blob: 9483ffca448e3daec91450dee6055194490874a4 [file] [log] [blame]
use crate::attributes;
use crate::llvm;
use crate::llvm_util;
use crate::abi::{Abi, FnType, LlvmType, PassMode};
use crate::context::CodegenCx;
use crate::type_::Type;
use crate::type_of::LayoutLlvmExt;
use crate::builder::Builder;
use crate::value::Value;
use crate::va_arg::emit_va_arg;
use rustc_codegen_ssa::MemFlags;
use rustc_codegen_ssa::mir::place::PlaceRef;
use rustc_codegen_ssa::mir::operand::{OperandRef, OperandValue};
use rustc_codegen_ssa::glue;
use rustc_codegen_ssa::base::{to_immediate, wants_msvc_seh, compare_simd_types};
use rustc::ty::{self, Ty};
use rustc::ty::layout::{self, LayoutOf, HasTyCtxt, Primitive};
use rustc_codegen_ssa::common::{IntPredicate, TypeKind};
use rustc::hir;
use syntax::ast::{self, FloatTy};
use rustc_codegen_ssa::traits::*;
use rustc::session::Session;
use syntax_pos::Span;
use std::cmp::Ordering;
use std::{iter, i128, u128};
fn get_simple_intrinsic(cx: &CodegenCx<'ll, '_>, name: &str) -> Option<&'ll Value> {
let llvm_name = match name {
"sqrtf32" => "llvm.sqrt.f32",
"sqrtf64" => "llvm.sqrt.f64",
"powif32" => "llvm.powi.f32",
"powif64" => "llvm.powi.f64",
"sinf32" => "llvm.sin.f32",
"sinf64" => "llvm.sin.f64",
"cosf32" => "llvm.cos.f32",
"cosf64" => "llvm.cos.f64",
"powf32" => "llvm.pow.f32",
"powf64" => "llvm.pow.f64",
"expf32" => "llvm.exp.f32",
"expf64" => "llvm.exp.f64",
"exp2f32" => "llvm.exp2.f32",
"exp2f64" => "llvm.exp2.f64",
"logf32" => "llvm.log.f32",
"logf64" => "llvm.log.f64",
"log10f32" => "llvm.log10.f32",
"log10f64" => "llvm.log10.f64",
"log2f32" => "llvm.log2.f32",
"log2f64" => "llvm.log2.f64",
"fmaf32" => "llvm.fma.f32",
"fmaf64" => "llvm.fma.f64",
"fabsf32" => "llvm.fabs.f32",
"fabsf64" => "llvm.fabs.f64",
"minnumf32" => "llvm.minnum.f32",
"minnumf64" => "llvm.minnum.f64",
"maxnumf32" => "llvm.maxnum.f32",
"maxnumf64" => "llvm.maxnum.f64",
"copysignf32" => "llvm.copysign.f32",
"copysignf64" => "llvm.copysign.f64",
"floorf32" => "llvm.floor.f32",
"floorf64" => "llvm.floor.f64",
"ceilf32" => "llvm.ceil.f32",
"ceilf64" => "llvm.ceil.f64",
"truncf32" => "llvm.trunc.f32",
"truncf64" => "llvm.trunc.f64",
"rintf32" => "llvm.rint.f32",
"rintf64" => "llvm.rint.f64",
"nearbyintf32" => "llvm.nearbyint.f32",
"nearbyintf64" => "llvm.nearbyint.f64",
"roundf32" => "llvm.round.f32",
"roundf64" => "llvm.round.f64",
"assume" => "llvm.assume",
"abort" => "llvm.trap",
_ => return None
};
Some(cx.get_intrinsic(&llvm_name))
}
impl IntrinsicCallMethods<'tcx> for Builder<'a, 'll, 'tcx> {
fn codegen_intrinsic_call(
&mut self,
callee_ty: Ty<'tcx>,
fn_ty: &FnType<'tcx, Ty<'tcx>>,
args: &[OperandRef<'tcx, &'ll Value>],
llresult: &'ll Value,
span: Span,
) {
let tcx = self.tcx;
let (def_id, substs) = match callee_ty.sty {
ty::FnDef(def_id, substs) => (def_id, substs),
_ => bug!("expected fn item type, found {}", callee_ty)
};
let sig = callee_ty.fn_sig(tcx);
let sig = tcx.normalize_erasing_late_bound_regions(ty::ParamEnv::reveal_all(), &sig);
let arg_tys = sig.inputs();
let ret_ty = sig.output();
let name = &*tcx.item_name(def_id).as_str();
let llret_ty = self.layout_of(ret_ty).llvm_type(self);
let result = PlaceRef::new_sized(llresult, fn_ty.ret.layout, fn_ty.ret.layout.align.abi);
let simple = get_simple_intrinsic(self, name);
let llval = match name {
_ if simple.is_some() => {
self.call(simple.unwrap(),
&args.iter().map(|arg| arg.immediate()).collect::<Vec<_>>(),
None)
}
"unreachable" => {
return;
},
"likely" => {
let expect = self.get_intrinsic(&("llvm.expect.i1"));
self.call(expect, &[args[0].immediate(), self.const_bool(true)], None)
}
"unlikely" => {
let expect = self.get_intrinsic(&("llvm.expect.i1"));
self.call(expect, &[args[0].immediate(), self.const_bool(false)], None)
}
"try" => {
try_intrinsic(self,
args[0].immediate(),
args[1].immediate(),
args[2].immediate(),
llresult);
return;
}
"breakpoint" => {
let llfn = self.get_intrinsic(&("llvm.debugtrap"));
self.call(llfn, &[], None)
}
"size_of" => {
let tp_ty = substs.type_at(0);
self.const_usize(self.size_of(tp_ty).bytes())
}
"va_start" => {
self.va_start(args[0].immediate())
}
"va_end" => {
self.va_end(args[0].immediate())
}
"va_copy" => {
let intrinsic = self.cx().get_intrinsic(&("llvm.va_copy"));
self.call(intrinsic, &[args[0].immediate(), args[1].immediate()], None)
}
"va_arg" => {
match fn_ty.ret.layout.abi {
layout::Abi::Scalar(ref scalar) => {
match scalar.value {
Primitive::Int(..) => {
if self.cx().size_of(ret_ty).bytes() < 4 {
// va_arg should not be called on a integer type
// less than 4 bytes in length. If it is, promote
// the integer to a `i32` and truncate the result
// back to the smaller type.
let promoted_result = emit_va_arg(self, args[0],
tcx.types.i32);
self.trunc(promoted_result, llret_ty)
} else {
emit_va_arg(self, args[0], ret_ty)
}
}
Primitive::Float(FloatTy::F64) |
Primitive::Pointer => {
emit_va_arg(self, args[0], ret_ty)
}
// `va_arg` should never be used with the return type f32.
Primitive::Float(FloatTy::F32) => {
bug!("the va_arg intrinsic does not work with `f32`")
}
}
}
_ => {
bug!("the va_arg intrinsic does not work with non-scalar types")
}
}
}
"size_of_val" => {
let tp_ty = substs.type_at(0);
if let OperandValue::Pair(_, meta) = args[0].val {
let (llsize, _) = glue::size_and_align_of_dst(self, tp_ty, Some(meta));
llsize
} else {
self.const_usize(self.size_of(tp_ty).bytes())
}
}
"min_align_of" => {
let tp_ty = substs.type_at(0);
self.const_usize(self.align_of(tp_ty).bytes())
}
"min_align_of_val" => {
let tp_ty = substs.type_at(0);
if let OperandValue::Pair(_, meta) = args[0].val {
let (_, llalign) = glue::size_and_align_of_dst(self, tp_ty, Some(meta));
llalign
} else {
self.const_usize(self.align_of(tp_ty).bytes())
}
}
"pref_align_of" => {
let tp_ty = substs.type_at(0);
self.const_usize(self.layout_of(tp_ty).align.pref.bytes())
}
"type_name" => {
let tp_ty = substs.type_at(0);
let ty_name = self.tcx.type_name(tp_ty);
OperandRef::from_const(self, ty_name).immediate_or_packed_pair(self)
}
"type_id" => {
self.const_u64(self.tcx.type_id_hash(substs.type_at(0)))
}
"init" => {
let ty = substs.type_at(0);
if !self.layout_of(ty).is_zst() {
// Just zero out the stack slot.
