blob: 73f17e75afe3708e46c49e1364ecdfc51500b8b4 [file] [log] [blame]
#![allow(unused)]
use std::cmp::Ordering;
use std::ops;
use rustc::mir::{self, traversal, BasicBlock, Location};
use rustc_data_structures::bit_set::BitSet;
use rustc_data_structures::indexed_vec::{Idx, IndexVec};
use rustc_data_structures::work_queue::WorkQueue;
use crate::dataflow::BottomValue;
/// A specific kind of dataflow analysis.
///
/// To run a dataflow analysis, one must set the initial state of the `START_BLOCK` via
/// `initialize_start_block` and define a transfer function for each statement or terminator via
/// the various `effect` methods. The entry set for all other basic blocks is initialized to
/// `Self::BOTTOM_VALUE`. The dataflow `Engine` then iteratively updates the various entry sets for
/// each block with the cumulative effects of the transfer functions of all preceding blocks.
///
/// You should use an `Engine` to actually run an analysis, and a `ResultsCursor` to inspect the
/// results of that analysis like so:
///
/// ```ignore(cross-crate-imports)
/// fn do_my_analysis(body: &mir::Body<'tcx>, dead_unwinds: &BitSet<BasicBlock>) {
/// // `MyAnalysis` implements `Analysis`.
/// let analysis = MyAnalysis::new();
///
/// let results = Engine::new(body, dead_unwinds, analysis).iterate_to_fixpoint();
/// let mut cursor = ResultsCursor::new(body, results);
///
/// for (_, statement_index) in body.block_data[START_BLOCK].statements.iter_enumerated() {
/// cursor.seek_after(Location { block: START_BLOCK, statement_index });
/// let state = cursor.get();
/// println!("{:?}", state);
/// }
/// }
/// ```
pub trait Analysis<'tcx>: BottomValue {
/// The index type used to access the dataflow state.
type Idx: Idx;
/// A name describing the dataflow analysis being implemented.
///
/// The name should be suitable as part of a filename, so avoid whitespace, slashes or periods
/// and try to keep it short.
fn name() -> &'static str;
/// The size of each bitvector allocated for each block.
fn bits_per_block(&self, body: &mir::Body<'tcx>) -> usize;
/// Mutates the entry set of the `START_BLOCK` to containthe initial state for dataflow
/// analysis.
fn initialize_start_block(&self, body: &mir::Body<'tcx>, state: &mut BitSet<Self::Idx>);
/// Updates the current dataflow state with the effect of evaluating a statement.
fn apply_statement_effect(
&self,
state: &mut BitSet<Self::Idx>,
statement: &mir::Statement<'tcx>,
location: Location,
);
/// Updates the current dataflow state with the effect of evaluating a statement.
///
/// Note that the effect of a successful return from a `Call` terminator should **not** be
/// acounted for in this function. That should go in `apply_call_return_effect`. For example,
/// in the `InitializedPlaces` analyses, the return place is not marked as initialized here.
fn apply_terminator_effect(
&self,
state: &mut BitSet<Self::Idx>,
terminator: &mir::Terminator<'tcx>,
location: Location,
);
/// Updates the current dataflow state with the effect of a successful return from a `Call`
/// terminator.
///
/// This is separated from `apply_terminator_effect` to properly track state across
/// unwind edges for `Call`s.
fn apply_call_return_effect(
&self,
state: &mut BitSet<Self::Idx>,
block: BasicBlock,
func: &mir::Operand<'tcx>,
args: &[mir::Operand<'tcx>],
return_place: &mir::Place<'tcx>,
);
/// Applies the cumulative effect of an entire basic block to the dataflow state (except for
/// `call_return_effect`, which is handled in the `Engine`).
///
/// The default implementation calls `statement_effect` for every statement in the block before
/// finally calling `terminator_effect`. However, some dataflow analyses are able to coalesce
/// transfer functions for an entire block and apply them at once. Such analyses should
/// override `block_effect`.
fn apply_whole_block_effect(
&self,
state: &mut BitSet<Self::Idx>,
block: BasicBlock,
block_data: &mir::BasicBlockData<'tcx>,
) {
for (statement_index, stmt) in block_data.statements.iter().enumerate() {
let location = Location { block, statement_index };
self.apply_statement_effect(state, stmt, location);
}
let location = Location { block, statement_index: block_data.statements.len() };
self.apply_terminator_effect(state, block_data.terminator(), location);
}
/// Applies the cumulative effect of a sequence of statements (and possibly a terminator)
/// within a single basic block.
