blob: 78dee24a6d3a6aae7a3c4e6c7f9c8b5f935b11d3 [file] [log] [blame]
//! This module contains functions to suggest names for expressions, functions and other items
use std::collections::HashSet;
use hir::Semantics;
use ide_db::RootDatabase;
use itertools::Itertools;
use stdx::to_lower_snake_case;
use syntax::{
ast::{self, HasName},
match_ast, AstNode, SmolStr,
};
/// Trait names, that will be ignored when in `impl Trait` and `dyn Trait`
const USELESS_TRAITS: &[&str] = &["Send", "Sync", "Copy", "Clone", "Eq", "PartialEq"];
/// Identifier names that won't be suggested, ever
///
/// **NOTE**: they all must be snake lower case
const USELESS_NAMES: &[&str] =
&["new", "default", "option", "some", "none", "ok", "err", "str", "string"];
/// Generic types replaced by their first argument
///
/// # Examples
/// `Option<Name>` -> `Name`
/// `Result<User, Error>` -> `User`
const WRAPPER_TYPES: &[&str] = &["Box", "Option", "Result"];
/// Prefixes to strip from methods names
///
/// # Examples
/// `vec.as_slice()` -> `slice`
/// `args.into_config()` -> `config`
/// `bytes.to_vec()` -> `vec`
const USELESS_METHOD_PREFIXES: &[&str] = &["into_", "as_", "to_"];
/// Useless methods that are stripped from expression
///
/// # Examples
/// `var.name().to_string()` -> `var.name()`
const USELESS_METHODS: &[&str] = &[
"to_string",
"as_str",
"to_owned",
"as_ref",
"clone",
"cloned",
"expect",
"expect_none",
"unwrap",
"unwrap_none",
"unwrap_or",
"unwrap_or_default",
"unwrap_or_else",
"unwrap_unchecked",
"iter",
"into_iter",
"iter_mut",
"into_future",
];
/// Suggest a unique name for generic parameter.
///
/// `existing_params` is used to check if the name conflicts with existing
/// generic parameters.
///
/// The function checks if the name conflicts with existing generic parameters.
/// If so, it will try to resolve the conflict by adding a number suffix, e.g.
/// `T`, `T0`, `T1`, ...
pub(crate) fn for_unique_generic_name(
name: &str,
existing_params: &ast::GenericParamList,
) -> SmolStr {
let param_names = existing_params
.generic_params()
.map(|param| match param {
ast::GenericParam::TypeParam(t) => t.name().unwrap().to_string(),
p => p.to_string(),
})
.collect::<HashSet<_>>();
let mut name = name.to_string();
let base_len = name.len();
let mut count = 0;
while param_names.contains(&name) {
name.truncate(base_len);
name.push_str(&count.to_string());
count += 1;
}
name.into()
}
/// Suggest name of impl trait type
///
/// `existing_params` is used to check if the name conflicts with existing
/// generic parameters.
///
/// # Current implementation
///
/// In current implementation, the function tries to get the name from the first
/// character of the name for the first type bound.
///
/// If the name conflicts with existing generic parameters, it will try to
/// resolve the conflict with `for_unique_generic_name`.
pub(crate) fn for_impl_trait_as_generic(
ty: &ast::ImplTraitType,
existing_params: &ast::GenericParamList,
) -> SmolStr {
let c = ty
.type_bound_list()
.and_then(|bounds| bounds.syntax().text().char_at(0.into()))
.unwrap_or('T');
for_unique_generic_name(c.encode_utf8(&mut [0; 4]), existing_params)
}
/// Suggest name of variable for given expression
///
/// **NOTE**: it is caller's responsibility to guarantee uniqueness of the name.
/// I.e. it doesn't look for names in scope.
