 8)); |
| matched += matched_bytes; |
| assert(matched >= 8); |
| return std::pair<size_t, bool>(matched, false); |
| } |
| } |
| while (SNAPPY_PREDICT_TRUE(s2 < s2_limit)) { |
| if (s1[matched] == *s2) { |
| ++s2; |
| ++matched; |
| } else { |
| if (s2 <= s2_limit - 8) { |
| *data = UNALIGNED_LOAD64(s2); |
| } |
| return std::pair<size_t, bool>(matched, matched < 8); |
| } |
| } |
| return std::pair<size_t, bool>(matched, matched < 8); |
| } |
| #else |
| static inline std::pair<size_t, bool> FindMatchLength(const char* s1, |
| const char* s2, |
| const char* s2_limit, |
| uint64_t* data) { |
| // Implementation based on the x86-64 version, above. |
| assert(s2_limit >= s2); |
| int matched = 0; |
| |
| while (s2 <= s2_limit - 4 && |
| UNALIGNED_LOAD32(s2) == UNALIGNED_LOAD32(s1 + matched)) { |
| s2 += 4; |
| matched += 4; |
| } |
| if (LittleEndian::IsLittleEndian() && s2 <= s2_limit - 4) { |
| uint32_t x = UNALIGNED_LOAD32(s2) ^ UNALIGNED_LOAD32(s1 + matched); |
| int matching_bits = Bits::FindLSBSetNonZero(x); |
| matched += matching_bits >> 3; |
| s2 += matching_bits >> 3; |
| } else { |
| while ((s2 < s2_limit) && (s1[matched] == *s2)) { |
| ++s2; |
| ++matched; |
| } |
| } |
| if (s2 <= s2_limit - 8) *data = LittleEndian::Load64(s2); |
| return std::pair<size_t, bool>(matched, matched < 8); |
| } |
| #endif |
| |
| // Lookup tables for decompression code. Give --snappy_dump_decompression_table |
| // to the unit test to recompute char_table. |
| |
| enum { |
| LITERAL = 0, |
| COPY_1_BYTE_OFFSET = 1, // 3 bit length + 3 bits of offset in opcode |
| COPY_2_BYTE_OFFSET = 2, |
| COPY_4_BYTE_OFFSET = 3 |
| }; |
| static const int kMaximumTagLength = 5; // COPY_4_BYTE_OFFSET plus the actual offset. |
| |
| // Data stored per entry in lookup table: |
| // Range Bits-used Description |
| // ------------------------------------ |
| // 1..64 0..7 Literal/copy length encoded in opcode byte |
| // 0..7 8..10 Copy offset encoded in opcode byte / 256 |
| // 0..4 11..13 Extra bytes after opcode |
| // |
| // We use eight bits for the length even though 7 would have sufficed |
| // because of efficiency reasons: |
| // (1) Extracting a byte is faster than a bit-field |
| // (2) It properly aligns copy offset so we do not need a <<8 |
| static constexpr uint16_t char_table[256] = { |
| // clang-format off |
| 0x0001, 0x0804, 0x1001, 0x2001, 0x0002, 0x0805, 0x1002, 0x2002, |
| 0x0003, 0x0806, 0x1003, 0x2003, 0x0004, 0x0807, 0x1004, 0x2004, |
| 0x0005, 0x0808, 0x1005, 0x2005, 0x0006, 0x0809, 0x1006, 0x2006, |
| 0x0007, 0x080a, 0x1007, 0x2007, 0x0008, 0x080b, 0x1008, 0x2008, |
| 0x0009, 0x0904, 0x1009, 0x2009, 0x000a, 0x0905, 0x100a, 0x200a, |
| 0x000b, 0x0906, 0x100b, 0x200b, 0x000c, 0x0907, 0x100c, 0x200c, |
| 0x000d, 0x0908, 0x100d, 0x200d, 0x000e, 0x0909, 0x100e, 0x200e, |
| 0x000f, 0x090a, 0x100f, 0x200f, 0x0010, 0x090b, 0x1010, 0x2010, |
| 0x0011, 0x0a04, 0x1011, 0x2011, 0x0012, 0x0a05, 0x1012, 0x2012, |
| 0x0013, 0x0a06, 0x1013, 0x2013, 0x0014, 0x0a07, 0x1014, 0x2014, |
| 0x0015, 0x0a08, 0x1015, 0x2015, 0x0016, 0x0a09, 0x1016, 0x2016, |
| 0x0017, 0x0a0a, 0x1017, 0x2017, 0x0018, 0x0a0b, 0x1018, 0x2018, |
| 0x0019, 0x0b04, 0x1019, 0x2019, 0x001a, 0x0b05, 0x101a, 0x201a, |
| 0x001b, 0x0b06, 0x101b, 0x201b, 0x001c, 0x0b07, 0x101c, 0x201c, |
| 0x001d, 0x0b08, 0x101d, 0x201d, 0x001e, 0x0b09, 0x101e, 0x201e, |
| 0x001f, 0x0b0a, 0x101f, 0x201f, 0x0020, 0x0b0b, 0x1020, 0x2020, |
| 0x0021, 0x0c04, 0x1021, 0x2021, 0x0022, 0x0c05, 0x1022, 0x2022, |
| 0x0023, 0x0c06, 0x1023, 0x2023, 0x0024, 0x0c07, 0x1024, 0x2024, |
| 0x0025, 0x0c08, 0x1025, 0x2025, 0x0026, 0x0c09, 0x1026, 0x2026, |
| 0x0027, 0x0c0a, 0x1027, 0x2027, 0x0028, 0x0c0b, 0x1028, 0x2028, |
| 0x0029, 0x0d04, 0x1029, 0x2029, 0x002a, 0x0d05, 0x102a, 0x202a, |
| 0x002b, 0x0d06, 0x102b, 0x202b, 0x002c, 0x0d07, 0x102c, 0x202c, |
| 0x002d, 0x0d08, 0x102d, 0x202d, 0x002e, 0x0d09, 0x102e, 0x202e, |
| 0x002f, 0x0d0a, 0x102f, 0x202f, 0x0030, 0x0d0b, 0x1030, 0x2030, |
| 0x0031, 0x0e04, 0x1031, 0x2031, 0x0032, 0x0e05, 0x1032, 0x2032, |
| 0x0033, 0x0e06, 0x1033, 0x2033, 0x0034, 0x0e07, 0x1034, 0x2034, |
| 0x0035, 0x0e08, 0x1035, 0x2035, 0x0036, 0x0e09, 0x1036, 0x2036, |
| 0x0037, 0x0e0a, 0x1037, 0x2037, 0x0038, 0x0e0b, 0x1038, 0x2038, |
| 0x0039, 0x0f04, 0x1039, 0x2039, 0x003a, 0x0f05, 0x103a, 0x203a, |
| 0x003b, 0x0f06, 0x103b, 0x203b, 0x003c, 0x0f07, 0x103c, 0x203c, |
| 0x0801, 0x0f08, 0x103d, 0x203d, 0x1001, 0x0f09, 0x103e, 0x203e, |
| 0x1801, 0x0f0a, 0x103f, 0x203f, 0x2001, 0x0f0b, 0x1040, 0x2040, |
| // clang-format on |
| }; |
| |
| } // end namespace internal |
| } // end namespace snappy |
| |
| #endif // THIRD_PARTY_SNAPPY_SNAPPY_INTERNAL_H_ |