// If we store a zero constant, LLVM will drown in vreg allocation for large
// data structures, and the generated code will be awful. (A telltale sign of
// this is large quantities of `mov [byte ptr foo],0` in the generated code.)
memset_intrinsic(
self,
false,
ty,
llresult,
self.const_u8(0),
self.const_usize(1)
);
}
return;
}
// Effectively no-ops
"uninit" | "forget" => {
return;
}
"needs_drop" => {
let tp_ty = substs.type_at(0);
self.const_bool(self.type_needs_drop(tp_ty))
}
"offset" => {
let ptr = args[0].immediate();
let offset = args[1].immediate();
self.inbounds_gep(ptr, &[offset])
}
"arith_offset" => {
let ptr = args[0].immediate();
let offset = args[1].immediate();
self.gep(ptr, &[offset])
}
"copy_nonoverlapping" => {
copy_intrinsic(self, false, false, substs.type_at(0),
args[1].immediate(), args[0].immediate(), args[2].immediate());
return;
}
"copy" => {
copy_intrinsic(self, true, false, substs.type_at(0),
args[1].immediate(), args[0].immediate(), args[2].immediate());
return;
}
"write_bytes" => {
memset_intrinsic(self, false, substs.type_at(0),
args[0].immediate(), args[1].immediate(), args[2].immediate());
return;
}
"volatile_copy_nonoverlapping_memory" => {
copy_intrinsic(self, false, true, substs.type_at(0),
args[0].immediate(), args[1].immediate(), args[2].immediate());
return;
}
"volatile_copy_memory" => {
copy_intrinsic(self, true, true, substs.type_at(0),
args[0].immediate(), args[1].immediate(), args[2].immediate());
return;
}
"volatile_set_memory" => {
memset_intrinsic(self, true, substs.type_at(0),
args[0].immediate(), args[1].immediate(), args[2].immediate());
return;
}
"volatile_load" | "unaligned_volatile_load" => {
let tp_ty = substs.type_at(0);
let mut ptr = args[0].immediate();
if let PassMode::Cast(ty) = fn_ty.ret.mode {
ptr = self.pointercast(ptr, self.type_ptr_to(ty.llvm_type(self)));
}
let load = self.volatile_load(ptr);
let align = if name == "unaligned_volatile_load" {
1
} else {
self.align_of(tp_ty).bytes() as u32
};
unsafe {
llvm::LLVMSetAlignment(load, align);
}
to_immediate(self, load, self.layout_of(tp_ty))
},
"volatile_store" => {
let dst = args[0].deref(self.cx());
args[1].val.volatile_store(self, dst);
return;
},
"unaligned_volatile_store" => {
let dst = args[0].deref(self.cx());
args[1].val.unaligned_volatile_store(self, dst);
return;
},
"prefetch_read_data" | "prefetch_write_data" |
"prefetch_read_instruction" | "prefetch_write_instruction" => {
let expect = self.get_intrinsic(&("llvm.prefetch"));
let (rw, cache_type) = match name {
"prefetch_read_data" => (0, 1),
"prefetch_write_data" => (1, 1),
"prefetch_read_instruction" => (0, 0),
"prefetch_write_instruction" => (1, 0),
_ => bug!()
};
self.call(expect, &[
args[0].immediate(),
self.const_i32(rw),
args[1].immediate(),
self.const_i32(cache_type)
], None)
},
"ctlz" | "ctlz_nonzero" | "cttz" | "cttz_nonzero" | "ctpop" | "bswap" |
"bitreverse" | "add_with_overflow" | "sub_with_overflow" |
"mul_with_overflow" | "wrapping_add" | "wrapping_sub" | "wrapping_mul" |
"unchecked_div" | "unchecked_rem" | "unchecked_shl" | "unchecked_shr" |
"unchecked_add" | "unchecked_sub" | "unchecked_mul" | "exact_div" |
"rotate_left" | "rotate_right" | "saturating_add" | "saturating_sub" => {
let ty = arg_tys[0];
match int_type_width_signed(ty, self) {
Some((width, signed)) =>
match name {
"ctlz" | "cttz" => {
let y = self.const_bool(false);
let llfn = self.get_intrinsic(
&format!("llvm.{}.i{}", name, width),
);
self.call(llfn, &[args[0].immediate(), y], None)
}
"ctlz_nonzero" | "cttz_nonzero" => {
let y = self.const_bool(true);
let llvm_name = &format!("llvm.{}.i{}", &name[..4], width);
let llfn = self.get_intrinsic(llvm_name);
self.call(llfn, &[args[0].immediate(), y], None)
}
"ctpop" => self.call(
self.get_intrinsic(&format!("llvm.ctpop.i{}", width)),
&[args[0].immediate()],
None
),
"bswap" => {
if width == 8 {
args[0].immediate() // byte swap a u8/i8 is just a no-op
} else {
self.call(
self.get_intrinsic(
&format!("llvm.bswap.i{}", width),
),
&[args[0].immediate()],
None,
)
}
}
"bitreverse" => {
self.call(
self.get_intrinsic(
&format!("llvm.bitreverse.i{}", width),
),
&[args[0].immediate()],
None,
)
}
"add_with_overflow" | "sub_with_overflow" | "mul_with_overflow" => {
let intrinsic = format!("llvm.{}{}.with.overflow.i{}",
if signed { 's' } else { 'u' },
&name[..3], width);
let llfn = self.get_intrinsic(&intrinsic);
// Convert `i1` to a `bool`, and write it to the out parameter
let pair = self.call(llfn, &[
args[0].immediate(),
args[1].immediate()
], None);
let val = self.extract_value(pair, 0);
let overflow = self.extract_value(pair, 1);
let overflow = self.zext(overflow, self.type_bool());
let dest = result.project_field(self, 0);
self.store(val, dest.llval, dest.align);
let dest = result.project_field(self, 1);
self.store(overflow, dest.llval, dest.align);
return;
},
"wrapping_add" => self.add(args[0].immediate(), args[1].immediate()),
"wrapping_sub" => self.sub(args[0].immediate(), args[1].immediate()),
"wrapping_mul" => self.mul(args[0].immediate(), args[1].immediate()),
"exact_div" =>
if signed {
self.exactsdiv(args[0].immediate(), args[1].immediate())
} else {
self.exactudiv(args[0].immediate(), args[1].immediate())
},
"unchecked_div" =>
if signed {
self.sdiv(args[0].immediate(), args[1].immediate())
} else {
self.udiv(args[0].immediate(), args[1].immediate())
},
"unchecked_rem" =>
if signed {
self.srem(args[0].immediate(), args[1].immediate())
} else {
self.urem(args[0].immediate(), args[1].immediate())
},
"unchecked_shl" => self.shl(args[0].immediate(), args[1].immediate()),
"unchecked_shr" =>
if signed {
self.ashr(args[0].immediate(), args[1].immediate())
} else {
self.lshr(args[0].immediate(), args[1].immediate())
},
"unchecked_add" => {
if signed {
self.unchecked_sadd(args[0].immediate(), args[1].immediate())
} else {
self.unchecked_uadd(args[0].immediate(), args[1].immediate())
}
},
"unchecked_sub" => {
if signed {
self.unchecked_ssub(args[0].immediate(), args[1].immediate())
} else {
self.unchecked_usub(args[0].immediate(), args[1].immediate())
}
},
"unchecked_mul" => {
if signed {
self.unchecked_smul(args[0].immediate(), args[1].immediate())
} else {
self.unchecked_umul(args[0].immediate(), args[1].immediate())
}
},
"rotate_left" | "rotate_right" => {
let is_left = name == "rotate_left";
let val = args[0].immediate();
let raw_shift = args[1].immediate();
if llvm_util::get_major_version() >= 7 {
// rotate = funnel shift with first two args the same
let llvm_name = &format!("llvm.fsh{}.i{}",
if is_left { 'l' } else { 'r' }, width);
let llfn = self.get_intrinsic(llvm_name);
self.call(llfn, &[val, val, raw_shift], None)
} else {
// rotate_left: (X << (S % BW)) | (X >> ((BW - S) % BW))
// rotate_right: (X << ((BW - S) % BW)) | (X >> (S % BW))
let width = self.const_uint(
self.type_ix(width),
width,
);
let shift = self.urem(raw_shift, width);
let width_minus_raw_shift = self.sub(width, raw_shift);
let inv_shift = self.urem(width_minus_raw_shift, width);
let shift1 = self.shl(
val,
if is_left { shift } else { inv_shift },
);
let shift2 = self.lshr(
val,
if !is_left { shift } else { inv_shift },
);
self.or(shift1, shift2)
}
},
"saturating_add" | "saturating_sub" => {
let is_add = name == "saturating_add";
let lhs = args[0].immediate();
let rhs = args[1].immediate();
if llvm_util::get_major_version() >= 8 {
let llvm_name = &format!("llvm.{}{}.sat.i{}",
if signed { 's' } else { 'u' },
if is_add { "add" } else { "sub" },
width);
let llfn = self.get_intrinsic(llvm_name);
self.call(llfn, &[lhs, rhs], None)
} else {
let llvm_name = &format!("llvm.{}{}.with.overflow.i{}",
if signed { 's' } else { 'u' },
if is_add { "add" } else { "sub" },
width);
let llfn = self.get_intrinsic(llvm_name);
let pair = self.call(llfn, &[lhs, rhs], None);