///
/// # Current implementation
///
/// In current implementation, the function tries to get the name from
/// the following sources:
///
/// * if expr is an argument to function/method, use parameter name
/// * if expr is a function/method call, use function name
/// * expression type name if it exists (E.g. `()`, `fn() -> ()` or `!` do not have names)
/// * fallback: `var_name`
///
/// It also applies heuristics to filter out less informative names
///
/// Currently it sticks to the first name found.
// FIXME: Microoptimize and return a `SmolStr` here.
pub(crate) fn for_variable(expr: &ast::Expr, sema: &Semantics<'_, RootDatabase>) -> String {
// `from_param` does not benefit from stripping
// it need the largest context possible
// so we check firstmost
if let Some(name) = from_param(expr, sema) {
return name;
}
let mut next_expr = Some(expr.clone());
while let Some(expr) = next_expr {
let name =
from_call(&expr).or_else(|| from_type(&expr, sema)).or_else(|| from_field_name(&expr));
if let Some(name) = name {
return name;
}
match expr {
ast::Expr::RefExpr(inner) => next_expr = inner.expr(),
ast::Expr::AwaitExpr(inner) => next_expr = inner.expr(),
// ast::Expr::BlockExpr(block) => expr = block.tail_expr(),
ast::Expr::CastExpr(inner) => next_expr = inner.expr(),
ast::Expr::MethodCallExpr(method) if is_useless_method(&method) => {
next_expr = method.receiver();
}
ast::Expr::ParenExpr(inner) => next_expr = inner.expr(),
ast::Expr::TryExpr(inner) => next_expr = inner.expr(),
ast::Expr::PrefixExpr(prefix) if prefix.op_kind() == Some(ast::UnaryOp::Deref) => {
next_expr = prefix.expr()
}
_ => break,
}
}
"var_name".to_string()
}
fn normalize(name: &str) -> Option<String> {
let name = to_lower_snake_case(name);
if USELESS_NAMES.contains(&name.as_str()) {
return None;
}
if !is_valid_name(&name) {
return None;
}
Some(name)
}
fn is_valid_name(name: &str) -> bool {
matches!(
ide_db::syntax_helpers::LexedStr::single_token(name),
Some((syntax::SyntaxKind::IDENT, _error))
)
}
fn is_useless_method(method: &ast::MethodCallExpr) -> bool {
let ident = method.name_ref().and_then(|it| it.ident_token());
match ident {
Some(ident) => USELESS_METHODS.contains(&ident.text()),
None => false,
}
}
fn from_call(expr: &ast::Expr) -> Option<String> {
from_func_call(expr).or_else(|| from_method_call(expr))
}
fn from_func_call(expr: &ast::Expr) -> Option<String> {
let call = match expr {
ast::Expr::CallExpr(call) => call,
_ => return None,
};
let func = match call.expr()? {
ast::Expr::PathExpr(path) => path,
_ => return None,
};
let ident = func.path()?.segment()?.name_ref()?.ident_token()?;
normalize(ident.text())
}
fn from_method_call(expr: &ast::Expr) -> Option<String> {
let method = match expr {
ast::Expr::MethodCallExpr(call) => call,
_ => return None,
};
let ident = method.name_ref()?.ident_token()?;
let mut name = ident.text();
if USELESS_METHODS.contains(&name) {
return None;
}
for prefix in USELESS_METHOD_PREFIXES {
if let Some(suffix) = name.strip_prefix(prefix) {
name = suffix;
break;
}
}
normalize(name)
}
fn from_param(expr: &ast::Expr, sema: &Semantics<'_, RootDatabase>) -> Option<String> {
let arg_list = expr.syntax().parent().and_then(ast::ArgList::cast)?;
let args_parent = arg_list.syntax().parent()?;
let func = match_ast! {
match args_parent {
ast::CallExpr(call) => {
let func = call.expr()?;
let func_ty = sema.type_of_expr(&func)?.adjusted();
func_ty.as_callable(sema.db)?
