blob: 7add1ebdbecb0289887c85642552b723010bdaa6 [file] [log] [blame]
/*
* Copyright 2013 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef GrGLSLFragmentProcessor_DEFINED
#define GrGLSLFragmentProcessor_DEFINED
#include "GrFragmentProcessor.h"
#include "GrShaderVar.h"
#include "glsl/GrGLSLProgramDataManager.h"
#include "glsl/GrGLSLSampler.h"
class GrProcessor;
class GrProcessorKeyBuilder;
class GrGLSLCaps;
class GrGLSLFPBuilder;
class GrGLSLFPFragmentBuilder;
class GrGLSLUniformHandler;
class GrGLSLFragmentProcessor {
public:
GrGLSLFragmentProcessor() {}
virtual ~GrGLSLFragmentProcessor() {
for (int i = 0; i < fChildProcessors.count(); ++i) {
delete fChildProcessors[i];
}
}
typedef GrGLSLProgramDataManager::UniformHandle UniformHandle;
typedef GrGLSLProgramDataManager::UniformHandle SamplerHandle;
private:
/**
* This class allows the shader builder to provide each GrGLSLFragmentProcesor with an array of
* generated variables where each generated variable corresponds to an element of an array on
* the GrFragmentProcessor that generated the GLSLFP. For example, this is used to provide a
* variable holding transformed coords for each GrCoordTransform owned by the FP.
*/
template <typename T, typename FPBASE, int (FPBASE::*COUNT)() const>
class BuilderInputProvider {
public:
BuilderInputProvider(const GrFragmentProcessor* fp, const T* ts) : fFP(fp) , fTs(ts) {}
const T& operator[] (int i) const {
SkASSERT(i >= 0 && i < (fFP->*COUNT)());
return fTs[i];
}
BuilderInputProvider childInputs(int childIdx) const {
const GrFragmentProcessor* child = &fFP->childProcessor(childIdx);
GrFragmentProcessor::Iter iter(fFP);
int numToSkip = 0;
while (true) {
const GrFragmentProcessor* fp = iter.next();
if (fp == child) {
return BuilderInputProvider(child, fTs + numToSkip);
}
numToSkip += (fp->*COUNT)();
}
}
private:
const GrFragmentProcessor* fFP;
const T* fTs;
};
public:
using TransformedCoordVars = BuilderInputProvider<GrShaderVar, GrFragmentProcessor,
&GrFragmentProcessor::numCoordTransforms>;
using TextureSamplers = BuilderInputProvider<SamplerHandle, GrProcessor,
&GrProcessor::numTextureSamplers>;
using BufferSamplers = BuilderInputProvider<SamplerHandle, GrProcessor,
&GrProcessor::numBuffers>;
/** Called when the program stage should insert its code into the shaders. The code in each
shader will be in its own block ({}) and so locally scoped names will not collide across
stages.
@param fragBuilder Interface used to emit code in the shaders.
@param fp The processor that generated this program stage.
@param key The key that was computed by GenKey() from the generating
GrProcessor.
@param outputColor A predefined vec4 in the FS in which the stage should place its
output color (or coverage).
@param inputColor A vec4 that holds the input color to the stage in the FS. This may
be nullptr in which case the implied input is solid white (all
ones). TODO: Better system for communicating optimization info
(e.g. input color is solid white, trans black, known to be opaque,
etc.) that allows the processor to communicate back similar known
info about its output.
@param transformedCoords Fragment shader variables containing the coords computed using
each of the GrFragmentProcessor's GrCoordTransforms.
@param texSamplers Contains one entry for each TextureSampler of the GrProcessor.
These can be passed to the builder to emit texture reads in the
generated code.
@param bufferSamplers Contains one entry for each GrBufferAccess of the GrProcessor.
These can be passed to the builder to emit buffer reads in the
generated code.