let val = self.extract_value(pair, 0);
let overflow = self.extract_value(pair, 1);
let llty = self.type_ix(width);
let limit = if signed {
let limit_lo = self.const_uint_big(
llty, (i128::MIN >> (128 - width)) as u128);
let limit_hi = self.const_uint_big(
llty, (i128::MAX >> (128 - width)) as u128);
let neg = self.icmp(
IntPredicate::IntSLT, val, self.const_uint(llty, 0));
self.select(neg, limit_hi, limit_lo)
} else if is_add {
self.const_uint_big(llty, u128::MAX >> (128 - width))
} else {
self.const_uint(llty, 0)
};
self.select(overflow, limit, val)
}
},
_ => bug!(),
},
None => {
span_invalid_monomorphization_error(
tcx.sess, span,
&format!("invalid monomorphization of `{}` intrinsic: \
expected basic integer type, found `{}`", name, ty));
return;
}
}
},
"fadd_fast" | "fsub_fast" | "fmul_fast" | "fdiv_fast" | "frem_fast" => {
match float_type_width(arg_tys[0]) {
Some(_width) =>
match name {
"fadd_fast" => self.fadd_fast(args[0].immediate(), args[1].immediate()),
"fsub_fast" => self.fsub_fast(args[0].immediate(), args[1].immediate()),
"fmul_fast" => self.fmul_fast(args[0].immediate(), args[1].immediate()),
"fdiv_fast" => self.fdiv_fast(args[0].immediate(), args[1].immediate()),
"frem_fast" => self.frem_fast(args[0].immediate(), args[1].immediate()),
_ => bug!(),
},
None => {
span_invalid_monomorphization_error(
tcx.sess, span,
&format!("invalid monomorphization of `{}` intrinsic: \
expected basic float type, found `{}`", name, arg_tys[0]));
return;
}
}
},
"discriminant_value" => {
args[0].deref(self.cx()).codegen_get_discr(self, ret_ty)
}
name if name.starts_with("simd_") => {
match generic_simd_intrinsic(self, name,
callee_ty,
args,
ret_ty, llret_ty,
span) {
Ok(llval) => llval,
Err(()) => return
}
}
// This requires that atomic intrinsics follow a specific naming pattern:
// "atomic_<operation>[_<ordering>]", and no ordering means SeqCst
name if name.starts_with("atomic_") => {
use rustc_codegen_ssa::common::AtomicOrdering::*;
use rustc_codegen_ssa::common::
{SynchronizationScope, AtomicRmwBinOp};
let split: Vec<&str> = name.split('_').collect();
let is_cxchg = split[1] == "cxchg" || split[1] == "cxchgweak";
let (order, failorder) = match split.len() {
2 => (SequentiallyConsistent, SequentiallyConsistent),
3 => match split[2] {
"unordered" => (Unordered, Unordered),
"relaxed" => (Monotonic, Monotonic),
"acq" => (Acquire, Acquire),
"rel" => (Release, Monotonic),
"acqrel" => (AcquireRelease, Acquire),
"failrelaxed" if is_cxchg =>
(SequentiallyConsistent, Monotonic),
"failacq" if is_cxchg =>
(SequentiallyConsistent, Acquire),
_ => self.sess().fatal("unknown ordering in atomic intrinsic")
},
4 => match (split[2], split[3]) {
("acq", "failrelaxed") if is_cxchg =>
(Acquire, Monotonic),
("acqrel", "failrelaxed") if is_cxchg =>
(AcquireRelease, Monotonic),
_ => self.sess().fatal("unknown ordering in atomic intrinsic")
},
_ => self.sess().fatal("Atomic intrinsic not in correct format"),
};
let invalid_monomorphization = |ty| {
span_invalid_monomorphization_error(tcx.sess, span,
&format!("invalid monomorphization of `{}` intrinsic: \
expected basic integer type, found `{}`", name, ty));
};
match split[1] {
"cxchg" | "cxchgweak" => {
let ty = substs.type_at(0);
if int_type_width_signed(ty, self).is_some() {
let weak = split[1] == "cxchgweak";
let pair = self.atomic_cmpxchg(
args[0].immediate(),
args[1].immediate(),
args[2].immediate(),
order,
failorder,
weak);
let val = self.extract_value(pair, 0);
let success = self.extract_value(pair, 1);
let success = self.zext(success, self.type_bool());
let dest = result.project_field(self, 0);
self.store(val, dest.llval, dest.align);
let dest = result.project_field(self, 1);
self.store(success, dest.llval, dest.align);
return;
} else {
return invalid_monomorphization(ty);
}
}
"load" => {
let ty = substs.type_at(0);
if int_type_width_signed(ty, self).is_some() {
let size = self.size_of(ty);
self.atomic_load(args[0].immediate(), order, size)
} else {
return invalid_monomorphization(ty);
}
}
"store" => {
let ty = substs.type_at(0);
if int_type_width_signed(ty, self).is_some() {
let size = self.size_of(ty);
self.atomic_store(
args[1].immediate(),
args[0].immediate(),
order,
size
);
return;
} else {
return invalid_monomorphization(ty);
}
}
"fence" => {
self.atomic_fence(order, SynchronizationScope::CrossThread);
return;
}
"singlethreadfence" => {
self.atomic_fence(order, SynchronizationScope::SingleThread);
return;
}
// These are all AtomicRMW ops
op => {
let atom_op = match op {
"xchg" => AtomicRmwBinOp::AtomicXchg,
"xadd" => AtomicRmwBinOp::AtomicAdd,
"xsub" => AtomicRmwBinOp::AtomicSub,
"and" => AtomicRmwBinOp::AtomicAnd,
"nand" => AtomicRmwBinOp::AtomicNand,
"or" => AtomicRmwBinOp::AtomicOr,
"xor" => AtomicRmwBinOp::AtomicXor,
"max" => AtomicRmwBinOp::AtomicMax,
"min" => AtomicRmwBinOp::AtomicMin,
"umax" => AtomicRmwBinOp::AtomicUMax,
"umin" => AtomicRmwBinOp::AtomicUMin,
_ => self.sess().fatal("unknown atomic operation")
};
let ty = substs.type_at(0);
if int_type_width_signed(ty, self).is_some() {
self.atomic_rmw(
atom_op,
args[0].immediate(),
args[1].immediate(),
order
)
} else {
return invalid_monomorphization(ty);
}
}
}
}
"nontemporal_store" => {
let dst = args[0].deref(self.cx());
args[1].val.nontemporal_store(self, dst);
return;
}
_ => bug!("unknown intrinsic '{}'", name),
};
if !fn_ty.ret.is_ignore() {
if let PassMode::Cast(ty) = fn_ty.ret.mode {
let ptr_llty = self.type_ptr_to(ty.llvm_type(self));
let ptr = self.pointercast(result.llval, ptr_llty);
self.store(llval, ptr, result.align);
} else {
OperandRef::from_immediate_or_packed_pair(self, llval, result.layout)
.val.store(self, result);
}
}
}
fn abort(&mut self) {
let fnname = self.get_intrinsic(&("llvm.trap"));
self.call(fnname, &[], None);
}
fn assume(&mut self, val: Self::Value) {
let assume_intrinsic = self.get_intrinsic("llvm.assume");
self.call(assume_intrinsic, &[val], None);
}
fn expect(&mut self, cond: Self::Value, expected: bool) -> Self::Value {
let expect = self.get_intrinsic(&"llvm.expect.i1");
self.call(expect, &[cond, self.const_bool(expected)], None)
}
fn va_start(&mut self, va_list: &'ll Value) -> &'ll Value {
let intrinsic = self.cx().get_intrinsic("llvm.va_start");
self.call(intrinsic, &[va_list], None)
}
fn va_end(&mut self, va_list: &'ll Value) -> &'ll Value {
let intrinsic = self.cx().get_intrinsic("llvm.va_end");
self.call(intrinsic, &[va_list], None)
}
}
fn copy_intrinsic(
bx: &mut Builder<'a, 'll, 'tcx>,
allow_overlap: bool,
volatile: bool,
ty: Ty<'tcx>,
dst: &'ll Value,
src: &'ll Value,
count: &'ll Value,
) {
let (size, align) = bx.size_and_align_of(ty);
let size = bx.mul(bx.const_usize(size.bytes()), count);
let flags = if volatile {
MemFlags::VOLATILE
} else {
MemFlags::empty()
};
if allow_overlap {
bx.memmove(dst, align, src, align, size, flags);
} else {
bx.memcpy(dst, align, src, align, size, flags);
}
}
fn memset_intrinsic(
bx: &mut Builder<'a, 'll, 'tcx>,
volatile: bool,
ty: Ty<'tcx>,
dst: &'ll Value,
val: &'ll Value,
count: &'ll Value
) {
let (size, align) = bx.size_and_align_of(ty);
let size = bx.mul(bx.const_usize(size.bytes()), count);
let flags = if volatile {
MemFlags::VOLATILE
} else {
MemFlags::empty()
};
bx.memset(dst, val, size, align, flags);
}
fn try_intrinsic(
bx: &mut Builder<'a, 'll, 'tcx>,
func: &'ll Value,
data: &'ll Value,
local_ptr: &'ll Value,
dest: &'ll Value,
) {
if bx.sess().no_landing_pads() {
bx.call(func, &[data], None);
let ptr_align = bx.tcx().data_layout.pointer_align.abi;
bx.store(bx.const_null(bx.type_i8p()), dest, ptr_align);
} else if wants_msvc_seh(bx.sess()) {
codegen_msvc_try(bx, func, data, local_ptr, dest);
} else {
codegen_gnu_try(bx, func, data, local_ptr, dest);
}
}
// MSVC's definition of the `rust_try` function.