},
ast::MethodCallExpr(method) => sema.resolve_method_call_as_callable(&method)?,
_ => return None,
}
};
let (idx, _) = arg_list.args().find_position(|it| it == expr).unwrap();
let (pat, _) = func.params(sema.db).into_iter().nth(idx)?;
let pat = match pat? {
either::Either::Right(pat) => pat,
_ => return None,
};
let name = var_name_from_pat(&pat)?;
normalize(&name.to_string())
}
fn var_name_from_pat(pat: &ast::Pat) -> Option<ast::Name> {
match pat {
ast::Pat::IdentPat(var) => var.name(),
ast::Pat::RefPat(ref_pat) => var_name_from_pat(&ref_pat.pat()?),
ast::Pat::BoxPat(box_pat) => var_name_from_pat(&box_pat.pat()?),
_ => None,
}
}
fn from_type(expr: &ast::Expr, sema: &Semantics<'_, RootDatabase>) -> Option<String> {
let ty = sema.type_of_expr(expr)?.adjusted();
let ty = ty.remove_ref().unwrap_or(ty);
name_of_type(&ty, sema.db)
}
fn name_of_type(ty: &hir::Type, db: &RootDatabase) -> Option<String> {
let name = if let Some(adt) = ty.as_adt() {
let name = adt.name(db).display(db).to_string();
if WRAPPER_TYPES.contains(&name.as_str()) {
let inner_ty = ty.type_arguments().next()?;
return name_of_type(&inner_ty, db);
}
name
} else if let Some(trait_) = ty.as_dyn_trait() {
trait_name(&trait_, db)?
} else if let Some(traits) = ty.as_impl_traits(db) {
let mut iter = traits.filter_map(|t| trait_name(&t, db));
let name = iter.next()?;
if iter.next().is_some() {
return None;
}
name
} else {
return None;
};
normalize(&name)
}
fn trait_name(trait_: &hir::Trait, db: &RootDatabase) -> Option<String> {
let name = trait_.name(db).display(db).to_string();
if USELESS_TRAITS.contains(&name.as_str()) {
return None;
}
Some(name)
}
fn from_field_name(expr: &ast::Expr) -> Option<String> {
let field = match expr {
ast::Expr::FieldExpr(field) => field,
_ => return None,
};
let ident = field.name_ref()?.ident_token()?;
normalize(ident.text())
}
#[cfg(test)]
mod tests {
use ide_db::base_db::FileRange;
use test_fixture::WithFixture;
use super::*;
#[track_caller]
fn check(ra_fixture: &str, expected: &str) {
let (db, file_id, range_or_offset) = RootDatabase::with_range_or_offset(ra_fixture);
let frange = FileRange { file_id, range: range_or_offset.into() };
let sema = Semantics::new(&db);
let source_file = sema.parse(frange.file_id);
let element = source_file.syntax().covering_element(frange.range);
let expr =
element.ancestors().find_map(ast::Expr::cast).expect("selection is not an expression");
assert_eq!(
expr.syntax().text_range(),
frange.range,
"selection is not an expression(yet contained in one)"
);
let name = for_variable(&expr, &sema);
assert_eq!(&name, expected);
}
#[test]
fn no_args() {
check(r#"fn foo() { $0bar()$0 }"#, "bar");
check(r#"fn foo() { $0bar.frobnicate()$0 }"#, "frobnicate");
}
#[test]
fn single_arg() {
