blob: 36064488eb24997e31e2beeb03a9f7fd46b1b20a [file] [log] [blame]
use crate::ops::{Deref, DerefMut};
use crate::ptr;
/// A wrapper to inhibit compiler from automatically calling `T`’s destructor.
///
/// This wrapper is 0-cost.
///
/// `ManuallyDrop<T>` is subject to the same layout optimizations as `T`.
/// As a consequence, it has *no effect* on the assumptions that the compiler makes
/// about all values being initialized at their type. In particular, initializing
/// a `ManuallyDrop<&mut T>` with [`mem::zeroed`] is undefined behavior.
/// If you need to handle uninitialized data, use [`MaybeUninit<T>`] instead.
///
/// # Examples
///
/// This wrapper helps with explicitly documenting the drop order dependencies between fields of
/// the type:
///
/// ```rust
/// use std::mem::ManuallyDrop;
/// struct Peach;
/// struct Banana;
/// struct Melon;
/// struct FruitBox {
/// // Immediately clear there’s something non-trivial going on with these fields.
/// peach: ManuallyDrop<Peach>,
/// melon: Melon, // Field that’s independent of the other two.
/// banana: ManuallyDrop<Banana>,
/// }
///
/// impl Drop for FruitBox {
/// fn drop(&mut self) {
/// unsafe {
/// // Explicit ordering in which field destructors are run specified in the intuitive
/// // location – the destructor of the structure containing the fields.
/// // Moreover, one can now reorder fields within the struct however much they want.
/// ManuallyDrop::drop(&mut self.peach);
/// ManuallyDrop::drop(&mut self.banana);
/// }
/// // After destructor for `FruitBox` runs (this function), the destructor for Melon gets
/// // invoked in the usual manner, as it is not wrapped in `ManuallyDrop`.
/// }
/// }
/// ```
///
/// [`mem::zeroed`]: fn.zeroed.html
/// [`MaybeUninit<T>`]: union.MaybeUninit.html
#[stable(feature = "manually_drop", since = "1.20.0")]
#[lang = "manually_drop"]
#[derive(Copy, Clone, Debug, Default, PartialEq, Eq, PartialOrd, Ord, Hash)]
#[repr(transparent)]
pub struct ManuallyDrop<T: ?Sized> {
value: T,
}
impl<T> ManuallyDrop<T> {
/// Wrap a value to be manually dropped.
///
/// # Examples
///
/// ```rust
/// use std::mem::ManuallyDrop;
/// ManuallyDrop::new(Box::new(()));
/// ```
#[stable(feature = "manually_drop", since = "1.20.0")]
#[rustc_const_stable(feature = "const_manually_drop", since = "1.36.0")]
#[inline(always)]
pub const fn new(value: T) -> ManuallyDrop<T> {
ManuallyDrop { value }
}
/// Extracts the value from the `ManuallyDrop` container.
///
/// This allows the value to be dropped again.
///
/// # Examples
///
/// ```rust
/// use std::mem::ManuallyDrop;
/// let x = ManuallyDrop::new(Box::new(()));
/// let _: Box<()> = ManuallyDrop::into_inner(x); // This drops the `Box`.
/// ```
#[stable(feature = "manually_drop", since = "1.20.0")]
#[rustc_const_stable(feature = "const_manually_drop", since = "1.36.0")]
#[inline(always)]
pub const fn into_inner(slot: ManuallyDrop<T>) -> T {
slot.value
}
/// Takes the contained value out.
///
/// This method is primarily intended for moving out values in drop.
/// Instead of using [`ManuallyDrop::drop`] to manually drop the value,
/// you can use this method to take the value and use it however desired.
/// `Drop` will be invoked on the returned value following normal end-of-scope rules.
///
/// If you have ownership of the container, you can use [`ManuallyDrop::into_inner`] instead.
///
/// # Safety
///
/// This function semantically moves out the contained value without preventing further usage.
/// It is up to the user of this method to ensure that this container is not used again.
///
/// [`ManuallyDrop::drop`]: #method.drop
/// [`ManuallyDrop::into_inner`]: #method.into_inner
#[must_use = "if you don't need the value, you can use `ManuallyDrop::drop` instead"]
#[unstable(feature = "manually_drop_take", issue = "55422")]
#[inline]
pub unsafe fn take(slot: &mut ManuallyDrop<T>) -> T {
ManuallyDrop::into_inner(ptr::read(slot))
}
}
impl<T: ?Sized> ManuallyDrop<T> {
/// Manually drops the contained value.
///
/// If you have ownership of the value, you can use [`ManuallyDrop::into_inner`] instead.
///
/// # Safety
///
/// This function runs the destructor of the contained value and thus the wrapped value
/// now represents uninitialized data. It is up to the user of this method to ensure the
/// uninitialized data is not actually used.
/// In particular, this function can only be called at most once
/// for a given instance of `ManuallyDrop<T>`.
///
/// [`ManuallyDrop::into_inner`]: #method.into_inner
#[stable(feature = "manually_drop", since = "1.20.0")]
#[inline]
pub unsafe fn drop(slot: &mut ManuallyDrop<T>) {
ptr::drop_in_place(&mut slot.value)
}
}
#[stable(feature = "manually_drop", since = "1.20.0")]
impl<T: ?Sized> Deref for ManuallyDrop<T> {
type Target = T;
#[inline(always)]
fn deref(&self) -> &T {
&self.value
}
}
#[stable(feature = "manually_drop", since = "1.20.0")]
impl<T: ?Sized> DerefMut for ManuallyDrop<T> {
#[inline(always)]
fn deref_mut(&mut self) -> &mut T {
&mut self.value
}
}