//
// This implementation uses the new exception handling instructions in LLVM
// which have support in LLVM for SEH on MSVC targets. Although these
// instructions are meant to work for all targets, as of the time of this
// writing, however, LLVM does not recommend the usage of these new instructions
// as the old ones are still more optimized.
fn codegen_msvc_try(
bx: &mut Builder<'a, 'll, 'tcx>,
func: &'ll Value,
data: &'ll Value,
local_ptr: &'ll Value,
dest: &'ll Value,
) {
let llfn = get_rust_try_fn(bx, &mut |mut bx| {
bx.set_personality_fn(bx.eh_personality());
let mut normal = bx.build_sibling_block("normal");
let mut catchswitch = bx.build_sibling_block("catchswitch");
let mut catchpad = bx.build_sibling_block("catchpad");
let mut caught = bx.build_sibling_block("caught");
let func = llvm::get_param(bx.llfn(), 0);
let data = llvm::get_param(bx.llfn(), 1);
let local_ptr = llvm::get_param(bx.llfn(), 2);
// We're generating an IR snippet that looks like:
//
// declare i32 @rust_try(%func, %data, %ptr) {
// %slot = alloca i64*
// invoke %func(%data) to label %normal unwind label %catchswitch
//
// normal:
// ret i32 0
//
// catchswitch:
// %cs = catchswitch within none [%catchpad] unwind to caller
//
// catchpad:
// %tok = catchpad within %cs [%type_descriptor, 0, %slot]
// %ptr[0] = %slot[0]
// %ptr[1] = %slot[1]
// catchret from %tok to label %caught
//
// caught:
// ret i32 1
// }
//
// This structure follows the basic usage of throw/try/catch in LLVM.
// For example, compile this C++ snippet to see what LLVM generates:
//
// #include <stdint.h>
//
// int bar(void (*foo)(void), uint64_t *ret) {
// try {
// foo();
// return 0;
// } catch(uint64_t a[2]) {
// ret[0] = a[0];
// ret[1] = a[1];
// return 1;
// }
// }
//
// More information can be found in libstd's seh.rs implementation.
let i64p = bx.type_ptr_to(bx.type_i64());
let ptr_align = bx.tcx().data_layout.pointer_align.abi;
let slot = bx.alloca(i64p, "slot", ptr_align);
bx.invoke(func, &[data], normal.llbb(), catchswitch.llbb(), None);
normal.ret(bx.const_i32(0));
let cs = catchswitch.catch_switch(None, None, 1);
catchswitch.add_handler(cs, catchpad.llbb());
let tydesc = match bx.tcx().lang_items().msvc_try_filter() {
Some(did) => bx.get_static(did),
None => bug!("msvc_try_filter not defined"),
};
let funclet = catchpad.catch_pad(cs, &[tydesc, bx.const_i32(0), slot]);
let addr = catchpad.load(slot, ptr_align);
let i64_align = bx.tcx().data_layout.i64_align.abi;
let arg1 = catchpad.load(addr, i64_align);
let val1 = bx.const_i32(1);
let gep1 = catchpad.inbounds_gep(addr, &[val1]);
let arg2 = catchpad.load(gep1, i64_align);
let local_ptr = catchpad.bitcast(local_ptr, i64p);
let gep2 = catchpad.inbounds_gep(local_ptr, &[val1]);
catchpad.store(arg1, local_ptr, i64_align);
catchpad.store(arg2, gep2, i64_align);
catchpad.catch_ret(&funclet, caught.llbb());
caught.ret(bx.const_i32(1));
});
// Note that no invoke is used here because by definition this function
// can't panic (that's what it's catching).
let ret = bx.call(llfn, &[func, data, local_ptr], None);
let i32_align = bx.tcx().data_layout.i32_align.abi;
bx.store(ret, dest, i32_align);
}
// Definition of the standard `try` function for Rust using the GNU-like model
// of exceptions (e.g., the normal semantics of LLVM's `landingpad` and `invoke`
// instructions).
//
// This codegen is a little surprising because we always call a shim
// function instead of inlining the call to `invoke` manually here. This is done
// because in LLVM we're only allowed to have one personality per function
// definition. The call to the `try` intrinsic is being inlined into the
// function calling it, and that function may already have other personality
// functions in play. By calling a shim we're guaranteed that our shim will have
// the right personality function.
fn codegen_gnu_try(
bx: &mut Builder<'a, 'll, 'tcx>,
func: &'ll Value,
data: &'ll Value,
local_ptr: &'ll Value,
dest: &'ll Value,
) {
let llfn = get_rust_try_fn(bx, &mut |mut bx| {
// Codegens the shims described above:
//
// bx:
// invoke %func(%args...) normal %normal unwind %catch
//
// normal:
// ret 0
//
// catch:
// (ptr, _) = landingpad
// store ptr, %local_ptr
// ret 1
//
// Note that the `local_ptr` data passed into the `try` intrinsic is
// expected to be `*mut *mut u8` for this to actually work, but that's
// managed by the standard library.
let mut then = bx.build_sibling_block("then");
let mut catch = bx.build_sibling_block("catch");
let func = llvm::get_param(bx.llfn(), 0);
let data = llvm::get_param(bx.llfn(), 1);
let local_ptr = llvm::get_param(bx.llfn(), 2);
bx.invoke(func, &[data], then.llbb(), catch.llbb(), None);
then.ret(bx.const_i32(0));
// Type indicator for the exception being thrown.
//
// The first value in this tuple is a pointer to the exception object
// being thrown. The second value is a "selector" indicating which of
// the landing pad clauses the exception's type had been matched to.
// rust_try ignores the selector.
let lpad_ty = bx.type_struct(&[bx.type_i8p(), bx.type_i32()], false);
let vals = catch.landing_pad(lpad_ty, bx.eh_personality(), 1);
catch.add_clause(vals, bx.const_null(bx.type_i8p()));
let ptr = catch.extract_value(vals, 0);
let ptr_align = bx.tcx().data_layout.pointer_align.abi;
let bitcast = catch.bitcast(local_ptr, bx.type_ptr_to(bx.type_i8p()));
catch.store(ptr, bitcast, ptr_align);
catch.ret(bx.const_i32(1));
});
// Note that no invoke is used here because by definition this function
// can't panic (that's what it's catching).
let ret = bx.call(llfn, &[func, data, local_ptr], None);
let i32_align = bx.tcx().data_layout.i32_align.abi;
bx.store(ret, dest, i32_align);
}
// Helper function to give a Block to a closure to codegen a shim function.
// This is currently primarily used for the `try` intrinsic functions above.
fn gen_fn<'ll, 'tcx>(
cx: &CodegenCx<'ll, 'tcx>,
name: &str,
inputs: Vec<Ty<'tcx>>,
output: Ty<'tcx>,
codegen: &mut dyn FnMut(Builder<'_, 'll, 'tcx>),
) -> &'ll Value {
let rust_fn_sig = ty::Binder::bind(cx.tcx.mk_fn_sig(
inputs.into_iter(),
output,
false,
hir::Unsafety::Unsafe,
Abi::Rust
));
let llfn = cx.define_internal_fn(name, rust_fn_sig);
attributes::from_fn_attrs(cx, llfn, None, rust_fn_sig);
let bx = Builder::new_block(cx, llfn, "entry-block");
codegen(bx);
llfn
}
// Helper function used to get a handle to the `__rust_try` function used to
// catch exceptions.