///
/// When called with `0..block_data.statements.len() + 1` as the statement range, this function
/// is equivalent to `apply_whole_block_effect`.
fn apply_partial_block_effect(
&self,
state: &mut BitSet<Self::Idx>,
block: BasicBlock,
block_data: &mir::BasicBlockData<'tcx>,
mut range: ops::Range<usize>,
) {
if range.is_empty() {
return;
}
// The final location might be a terminator, so iterate through all statements until the
// final one, then check to see whether the final one is a statement or terminator.
//
// This can't cause the range to wrap-around since we check that the range contains at
// least one element above.
range.end -= 1;
let final_location = Location { block, statement_index: range.end };
for statement_index in range {
let location = Location { block, statement_index };
let stmt = &block_data.statements[statement_index];
self.apply_statement_effect(state, stmt, location);
}
if final_location.statement_index == block_data.statements.len() {
let terminator = block_data.terminator();
self.apply_terminator_effect(state, terminator, final_location);
} else {
let stmt = &block_data.statements[final_location.statement_index];
self.apply_statement_effect(state, stmt, final_location);
}
}
}
#[derive(Clone, Copy, Debug)]
enum CursorPosition {
AtBlockStart(BasicBlock),
After(Location),
}
impl CursorPosition {
fn block(&self) -> BasicBlock {
match *self {
Self::AtBlockStart(block) => block,
Self::After(Location { block, .. }) => block,
}
}
}
/// Inspect the results of dataflow analysis.
///
/// This cursor has linear performance when visiting statements in a block in order. Visiting
/// statements within a block in reverse order is `O(n^2)`, where `n` is the number of statements
/// in that block.
pub struct ResultsCursor<'mir, 'tcx, A>
where
A: Analysis<'tcx>,
{
body: &'mir mir::Body<'tcx>,
results: Results<'tcx, A>,
state: BitSet<A::Idx>,
pos: CursorPosition,
/// Whether the effects of `apply_call_return_effect` are currently stored in `state`.
///
/// This flag ensures that multiple calls to `seek_after_assume_call_returns` with the same
/// target only result in one invocation of `apply_call_return_effect`.
is_call_return_effect_applied: bool,
}
impl<'mir, 'tcx, A> ResultsCursor<'mir, 'tcx, A>
where
A: Analysis<'tcx>,
{
/// Returns a new cursor for `results` that points to the start of the `START_BLOCK`.
pub fn new(body: &'mir mir::Body<'tcx>, results: Results<'tcx, A>) -> Self {
ResultsCursor {
body,
pos: CursorPosition::AtBlockStart(mir::START_BLOCK),
is_call_return_effect_applied: false,
state: results.entry_sets[mir::START_BLOCK].clone(),
results,
}
}
/// Resets the cursor to the start of the given `block`.
pub fn seek_to_block_start(&mut self, block: BasicBlock) {
self.state.overwrite(&self.results.entry_sets[block]);
self.pos = CursorPosition::AtBlockStart(block);
self.is_call_return_effect_applied = false;
}
/// Updates the cursor to hold the dataflow state immediately before `target`.
#[allow(unused)]
pub fn seek_before(&mut self, target: Location) {
assert!(target <= self.body.terminator_loc(target.block));
if target.statement_index == 0 {
self.seek_to_block_start(target.block);
} else {
self._seek_after(Location {
block: target.block,
statement_index: target.statement_index - 1,
});
}
}
/// Updates the cursor to hold the dataflow state at `target`.
///
/// If `target` is a `Call` terminator, `apply_call_return_effect` will not be called. See
/// `seek_after_assume_call_returns` if you wish to observe the dataflow state upon a
/// successful return.