check(r#"fn foo() { $0bar(1)$0 }"#, "bar");
}
#[test]
fn many_args() {
check(r#"fn foo() { $0bar(1, 2, 3)$0 }"#, "bar");
}
#[test]
fn path() {
check(r#"fn foo() { $0i32::bar(1, 2, 3)$0 }"#, "bar");
}
#[test]
fn generic_params() {
check(r#"fn foo() { $0bar::<i32>(1, 2, 3)$0 }"#, "bar");
check(r#"fn foo() { $0bar.frobnicate::<i32, u32>()$0 }"#, "frobnicate");
}
#[test]
fn to_name() {
check(
r#"
struct Args;
struct Config;
impl Args {
fn to_config(&self) -> Config {}
}
fn foo() {
$0Args.to_config()$0;
}
"#,
"config",
);
}
#[test]
fn plain_func() {
check(
r#"
fn bar(n: i32, m: u32);
fn foo() { bar($01$0, 2) }
"#,
"n",
);
}
#[test]
fn mut_param() {
check(
r#"
fn bar(mut n: i32, m: u32);
fn foo() { bar($01$0, 2) }
"#,
"n",
);
}
#[test]
fn func_does_not_exist() {
check(r#"fn foo() { bar($01$0, 2) }"#, "var_name");
}
#[test]
fn unnamed_param() {
check(
r#"
fn bar(_: i32, m: u32);
fn foo() { bar($01$0, 2) }
"#,
"var_name",
);
}
#[test]
fn tuple_pat() {
check(
r#"
fn bar((n, k): (i32, i32), m: u32);
fn foo() {
bar($0(1, 2)$0, 3)
}
"#,
"var_name",
);
}
#[test]
fn ref_pat() {
check(
r#"
fn bar(&n: &i32, m: u32);
fn foo() { bar($0&1$0, 3) }
"#,
"n",
);
}
#[test]
fn box_pat() {
check(
r#"
fn bar(box n: &i32, m: u32);
fn foo() { bar($01$0, 3) }
"#,
"n",
);
}
#[test]
fn param_out_of_index() {
check(
r#"
fn bar(n: i32, m: u32);
fn foo() { bar(1, 2, $03$0) }
"#,
"var_name",
);
}
#[test]
fn generic_param_resolved() {
check(
r#"
fn bar<T>(n: T, m: u32);
fn foo() { bar($01$0, 2) }
"#,
"n",
);
}
#[test]
fn generic_param_unresolved() {
check(
r#"
fn bar<T>(n: T, m: u32);
fn foo<T>(x: T) { bar($0x$0, 2) }
"#,
"n",
);
}
#[test]
fn method() {
check(
r#"
struct S;
impl S { fn bar(&self, n: i32, m: u32); }
fn foo() { S.bar($01$0, 2) }
"#,
"n",
);
}
#[test]
fn method_on_impl_trait() {
check(
r#"
struct S;
trait T {
fn bar(&self, n: i32, m: u32);
}
impl T for S { fn bar(&self, n: i32, m: u32); }
fn foo() { S.bar($01$0, 2) }
"#,
"n",
);
}
#[test]
fn method_ufcs() {
check(
r#"
struct S;
impl S { fn bar(&self, n: i32, m: u32); }
fn foo() { S::bar(&S, $01$0, 2) }
"#,
"n",
);
}
#[test]
fn method_self() {
check(
r#"
struct S;
impl S { fn bar(&self, n: i32, m: u32); }
fn foo() { S::bar($0&S$0, 1, 2) }
"#,
"s",
);
}
#[test]
fn method_self_named() {
check(
r#"
struct S;
impl S { fn bar(strukt: &Self, n: i32, m: u32); }
fn foo() { S::bar($0&S$0, 1, 2) }
"#,
"strukt",
);
}
#[test]
fn i32() {
check(r#"fn foo() { let _: i32 = $01$0; }"#, "var_name");
}
#[test]
fn u64() {
check(r#"fn foo() { let _: u64 = $01$0; }"#, "var_name");
}
#[test]
fn bool() {
check(r#"fn foo() { let _: bool = $0true$0; }"#, "var_name");
}
#[test]
fn struct_unit() {
check(
r#"
struct Seed;
fn foo() { let _ = $0Seed$0; }
"#,
"seed",
);
}
#[test]
fn struct_unit_to_snake() {