//
// This function is only generated once and is then cached.
fn get_rust_try_fn<'ll, 'tcx>(
cx: &CodegenCx<'ll, 'tcx>,
codegen: &mut dyn FnMut(Builder<'_, 'll, 'tcx>),
) -> &'ll Value {
if let Some(llfn) = cx.rust_try_fn.get() {
return llfn;
}
// Define the type up front for the signature of the rust_try function.
let tcx = cx.tcx;
let i8p = tcx.mk_mut_ptr(tcx.types.i8);
let fn_ty = tcx.mk_fn_ptr(ty::Binder::bind(tcx.mk_fn_sig(
iter::once(i8p),
tcx.mk_unit(),
false,
hir::Unsafety::Unsafe,
Abi::Rust
)));
let output = tcx.types.i32;
let rust_try = gen_fn(cx, "__rust_try", vec![fn_ty, i8p, i8p], output, codegen);
cx.rust_try_fn.set(Some(rust_try));
rust_try
}
fn span_invalid_monomorphization_error(a: &Session, b: Span, c: &str) {
span_err!(a, b, E0511, "{}", c);
}
fn generic_simd_intrinsic(
bx: &mut Builder<'a, 'll, 'tcx>,
name: &str,
callee_ty: Ty<'tcx>,
args: &[OperandRef<'tcx, &'ll Value>],
ret_ty: Ty<'tcx>,
llret_ty: &'ll Type,
span: Span
) -> Result<&'ll Value, ()> {
// macros for error handling:
macro_rules! emit_error {
($msg: tt) => {
emit_error!($msg, )
};
($msg: tt, $($fmt: tt)*) => {
span_invalid_monomorphization_error(
bx.sess(), span,
&format!(concat!("invalid monomorphization of `{}` intrinsic: ", $msg),
name, $($fmt)*));
}
}
macro_rules! return_error {
($($fmt: tt)*) => {
{
emit_error!($($fmt)*);
return Err(());
}
}
}
macro_rules! require {
($cond: expr, $($fmt: tt)*) => {
if !$cond {
return_error!($($fmt)*);
}
};
}
macro_rules! require_simd {
($ty: expr, $position: expr) => {
require!($ty.is_simd(), "expected SIMD {} type, found non-SIMD `{}`", $position, $ty)
}
}
let tcx = bx.tcx();
let sig = tcx.normalize_erasing_late_bound_regions(
ty::ParamEnv::reveal_all(),
&callee_ty.fn_sig(tcx),
);
let arg_tys = sig.inputs();
if name == "simd_select_bitmask" {
let in_ty = arg_tys[0];
let m_len = match in_ty.sty {
// Note that this `.unwrap()` crashes for isize/usize, that's sort
// of intentional as there's not currently a use case for that.
ty::Int(i) => i.bit_width().unwrap(),
ty::Uint(i) => i.bit_width().unwrap(),
_ => return_error!("`{}` is not an integral type", in_ty),
};
require_simd!(arg_tys[1], "argument");
let v_len = arg_tys[1].simd_size(tcx);
require!(m_len == v_len,
"mismatched lengths: mask length `{}` != other vector length `{}`",
m_len, v_len
);
let i1 = bx.type_i1();
let i1xn = bx.type_vector(i1, m_len as u64);
let m_i1s = bx.bitcast(args[0].immediate(), i1xn);
return Ok(bx.select(m_i1s, args[1].immediate(), args[2].immediate()));
}
// every intrinsic below takes a SIMD vector as its first argument
require_simd!(arg_tys[0], "input");
let in_ty = arg_tys[0];
let in_elem = arg_tys[0].simd_type(tcx);
let in_len = arg_tys[0].simd_size(tcx);
let comparison = match name {
"simd_eq" => Some(hir::BinOpKind::Eq),
"simd_ne" => Some(hir::BinOpKind::Ne),
"simd_lt" => Some(hir::BinOpKind::Lt),
"simd_le" => Some(hir::BinOpKind::Le),
"simd_gt" => Some(hir::BinOpKind::Gt),
"simd_ge" => Some(hir::BinOpKind::Ge),
_ => None
};
if let Some(cmp_op) = comparison {
require_simd!(ret_ty, "return");
let out_len = ret_ty.simd_size(tcx);
require!(in_len == out_len,
"expected return type with length {} (same as input type `{}`), \
found `{}` with length {}",
in_len, in_ty,
ret_ty, out_len);
require!(bx.type_kind(bx.element_type(llret_ty)) == TypeKind::Integer,
"expected return type with integer elements, found `{}` with non-integer `{}`",
ret_ty,
ret_ty.simd_type(tcx));
return Ok(compare_simd_types(bx,
args[0].immediate(),
args[1].immediate(),
in_elem,
llret_ty,
cmp_op))
}
if name.starts_with("simd_shuffle") {
let n: usize = name["simd_shuffle".len()..].parse().unwrap_or_else(|_|
span_bug!(span, "bad `simd_shuffle` instruction only caught in codegen?"));
require_simd!(ret_ty, "return");
let out_len = ret_ty.simd_size(tcx);
require!(out_len == n,
"expected return type of length {}, found `{}` with length {}",
n, ret_ty, out_len);
require!(in_elem == ret_ty.simd_type(tcx),
"expected return element type `{}` (element of input `{}`), \
found `{}` with element type `{}`",
in_elem, in_ty,
ret_ty, ret_ty.simd_type(tcx));
let total_len = in_len as u128 * 2;
let vector = args[2].immediate();
let indices: Option<Vec<_>> = (0..n)
.map(|i| {
let arg_idx = i;
let val = bx.const_get_elt(vector, i as u64);
match bx.const_to_opt_u128(val, true) {
None => {
emit_error!("shuffle index #{} is not a constant", arg_idx);
None
}
Some(idx) if idx >= total_len => {
emit_error!("shuffle index #{} is out of bounds (limit {})",
arg_idx, total_len);
None
}
Some(idx) => Some(bx.const_i32(idx as i32)),
}
})
.collect();
let indices = match indices {
Some(i) => i,
None => return Ok(bx.const_null(llret_ty))
};
return Ok(bx.shuffle_vector(args[0].immediate(),
args[1].immediate(),
bx.const_vector(&indices)))
}
if name == "simd_insert" {
require!(in_elem == arg_tys[2],
"expected inserted type `{}` (element of input `{}`), found `{}`",
in_elem, in_ty, arg_tys[2]);
return Ok(bx.insert_element(args[0].immediate(),
args[2].immediate(),
args[1].immediate()))
}
if name == "simd_extract" {
require!(ret_ty == in_elem,
"expected return type `{}` (element of input `{}`), found `{}`",
in_elem, in_ty, ret_ty);
return Ok(bx.extract_element(args[0].immediate(), args[1].immediate()))
}
if name == "simd_select" {
let m_elem_ty = in_elem;
let m_len = in_len;
require_simd!(arg_tys[1], "argument");
let v_len = arg_tys[1].simd_size(tcx);
require!(m_len == v_len,
"mismatched lengths: mask length `{}` != other vector length `{}`",
m_len, v_len
);
match m_elem_ty.sty {
ty::Int(_) => {},
_ => return_error!("mask element type is `{}`, expected `i_`", m_elem_ty)
}
// truncate the mask to a vector of i1s
let i1 = bx.type_i1();
let i1xn = bx.type_vector(i1, m_len as u64);
let m_i1s = bx.trunc(args[0].immediate(), i1xn);
return Ok(bx.select(m_i1s, args[1].immediate(), args[2].immediate()));
}
if name == "simd_bitmask" {
// The `fn simd_bitmask(vector) -> unsigned integer` intrinsic takes a
// vector mask and returns an unsigned integer containing the most
// significant bit (MSB) of each lane.
use rustc_target::abi::HasDataLayout;
// If the vector has less than 8 lanes, an u8 is returned with zeroed
// trailing bits.
let expected_int_bits = in_len.max(8);
match ret_ty.sty {
ty::Uint(i) if i.bit_width() == Some(expected_int_bits) => (),
_ => return_error!(
"bitmask `{}`, expected `u{}`",
ret_ty, expected_int_bits
),
}
// Integer vector <i{in_bitwidth} x in_len>:
let (i_xn, in_elem_bitwidth) = match in_elem.sty {
ty::Int(i) => (
args[0].immediate(),
i.bit_width().unwrap_or(bx.data_layout().pointer_size.bits() as _)
),
ty::Uint(i) => (
args[0].immediate(),
i.bit_width().unwrap_or(bx.data_layout().pointer_size.bits() as _)
),
_ => return_error!(
"vector argument `{}`'s element type `{}`, expected integer element type",
in_ty, in_elem
),
};
// Shift the MSB to the right by "in_elem_bitwidth - 1" into the first bit position.