#[allow(unused)]
pub fn seek_after(&mut self, target: Location) {
assert!(target <= self.body.terminator_loc(target.block));
// This check ensures the correctness of a call to `seek_after_assume_call_returns`
// followed by one to `seek_after` with the same target.
if self.is_call_return_effect_applied {
self.seek_to_block_start(target.block);
}
self._seek_after(target);
}
/// Equivalent to `seek_after`, but also calls `apply_call_return_effect` if `target` is a
/// `Call` terminator whose callee is convergent.
#[allow(unused)]
pub fn seek_after_assume_call_returns(&mut self, target: Location) {
assert!(target <= self.body.terminator_loc(target.block));
self._seek_after(target);
if target != self.body.terminator_loc(target.block) {
return;
}
let term = self.body.basic_blocks()[target.block].terminator();
if let mir::TerminatorKind::Call {
destination: Some((return_place, _)),
func,
args,
..
} = &term.kind {
if !self.is_call_return_effect_applied {
self.results.analysis.apply_call_return_effect(
&mut self.state,
target.block,
func,
args,
return_place,
);
}
}
}
fn _seek_after(&mut self, target: Location) {
let Location { block: target_block, statement_index: target_index } = target;
if self.pos.block() != target_block {
self.seek_to_block_start(target_block);
}
// If we're in the same block but after the target statement, we need to reset to the start
// of the block.
if let CursorPosition::After(Location { statement_index: curr_index, .. }) = self.pos {
match curr_index.cmp(&target_index) {
Ordering::Equal => return,
Ordering::Less => {},
Ordering::Greater => self.seek_to_block_start(target_block),
}
}
// The cursor is now in the same block as the target location pointing at an earlier
// statement.
debug_assert_eq!(self.pos.block(), target_block);
if let CursorPosition::After(Location { statement_index, .. }) = self.pos {
debug_assert!(statement_index < target_index);
}
let first_unapplied_statement = match self.pos {
CursorPosition::AtBlockStart(_) => 0,
CursorPosition::After(Location { statement_index, .. }) => statement_index + 1,
};
let block_data = &self.body.basic_blocks()[target_block];
self.results.analysis.apply_partial_block_effect(
&mut self.state,
target_block,
block_data,
first_unapplied_statement..target_index + 1,
);
self.pos = CursorPosition::After(target);
self.is_call_return_effect_applied = false;
}
/// Gets the dataflow state at the current location.
pub fn get(&self) -> &BitSet<A::Idx> {
&self.state
}
}
/// A completed dataflow analysis.
pub struct Results<'tcx, A>
where
A: Analysis<'tcx>,
{
analysis: A,
entry_sets: IndexVec<BasicBlock, BitSet<A::Idx>>,
}
/// All information required to iterate a dataflow analysis to fixpoint.
pub struct Engine<'a, 'tcx, A>
where
A: Analysis<'tcx>,
{
analysis: A,
bits_per_block: usize,
body: &'a mir::Body<'tcx>,
dead_unwinds: &'a BitSet<BasicBlock>,
entry_sets: IndexVec<BasicBlock, BitSet<A::Idx>>,
}
impl<A> Engine<'a, 'tcx, A>
where
A: Analysis<'tcx>,
{
pub fn new(
body: &'a mir::Body<'tcx>,
dead_unwinds: &'a BitSet<BasicBlock>,
analysis: A,
) -> Self {
let bits_per_block = analysis.bits_per_block(body);
let bottom_value_set = if A::BOTTOM_VALUE == true {
BitSet::new_filled(bits_per_block)
} else {
BitSet::new_empty(bits_per_block)
};
let mut entry_sets = IndexVec::from_elem(bottom_value_set, body.basic_blocks());
analysis.initialize_start_block(body, &mut entry_sets[mir::START_BLOCK]);
Engine {
analysis,
bits_per_block,
body,
dead_unwinds,
entry_sets,
}
}
pub fn iterate_to_fixpoint(mut self) -> Results<'tcx, A> {
let mut temp_state = BitSet::new_empty(self.bits_per_block);
let mut dirty_queue: WorkQueue<BasicBlock> =
WorkQueue::with_none(self.body.basic_blocks().len());
for (bb, _) in traversal::reverse_postorder(self.body) {
dirty_queue.insert(bb);
}
// Add blocks that are not reachable from START_BLOCK to the work queue. These blocks will
// be processed after the ones added above.