check(
r#"
struct SeedState;
fn foo() { let _ = $0SeedState$0; }
"#,
"seed_state",
);
}
#[test]
fn struct_single_arg() {
check(
r#"
struct Seed(u32);
fn foo() { let _ = $0Seed(0)$0; }
"#,
"seed",
);
}
#[test]
fn struct_with_fields() {
check(
r#"
struct Seed { value: u32 }
fn foo() { let _ = $0Seed { value: 0 }$0; }
"#,
"seed",
);
}
#[test]
fn enum_() {
check(
r#"
enum Kind { A, B }
fn foo() { let _ = $0Kind::A$0; }
"#,
"kind",
);
}
#[test]
fn enum_generic_resolved() {
check(
r#"
enum Kind<T> { A { x: T }, B }
fn foo() { let _ = $0Kind::A { x:1 }$0; }
"#,
"kind",
);
}
#[test]
fn enum_generic_unresolved() {
check(
r#"
enum Kind<T> { A { x: T }, B }
fn foo<T>(x: T) { let _ = $0Kind::A { x }$0; }
"#,
"kind",
);
}
#[test]
fn dyn_trait() {
check(
r#"
trait DynHandler {}
fn bar() -> dyn DynHandler {}
fn foo() { $0(bar())$0; }
"#,
"dyn_handler",
);
}
#[test]
fn impl_trait() {
check(
r#"
trait StaticHandler {}
fn bar() -> impl StaticHandler {}
fn foo() { $0(bar())$0; }
"#,
"static_handler",
);
}
#[test]
fn impl_trait_plus_clone() {
check(
r#"
trait StaticHandler {}
trait Clone {}
fn bar() -> impl StaticHandler + Clone {}
fn foo() { $0(bar())$0; }
"#,
"static_handler",
);
}
#[test]
fn impl_trait_plus_lifetime() {
check(
r#"
trait StaticHandler {}
trait Clone {}
fn bar<'a>(&'a i32) -> impl StaticHandler + 'a {}
fn foo() { $0(bar(&1))$0; }
"#,
"static_handler",
);
}
#[test]
fn impl_trait_plus_trait() {
check(
r#"
trait Handler {}
trait StaticHandler {}
fn bar() -> impl StaticHandler + Handler {}
fn foo() { $0(bar())$0; }
"#,
"bar",
);
}
#[test]
fn ref_value() {
check(
r#"
struct Seed;
fn bar() -> &Seed {}
fn foo() { $0(bar())$0; }
"#,
"seed",
);
}
#[test]
fn box_value() {
check(
r#"
struct Box<T>(*const T);
struct Seed;
fn bar() -> Box<Seed> {}
fn foo() { $0(bar())$0; }
"#,
"seed",
);
}
#[test]
fn box_generic() {
check(
r#"
struct Box<T>(*const T);
fn bar<T>() -> Box<T> {}
fn foo<T>() { $0(bar::<T>())$0; }
"#,
"bar",
);
}
#[test]
fn option_value() {
check(
r#"
enum Option<T> { Some(T) }
struct Seed;
fn bar() -> Option<Seed> {}
fn foo() { $0(bar())$0; }
"#,
"seed",
);
}
#[test]
fn result_value() {
check(
r#"
enum Result<T, E> { Ok(T), Err(E) }
struct Seed;
struct Error;
fn bar() -> Result<Seed, Error> {}
fn foo() { $0(bar())$0; }
"#,
"seed",
);
}
#[test]
fn ref_call() {
check(
r#"
fn foo() { $0&bar(1, 3)$0 }
"#,
"bar",
);
}
#[test]
fn name_to_string() {
check(
r#"
fn foo() { $0function.name().to_string()$0 }
"#,
"name",
);
}
#[test]
fn nested_useless_method() {
check(
r#"
fn foo() { $0function.name().as_ref().unwrap().to_string()$0 }
"#,
"name",
);
}
#[test]
fn struct_field_name() {
check(
r#"
struct S<T> {
some_field: T;
}
fn foo<T>(some_struct: S<T>) { $0some_struct.some_field$0 }
"#,
"some_field",
);
}
}