let shift_indices = vec![
bx.cx.const_int(bx.type_ix(in_elem_bitwidth as _), (in_elem_bitwidth - 1) as _); in_len
];
let i_xn_msb = bx.lshr(i_xn, bx.const_vector(shift_indices.as_slice()));
// Truncate vector to an <i1 x N>
let i1xn = bx.trunc(i_xn_msb, bx.type_vector(bx.type_i1(), in_len as _));
// Bitcast <i1 x N> to iN:
let i_ = bx.bitcast(i1xn, bx.type_ix(in_len as _));
// Zero-extend iN to the bitmask type:
return Ok(bx.zext(i_, bx.type_ix(expected_int_bits as _)));
}
fn simd_simple_float_intrinsic(
name: &str,
in_elem: &::rustc::ty::TyS<'_>,
in_ty: &::rustc::ty::TyS<'_>,
in_len: usize,
bx: &mut Builder<'a, 'll, 'tcx>,
span: Span,
args: &[OperandRef<'tcx, &'ll Value>],
) -> Result<&'ll Value, ()> {
macro_rules! emit_error {
($msg: tt) => {
emit_error!($msg, )
};
($msg: tt, $($fmt: tt)*) => {
span_invalid_monomorphization_error(
bx.sess(), span,
&format!(concat!("invalid monomorphization of `{}` intrinsic: ", $msg),
name, $($fmt)*));
}
}
macro_rules! return_error {
($($fmt: tt)*) => {
{
emit_error!($($fmt)*);
return Err(());
}
}
}
let ety = match in_elem.sty {
ty::Float(f) if f.bit_width() == 32 => {
if in_len < 2 || in_len > 16 {
return_error!(
"unsupported floating-point vector `{}` with length `{}` \
out-of-range [2, 16]",
in_ty, in_len);
}
"f32"
},
ty::Float(f) if f.bit_width() == 64 => {
if in_len < 2 || in_len > 8 {
return_error!("unsupported floating-point vector `{}` with length `{}` \
out-of-range [2, 8]",
in_ty, in_len);
}
"f64"
},
ty::Float(f) => {
return_error!("unsupported element type `{}` of floating-point vector `{}`",
f, in_ty);
},
_ => {
return_error!("`{}` is not a floating-point type", in_ty);
}
};
let llvm_name = &format!("llvm.{0}.v{1}{2}", name, in_len, ety);
let intrinsic = bx.get_intrinsic(&llvm_name);
let c = bx.call(intrinsic,
&args.iter().map(|arg| arg.immediate()).collect::<Vec<_>>(),
None);
unsafe { llvm::LLVMRustSetHasUnsafeAlgebra(c) };
Ok(c)
}
match name {
"simd_fsqrt" => {
return simd_simple_float_intrinsic("sqrt", in_elem, in_ty, in_len, bx, span, args);
}
"simd_fsin" => {
return simd_simple_float_intrinsic("sin", in_elem, in_ty, in_len, bx, span, args);
}
"simd_fcos" => {
return simd_simple_float_intrinsic("cos", in_elem, in_ty, in_len, bx, span, args);
}
"simd_fabs" => {
return simd_simple_float_intrinsic("fabs", in_elem, in_ty, in_len, bx, span, args);
}
"simd_floor" => {
return simd_simple_float_intrinsic("floor", in_elem, in_ty, in_len, bx, span, args);
}
"simd_ceil" => {
return simd_simple_float_intrinsic("ceil", in_elem, in_ty, in_len, bx, span, args);
}
"simd_fexp" => {
return simd_simple_float_intrinsic("exp", in_elem, in_ty, in_len, bx, span, args);
}
"simd_fexp2" => {
return simd_simple_float_intrinsic("exp2", in_elem, in_ty, in_len, bx, span, args);
}
"simd_flog10" => {
return simd_simple_float_intrinsic("log10", in_elem, in_ty, in_len, bx, span, args);
}
"simd_flog2" => {
return simd_simple_float_intrinsic("log2", in_elem, in_ty, in_len, bx, span, args);
}
"simd_flog" => {
return simd_simple_float_intrinsic("log", in_elem, in_ty, in_len, bx, span, args);
}
"simd_fpowi" => {
return simd_simple_float_intrinsic("powi", in_elem, in_ty, in_len, bx, span, args);
}
"simd_fpow" => {
return simd_simple_float_intrinsic("pow", in_elem, in_ty, in_len, bx, span, args);
}
"simd_fma" => {
return simd_simple_float_intrinsic("fma", in_elem, in_ty, in_len, bx, span, args);
}
_ => { /* fallthrough */ }
}
// FIXME: use:
// https://github.com/llvm-mirror/llvm/blob/master/include/llvm/IR/Function.h#L182
// https://github.com/llvm-mirror/llvm/blob/master/include/llvm/IR/Intrinsics.h#L81
fn llvm_vector_str(elem_ty: Ty<'_>, vec_len: usize, no_pointers: usize) -> String {
let p0s: String = "p0".repeat(no_pointers);
match elem_ty.sty {
ty::Int(v) => format!("v{}{}i{}", vec_len, p0s, v.bit_width().unwrap()),
ty::Uint(v) => format!("v{}{}i{}", vec_len, p0s, v.bit_width().unwrap()),
ty::Float(v) => format!("v{}{}f{}", vec_len, p0s, v.bit_width()),
_ => unreachable!(),
}
}
fn llvm_vector_ty(cx: &CodegenCx<'ll, '_>, elem_ty: Ty<'_>, vec_len: usize,
mut no_pointers: usize) -> &'ll Type {
// FIXME: use cx.layout_of(ty).llvm_type() ?
let mut elem_ty = match elem_ty.sty {
ty::Int(v) => cx.type_int_from_ty( v),
ty::Uint(v) => cx.type_uint_from_ty( v),
ty::Float(v) => cx.type_float_from_ty( v),
_ => unreachable!(),
};
while no_pointers > 0 {
elem_ty = cx.type_ptr_to(elem_ty);
no_pointers -= 1;
}
cx.type_vector(elem_ty, vec_len as u64)
}
if name == "simd_gather" {
// simd_gather(values: <N x T>, pointers: <N x *_ T>,
// mask: <N x i{M}>) -> <N x T>
// * N: number of elements in the input vectors
// * T: type of the element to load
// * M: any integer width is supported, will be truncated to i1
// All types must be simd vector types
require_simd!(in_ty, "first");
require_simd!(arg_tys[1], "second");
require_simd!(arg_tys[2], "third");
require_simd!(ret_ty, "return");
// Of the same length:
require!(in_len == arg_tys[1].simd_size(tcx),
"expected {} argument with length {} (same as input type `{}`), \
found `{}` with length {}", "second", in_len, in_ty, arg_tys[1],
arg_tys[1].simd_size(tcx));
require!(in_len == arg_tys[2].simd_size(tcx),
"expected {} argument with length {} (same as input type `{}`), \
found `{}` with length {}", "third", in_len, in_ty, arg_tys[2],
arg_tys[2].simd_size(tcx));
// The return type must match the first argument type
require!(ret_ty == in_ty,
"expected return type `{}`, found `{}`",
in_ty, ret_ty);
// This counts how many pointers
fn ptr_count(t: Ty<'_>) -> usize {
match t.sty {
ty::RawPtr(p) => 1 + ptr_count(p.ty),
_ => 0,
}
}
// Non-ptr type
fn non_ptr(t: Ty<'_>) -> Ty<'_> {
match t.sty {
ty::RawPtr(p) => non_ptr(p.ty),
_ => t,
}
}
// The second argument must be a simd vector with an element type that's a pointer
// to the element type of the first argument
let (pointer_count, underlying_ty) = match arg_tys[1].simd_type(tcx).sty {
ty::RawPtr(p) if p.ty == in_elem => (ptr_count(arg_tys[1].simd_type(tcx)),
non_ptr(arg_tys[1].simd_type(tcx))),
_ => {
require!(false, "expected element type `{}` of second argument `{}` \
to be a pointer to the element type `{}` of the first \
argument `{}`, found `{}` != `*_ {}`",
arg_tys[1].simd_type(tcx), arg_tys[1], in_elem, in_ty,
arg_tys[1].simd_type(tcx), in_elem);
unreachable!();
}
};
assert!(pointer_count > 0);
assert_eq!(pointer_count - 1, ptr_count(arg_tys[0].simd_type(tcx)));
assert_eq!(underlying_ty, non_ptr(arg_tys[0].simd_type(tcx)));
// The element type of the third argument must be a signed integer type of any width:
match arg_tys[2].simd_type(tcx).sty {
ty::Int(_) => (),
_ => {