*/
struct EmitArgs {
EmitArgs(GrGLSLFPFragmentBuilder* fragBuilder,
GrGLSLUniformHandler* uniformHandler,
const GrGLSLCaps* caps,
const GrFragmentProcessor& fp,
const char* outputColor,
const char* inputColor,
const TransformedCoordVars& transformedCoordVars,
const TextureSamplers& textureSamplers,
const BufferSamplers& bufferSamplers,
bool gpImplementsDistanceVector)
: fFragBuilder(fragBuilder)
, fUniformHandler(uniformHandler)
, fGLSLCaps(caps)
, fFp(fp)
, fOutputColor(outputColor)
, fInputColor(inputColor)
, fTransformedCoords(transformedCoordVars)
, fTexSamplers(textureSamplers)
, fBufferSamplers(bufferSamplers)
, fGpImplementsDistanceVector(gpImplementsDistanceVector) {}
GrGLSLFPFragmentBuilder* fFragBuilder;
GrGLSLUniformHandler* fUniformHandler;
const GrGLSLCaps* fGLSLCaps;
const GrFragmentProcessor& fFp;
const char* fOutputColor;
const char* fInputColor;
const TransformedCoordVars& fTransformedCoords;
const TextureSamplers& fTexSamplers;
const BufferSamplers& fBufferSamplers;
bool fGpImplementsDistanceVector;
};
virtual void emitCode(EmitArgs&) = 0;
void setData(const GrGLSLProgramDataManager& pdman, const GrFragmentProcessor& processor);
static void GenKey(const GrProcessor&, const GrGLSLCaps&, GrProcessorKeyBuilder*) {}
int numChildProcessors() const { return fChildProcessors.count(); }
GrGLSLFragmentProcessor* childProcessor(int index) {
return fChildProcessors[index];
}
/** Will emit the code of a child proc in its own scope. Pass in the parent's EmitArgs and
* emitChild will automatically extract the coords and samplers of that child and pass them
* on to the child's emitCode(). Also, any uniforms or functions emitted by the child will
* have their names mangled to prevent redefinitions. The output color name is also mangled
* therefore in an in/out param. It will be declared in mangled form by emitChild(). It is
* legal to pass nullptr as inputColor, since all fragment processors are required to work
* without an input color.
*/
void emitChild(int childIndex, const char* inputColor, SkString* outputColor,
EmitArgs& parentArgs);
/** Variation that uses the parent's output color variable to hold the child's output.*/
void emitChild(int childIndex, const char* inputColor, EmitArgs& parentArgs);
/**
* Pre-order traversal of a GLSLFP hierarchy, or of multiple trees with roots in an array of
* GLSLFPS. This agrees with the traversal order of GrFragmentProcessor::Iter
*/
class Iter : public SkNoncopyable {
public:
explicit Iter(GrGLSLFragmentProcessor* fp) { fFPStack.push_back(fp); }
explicit Iter(GrGLSLFragmentProcessor* fps[], int cnt) {
for (int i = cnt - 1; i >= 0; --i) {
fFPStack.push_back(fps[i]);
}
}
GrGLSLFragmentProcessor* next();
private:
SkSTArray<4, GrGLSLFragmentProcessor*, true> fFPStack;
};
protected:
/** A GrGLSLFragmentProcessor instance can be reused with any GrFragmentProcessor that produces
the same stage key; this function reads data from a GrFragmentProcessor and uploads any
uniform variables required by the shaders created in emitCode(). The GrFragmentProcessor
parameter is guaranteed to be of the same type that created this GrGLSLFragmentProcessor and
to have an identical processor key as the one that created this GrGLSLFragmentProcessor. */
// TODO update this to pass in GrFragmentProcessor
virtual void onSetData(const GrGLSLProgramDataManager&, const GrProcessor&) {}
private:
void internalEmitChild(int, const char*, const char*, EmitArgs&);
SkTArray<GrGLSLFragmentProcessor*, true> fChildProcessors;
friend class GrFragmentProcessor;
};
#endif