for bb in self.body.basic_blocks().indices() {
dirty_queue.insert(bb);
}
while let Some(bb) = dirty_queue.pop() {
let bb_data = &self.body[bb];
let on_entry = &self.entry_sets[bb];
temp_state.overwrite(on_entry);
self.analysis.apply_whole_block_effect(&mut temp_state, bb, bb_data);
self.propagate_bits_into_graph_successors_of(
&mut temp_state,
(bb, bb_data),
&mut dirty_queue,
);
}
Results {
analysis: self.analysis,
entry_sets: self.entry_sets,
}
}
fn propagate_bits_into_graph_successors_of(
&mut self,
in_out: &mut BitSet<A::Idx>,
(bb, bb_data): (BasicBlock, &'a mir::BasicBlockData<'tcx>),
dirty_list: &mut WorkQueue<BasicBlock>,
) {
match bb_data.terminator().kind {
mir::TerminatorKind::Return
| mir::TerminatorKind::Resume
| mir::TerminatorKind::Abort
| mir::TerminatorKind::GeneratorDrop
| mir::TerminatorKind::Unreachable => {}
mir::TerminatorKind::Goto { target }
| mir::TerminatorKind::Assert { target, cleanup: None, .. }
| mir::TerminatorKind::Yield { resume: target, drop: None, .. }
| mir::TerminatorKind::Drop { target, location: _, unwind: None }
| mir::TerminatorKind::DropAndReplace { target, value: _, location: _, unwind: None } =>
{
self.propagate_bits_into_entry_set_for(in_out, target, dirty_list);
}
mir::TerminatorKind::Yield { resume: target, drop: Some(drop), .. } => {
self.propagate_bits_into_entry_set_for(in_out, target, dirty_list);
self.propagate_bits_into_entry_set_for(in_out, drop, dirty_list);
}
mir::TerminatorKind::Assert { target, cleanup: Some(unwind), .. }
| mir::TerminatorKind::Drop { target, location: _, unwind: Some(unwind) }
| mir::TerminatorKind::DropAndReplace {
target,
value: _,
location: _,
unwind: Some(unwind),
} => {
self.propagate_bits_into_entry_set_for(in_out, target, dirty_list);
if !self.dead_unwinds.contains(bb) {
self.propagate_bits_into_entry_set_for(in_out, unwind, dirty_list);
}
}
mir::TerminatorKind::SwitchInt { ref targets, .. } => {
for target in targets {
self.propagate_bits_into_entry_set_for(in_out, *target, dirty_list);
}
}
mir::TerminatorKind::Call { cleanup, ref destination, ref func, ref args, .. } => {
if let Some(unwind) = cleanup {
if !self.dead_unwinds.contains(bb) {
self.propagate_bits_into_entry_set_for(in_out, unwind, dirty_list);
}
}
if let Some((ref dest_place, dest_bb)) = *destination {
// N.B.: This must be done *last*, after all other
// propagation, as documented in comment above.
self.analysis.apply_call_return_effect(in_out, bb, func, args, dest_place);
self.propagate_bits_into_entry_set_for(in_out, dest_bb, dirty_list);
}
}
mir::TerminatorKind::FalseEdges { real_target, imaginary_target } => {
self.propagate_bits_into_entry_set_for(in_out, real_target, dirty_list);
self.propagate_bits_into_entry_set_for(in_out, imaginary_target, dirty_list);
}
mir::TerminatorKind::FalseUnwind { real_target, unwind } => {
self.propagate_bits_into_entry_set_for(in_out, real_target, dirty_list);
if let Some(unwind) = unwind {
if !self.dead_unwinds.contains(bb) {
self.propagate_bits_into_entry_set_for(in_out, unwind, dirty_list);
}
}
}
}
}
fn propagate_bits_into_entry_set_for(
&mut self,
in_out: &BitSet<A::Idx>,
bb: BasicBlock,
dirty_queue: &mut WorkQueue<BasicBlock>,
) {
let entry_set = &mut self.entry_sets[bb];
let set_changed = self.analysis.join(entry_set, &in_out);
if set_changed {
dirty_queue.insert(bb);
}
}
}