require!(false, "expected element type `{}` of third argument `{}` \
to be a signed integer type",
arg_tys[2].simd_type(tcx), arg_tys[2]);
}
}
// Alignment of T, must be a constant integer value:
let alignment_ty = bx.type_i32();
let alignment = bx.const_i32(bx.align_of(in_elem).bytes() as i32);
// Truncate the mask vector to a vector of i1s:
let (mask, mask_ty) = {
let i1 = bx.type_i1();
let i1xn = bx.type_vector(i1, in_len as u64);
(bx.trunc(args[2].immediate(), i1xn), i1xn)
};
// Type of the vector of pointers:
let llvm_pointer_vec_ty = llvm_vector_ty(bx, underlying_ty, in_len, pointer_count);
let llvm_pointer_vec_str = llvm_vector_str(underlying_ty, in_len, pointer_count);
// Type of the vector of elements:
let llvm_elem_vec_ty = llvm_vector_ty(bx, underlying_ty, in_len, pointer_count - 1);
let llvm_elem_vec_str = llvm_vector_str(underlying_ty, in_len, pointer_count - 1);
let llvm_intrinsic = format!("llvm.masked.gather.{}.{}",
llvm_elem_vec_str, llvm_pointer_vec_str);
let f = bx.declare_cfn(&llvm_intrinsic,
bx.type_func(&[
llvm_pointer_vec_ty,
alignment_ty,
mask_ty,
llvm_elem_vec_ty], llvm_elem_vec_ty));
llvm::SetUnnamedAddr(f, false);
let v = bx.call(f, &[args[1].immediate(), alignment, mask, args[0].immediate()],
None);
return Ok(v);
}
if name == "simd_scatter" {
// simd_scatter(values: <N x T>, pointers: <N x *mut T>,
// mask: <N x i{M}>) -> ()
// * N: number of elements in the input vectors
// * T: type of the element to load
// * M: any integer width is supported, will be truncated to i1
// All types must be simd vector types
require_simd!(in_ty, "first");
require_simd!(arg_tys[1], "second");
require_simd!(arg_tys[2], "third");
// Of the same length:
require!(in_len == arg_tys[1].simd_size(tcx),
"expected {} argument with length {} (same as input type `{}`), \
found `{}` with length {}", "second", in_len, in_ty, arg_tys[1],
arg_tys[1].simd_size(tcx));
require!(in_len == arg_tys[2].simd_size(tcx),
"expected {} argument with length {} (same as input type `{}`), \
found `{}` with length {}", "third", in_len, in_ty, arg_tys[2],
arg_tys[2].simd_size(tcx));
// This counts how many pointers
fn ptr_count(t: Ty<'_>) -> usize {
match t.sty {
ty::RawPtr(p) => 1 + ptr_count(p.ty),
_ => 0,
}
}
// Non-ptr type
fn non_ptr(t: Ty<'_>) -> Ty<'_> {
match t.sty {
ty::RawPtr(p) => non_ptr(p.ty),
_ => t,
}
}
// The second argument must be a simd vector with an element type that's a pointer
// to the element type of the first argument
let (pointer_count, underlying_ty) = match arg_tys[1].simd_type(tcx).sty {
ty::RawPtr(p) if p.ty == in_elem && p.mutbl == hir::MutMutable
=> (ptr_count(arg_tys[1].simd_type(tcx)),
non_ptr(arg_tys[1].simd_type(tcx))),
_ => {
require!(false, "expected element type `{}` of second argument `{}` \
to be a pointer to the element type `{}` of the first \
argument `{}`, found `{}` != `*mut {}`",
arg_tys[1].simd_type(tcx), arg_tys[1], in_elem, in_ty,
arg_tys[1].simd_type(tcx), in_elem);
unreachable!();
}
};
assert!(pointer_count > 0);
assert_eq!(pointer_count - 1, ptr_count(arg_tys[0].simd_type(tcx)));
assert_eq!(underlying_ty, non_ptr(arg_tys[0].simd_type(tcx)));
// The element type of the third argument must be a signed integer type of any width:
match arg_tys[2].simd_type(tcx).sty {
ty::Int(_) => (),
_ => {
require!(false, "expected element type `{}` of third argument `{}` \
to be a signed integer type",
arg_tys[2].simd_type(tcx), arg_tys[2]);
}
}
// Alignment of T, must be a constant integer value:
let alignment_ty = bx.type_i32();
let alignment = bx.const_i32(bx.align_of(in_elem).bytes() as i32);
// Truncate the mask vector to a vector of i1s:
let (mask, mask_ty) = {
let i1 = bx.type_i1();
let i1xn = bx.type_vector(i1, in_len as u64);
(bx.trunc(args[2].immediate(), i1xn), i1xn)
};
let ret_t = bx.type_void();
// Type of the vector of pointers:
let llvm_pointer_vec_ty = llvm_vector_ty(bx, underlying_ty, in_len, pointer_count);
let llvm_pointer_vec_str = llvm_vector_str(underlying_ty, in_len, pointer_count);
// Type of the vector of elements:
let llvm_elem_vec_ty = llvm_vector_ty(bx, underlying_ty, in_len, pointer_count - 1);
let llvm_elem_vec_str = llvm_vector_str(underlying_ty, in_len, pointer_count - 1);
let llvm_intrinsic = format!("llvm.masked.scatter.{}.{}",
llvm_elem_vec_str, llvm_pointer_vec_str);
let f = bx.declare_cfn(&llvm_intrinsic,
bx.type_func(&[llvm_elem_vec_ty,
llvm_pointer_vec_ty,
alignment_ty,
mask_ty], ret_t));
llvm::SetUnnamedAddr(f, false);
let v = bx.call(f, &[args[0].immediate(), args[1].immediate(), alignment, mask],
None);
return Ok(v);
}
macro_rules! arith_red {
($name:tt : $integer_reduce:ident, $float_reduce:ident, $ordered:expr) => {
if name == $name {
require!(ret_ty == in_elem,
"expected return type `{}` (element of input `{}`), found `{}`",
in_elem, in_ty, ret_ty);
return match in_elem.sty {
ty::Int(_) | ty::Uint(_) => {
let r = bx.$integer_reduce(args[0].immediate());
if $ordered {
// if overflow occurs, the result is the
// mathematical result modulo 2^n:
if name.contains("mul") {
Ok(bx.mul(args[1].immediate(), r))
} else {
Ok(bx.add(args[1].immediate(), r))
}
} else {
Ok(bx.$integer_reduce(args[0].immediate()))
}
},
ty::Float(f) => {
let acc = if $ordered {
// ordered arithmetic reductions take an accumulator
args[1].immediate()
} else {
// unordered arithmetic reductions use the identity accumulator
let identity_acc = if $name.contains("mul") { 1.0 } else { 0.0 };
match f.bit_width() {
32 => bx.const_real(bx.type_f32(), identity_acc),
64 => bx.const_real(bx.type_f64(), identity_acc),
v => {
return_error!(r#"
unsupported {} from `{}` with element `{}` of size `{}` to `{}`"#,
$name, in_ty, in_elem, v, ret_ty
)
}
}
};
Ok(bx.$float_reduce(acc, args[0].immediate()))
}
_ => {
return_error!(
"unsupported {} from `{}` with element `{}` to `{}`",
$name, in_ty, in_elem, ret_ty
)
},
}
}
}
}
arith_red!("simd_reduce_add_ordered": vector_reduce_add, vector_reduce_fadd, true);
arith_red!("simd_reduce_mul_ordered": vector_reduce_mul, vector_reduce_fmul, true);
arith_red!("simd_reduce_add_unordered": vector_reduce_add, vector_reduce_fadd_fast, false);
arith_red!("simd_reduce_mul_unordered": vector_reduce_mul, vector_reduce_fmul_fast, false);
macro_rules! minmax_red {
($name:tt: $int_red:ident, $float_red:ident) => {
if name == $name {
require!(ret_ty == in_elem,
"expected return type `{}` (element of input `{}`), found `{}`",
in_elem, in_ty, ret_ty);
return match in_elem.sty {
ty::Int(_i) => {
Ok(bx.$int_red(args[0].immediate(), true))
},
ty::Uint(_u) => {
Ok(bx.$int_red(args[0].immediate(), false))
},
ty::Float(_f) => {
Ok(bx.$float_red(args[0].immediate()))
}
_ => {
return_error!("unsupported {} from `{}` with element `{}` to `{}`",
$name, in_ty, in_elem, ret_ty)
},
}
}
}
}
minmax_red!("simd_reduce_min": vector_reduce_min, vector_reduce_fmin);
minmax_red!("simd_reduce_max": vector_reduce_max, vector_reduce_fmax);
minmax_red!("simd_reduce_min_nanless": vector_reduce_min, vector_reduce_fmin_fast);
minmax_red!("simd_reduce_max_nanless": vector_reduce_max, vector_reduce_fmax_fast);
macro_rules! bitwise_red {
($name:tt : $red:ident, $boolean:expr) => {
if name == $name {
let input = if !$boolean {
require!(ret_ty == in_elem,
"expected return type `{}` (element of input `{}`), found `{}`",
in_elem, in_ty, ret_ty);
args[0].immediate()
} else {
match in_elem.sty {
ty::Int(_) | ty::Uint(_) => {},
_ => {
return_error!("unsupported {} from `{}` with element `{}` to `{}`",
$name, in_ty, in_elem, ret_ty)
}
}
// boolean reductions operate on vectors of i1s:
let i1 = bx.type_i1();
let i1xn = bx.type_vector(i1, in_len as u64);
bx.trunc(args[0].immediate(), i1xn)
};
return match in_elem.sty {
ty::Int(_) | ty::Uint(_) => {
let r = bx.$red(input);
Ok(
if !$boolean {
r
} else {
bx.zext(r, bx.type_bool())
}
)
},
_ => {
return_error!("unsupported {} from `{}` with element `{}` to `{}`",
$name, in_ty, in_elem, ret_ty)
},
}
}
}
}
bitwise_red!("simd_reduce_and": vector_reduce_and, false);
bitwise_red!("simd_reduce_or": vector_reduce_or, false);
bitwise_red!("simd_reduce_xor": vector_reduce_xor, false);
bitwise_red!("simd_reduce_all": vector_reduce_and, true);
bitwise_red!("simd_reduce_any": vector_reduce_or, true);
if name == "simd_cast" {
require_simd!(ret_ty, "return");
let out_len = ret_ty.simd_size(tcx);
require!(in_len == out_len,
"expected return type with length {} (same as input type `{}`), \
found `{}` with length {}",
in_len, in_ty,
ret_ty, out_len);
// casting cares about nominal type, not just structural type
let out_elem = ret_ty.simd_type(tcx);
if in_elem == out_elem { return Ok(args[0].immediate()); }
enum Style { Float, Int(/* is signed? */ bool), Unsupported }
let (in_style, in_width) = match in_elem.sty {
// vectors of pointer-sized integers should've been
// disallowed before here, so this unwrap is safe.
ty::Int(i) => (Style::Int(true), i.bit_width().unwrap()),
ty::Uint(u) => (Style::Int(false), u.bit_width().unwrap()),
ty::Float(f) => (Style::Float, f.bit_width()),
_ => (Style::Unsupported, 0)
};
let (out_style, out_width) = match out_elem.sty {
ty::Int(i) => (Style::Int(true), i.bit_width().unwrap()),
ty::Uint(u) => (Style::Int(false), u.bit_width().unwrap()),
ty::Float(f) => (Style::Float, f.bit_width()),
_ => (Style::Unsupported, 0)
};
match (in_style, out_style) {
(Style::Int(in_is_signed), Style::Int(_)) => {
return Ok(match in_width.cmp(&out_width) {
Ordering::Greater => bx.trunc(args[0].immediate(), llret_ty),
Ordering::Equal => args[0].immediate(),
Ordering::Less => if in_is_signed {
bx.sext(args[0].immediate(), llret_ty)
} else {
bx.zext(args[0].immediate(), llret_ty)
}
})
}
(Style::Int(in_is_signed), Style::Float) => {
return Ok(if in_is_signed {
bx.sitofp(args[0].immediate(), llret_ty)
} else {
bx.uitofp(args[0].immediate(), llret_ty)
})
}
(Style::Float, Style::Int(out_is_signed)) => {
return Ok(if out_is_signed {
bx.fptosi(args[0].immediate(), llret_ty)
} else {
bx.fptoui(args[0].immediate(), llret_ty)
})
}
(Style::Float, Style::Float) => {
return Ok(match in_width.cmp(&out_width) {
Ordering::Greater => bx.fptrunc(args[0].immediate(), llret_ty),
Ordering::Equal => args[0].immediate(),
Ordering::Less => bx.fpext(args[0].immediate(), llret_ty)
})
}
_ => {/* Unsupported. Fallthrough. */}
}
require!(false,
"unsupported cast from `{}` with element `{}` to `{}` with element `{}`",
in_ty, in_elem,
ret_ty, out_elem);
}
macro_rules! arith {
($($name: ident: $($($p: ident),* => $call: ident),*;)*) => {
$(if name == stringify!($name) {
match in_elem.sty {
$($(ty::$p(_))|* => {
return Ok(bx.$call(args[0].immediate(), args[1].immediate()))
})*
_ => {},
}
require!(false,
"unsupported operation on `{}` with element `{}`",
in_ty,
in_elem)
})*
}
}
arith! {
simd_add: Uint, Int => add, Float => fadd;
simd_sub: Uint, Int => sub, Float => fsub;
simd_mul: Uint, Int => mul, Float => fmul;
simd_div: Uint => udiv, Int => sdiv, Float => fdiv;
simd_rem: Uint => urem, Int => srem, Float => frem;
simd_shl: Uint, Int => shl;
simd_shr: Uint => lshr, Int => ashr;
simd_and: Uint, Int => and;
simd_or: Uint, Int => or;
simd_xor: Uint, Int => xor;
simd_fmax: Float => maxnum;
simd_fmin: Float => minnum;
}
if name == "simd_saturating_add" || name == "simd_saturating_sub" {
let lhs = args[0].immediate();
let rhs = args[1].immediate();
let is_add = name == "simd_saturating_add";
let ptr_bits = bx.tcx().data_layout.pointer_size.bits() as _;
let (signed, elem_width, elem_ty) = match in_elem.sty {
ty::Int(i) =>
(
true,
i.bit_width().unwrap_or(ptr_bits),
bx.cx.type_int_from_ty(i)
),
ty::Uint(i) =>
(
false,
i.bit_width().unwrap_or(ptr_bits),
bx.cx.type_uint_from_ty(i)
),
_ => {
return_error!(
"expected element type `{}` of vector type `{}` \
to be a signed or unsigned integer type",
arg_tys[0].simd_type(tcx), arg_tys[0]
);
}
};
let llvm_intrinsic = &format!(
"llvm.{}{}.sat.v{}i{}",
if signed { 's' } else { 'u' },
if is_add { "add" } else { "sub" },
in_len, elem_width
);
let vec_ty = bx.cx.type_vector(elem_ty, in_len as u64);
let f = bx.declare_cfn(
&llvm_intrinsic,
bx.type_func(&[vec_ty, vec_ty], vec_ty)
);
llvm::SetUnnamedAddr(f, false);
let v = bx.call(f, &[lhs, rhs], None);
return Ok(v);
}
span_bug!(span, "unknown SIMD intrinsic");
}
// Returns the width of an int Ty, and if it's signed or not
// Returns None if the type is not an integer
// FIXME: there’s multiple of this functions, investigate using some of the already existing
// stuffs.
fn int_type_width_signed(ty: Ty<'_>, cx: &CodegenCx<'_, '_>) -> Option<(u64, bool)> {
match ty.sty {
ty::Int(t) => Some((match t {
ast::IntTy::Isize => cx.tcx.sess.target.isize_ty.bit_width().unwrap() as u64,
ast::IntTy::I8 => 8,
ast::IntTy::I16 => 16,
ast::IntTy::I32 => 32,
ast::IntTy::I64 => 64,
ast::IntTy::I128 => 128,
}, true)),
ty::Uint(t) => Some((match t {
ast::UintTy::Usize => cx.tcx.sess.target.usize_ty.bit_width().unwrap() as u64,
ast::UintTy::U8 => 8,
ast::UintTy::U16 => 16,
ast::UintTy::U32 => 32,
ast::UintTy::U64 => 64,
ast::UintTy::U128 => 128,
}, false)),
_ => None,
}
}
// Returns the width of a float Ty
// Returns None if the type is not a float
fn float_type_width(ty: Ty<'_>) -> Option<u64> {
match ty.sty {
ty::Float(t) => Some(t.bit_width() as u64),
_ => None,
}
}