blob: 9df8e28254cf5bdebf3402793101eda3371b4839 [file] [log] [blame]
//! This module defines the `DepNode` type which the compiler uses to represent
//! nodes in the dependency graph. A `DepNode` consists of a `DepKind` (which
//! specifies the kind of thing it represents, like a piece of HIR, MIR, etc)
//! and a `Fingerprint`, a 128 bit hash value the exact meaning of which
//! depends on the node's `DepKind`. Together, the kind and the fingerprint
//! fully identify a dependency node, even across multiple compilation sessions.
//! In other words, the value of the fingerprint does not depend on anything
//! that is specific to a given compilation session, like an unpredictable
//! interning key (e.g., NodeId, DefId, Symbol) or the numeric value of a
//! pointer. The concept behind this could be compared to how git commit hashes
//! uniquely identify a given commit and has a few advantages:
//!
//! * A `DepNode` can simply be serialized to disk and loaded in another session
//! without the need to do any "rebasing (like we have to do for Spans and
//! NodeIds) or "retracing" like we had to do for `DefId` in earlier
//! implementations of the dependency graph.
//! * A `Fingerprint` is just a bunch of bits, which allows `DepNode` to
//! implement `Copy`, `Sync`, `Send`, `Freeze`, etc.
//! * Since we just have a bit pattern, `DepNode` can be mapped from disk into
//! memory without any post-processing (e.g., "abomination-style" pointer
//! reconstruction).
//! * Because a `DepNode` is self-contained, we can instantiate `DepNodes` that
//! refer to things that do not exist anymore. In previous implementations
//! `DepNode` contained a `DefId`. A `DepNode` referring to something that
//! had been removed between the previous and the current compilation session
//! could not be instantiated because the current compilation session
//! contained no `DefId` for thing that had been removed.
//!
//! `DepNode` definition happens in the `define_dep_nodes!()` macro. This macro
//! defines the `DepKind` enum and a corresponding `DepConstructor` enum. The
//! `DepConstructor` enum links a `DepKind` to the parameters that are needed at
//! runtime in order to construct a valid `DepNode` fingerprint.
//!
//! Because the macro sees what parameters a given `DepKind` requires, it can
//! "infer" some properties for each kind of `DepNode`:
//!
//! * Whether a `DepNode` of a given kind has any parameters at all. Some
//! `DepNode`s, like `Krate`, represent global concepts with only one value.
//! * Whether it is possible, in principle, to reconstruct a query key from a
//! given `DepNode`. Many `DepKind`s only require a single `DefId` parameter,
//! in which case it is possible to map the node's fingerprint back to the
//! `DefId` it was computed from. In other cases, too much information gets
//! lost during fingerprint computation.
//!
//! The `DepConstructor` enum, together with `DepNode::new()` ensures that only
//! valid `DepNode` instances can be constructed. For example, the API does not
//! allow for constructing parameterless `DepNode`s with anything other
//! than a zeroed out fingerprint. More generally speaking, it relieves the
//! user of the `DepNode` API of having to know how to compute the expected
//! fingerprint for a given set of node parameters.
use crate::hir::map::DefPathHash;
use crate::ich::{Fingerprint, StableHashingContext};
use crate::mir;
use crate::mir::interpret::{GlobalId, LitToConstInput};
use crate::traits;
use crate::traits::query::{
CanonicalPredicateGoal, CanonicalProjectionGoal, CanonicalTyGoal,
CanonicalTypeOpAscribeUserTypeGoal, CanonicalTypeOpEqGoal, CanonicalTypeOpNormalizeGoal,
CanonicalTypeOpProvePredicateGoal, CanonicalTypeOpSubtypeGoal,
};
use crate::ty::subst::SubstsRef;
use crate::ty::{self, ParamEnvAnd, Ty, TyCtxt};
use rustc_data_structures::stable_hasher::{HashStable, StableHasher};
use rustc_hir::def_id::{CrateNum, DefId, DefIndex, CRATE_DEF_INDEX};
use rustc_hir::HirId;
use rustc_span::symbol::Symbol;
use std::fmt;
use std::hash::Hash;
// erase!() just makes tokens go away. It's used to specify which macro argument
// is repeated (i.e., which sub-expression of the macro we are in) but don't need
// to actually use any of the arguments.
macro_rules! erase {
($x:tt) => {{}};
}
macro_rules! replace {
($x:tt with $($y:tt)*) => ($($y)*)
}
macro_rules! is_anon_attr {
(anon) => {
true
};
($attr:ident) => {
false
};
}
macro_rules! is_eval_always_attr {
(eval_always) => {
true
};
($attr:ident) => {
false
};
}
macro_rules! contains_anon_attr {
($($attr:ident),*) => ({$(is_anon_attr!($attr) | )* false});
}
macro_rules! contains_eval_always_attr {
($($attr:ident),*) => ({$(is_eval_always_attr!($attr) | )* false});
}
macro_rules! define_dep_nodes {
(<$tcx:tt>
$(
[$($attr:ident),* ]
$variant:ident $(( $tuple_arg_ty:ty $(,)? ))*
$({ $($struct_arg_name:ident : $struct_arg_ty:ty),* })*
,)*
) => (
#[derive(Clone, Copy, Debug, PartialEq, Eq, PartialOrd, Ord, Hash,
RustcEncodable, RustcDecodable)]
pub enum DepKind {
$($variant),*
}
impl DepKind {
#[allow(unreachable_code)]
pub fn can_reconstruct_query_key<$tcx>(&self) -> bool {
match *self {
$(
DepKind :: $variant => {
if contains_anon_attr!($($attr),*) {
return false;
}
// tuple args
$({
return <$tuple_arg_ty as DepNodeParams>
::CAN_RECONSTRUCT_QUERY_KEY;
})*
// struct args
$({
return <( $($struct_arg_ty,)* ) as DepNodeParams>
::CAN_RECONSTRUCT_QUERY_KEY;
})*
true
}
)*
}
}
pub fn is_anon(&self) -> bool {
match *self {
$(
DepKind :: $variant => { contains_anon_attr!($($attr),*) }
)*
}
}
pub fn is_eval_always(&self) -> bool {
match *self {
$(
DepKind :: $variant => { contains_eval_always_attr!($($attr), *) }
)*
}
}
#[allow(unreachable_code)]
pub fn has_params(&self) -> bool {
match *self {
$(
DepKind :: $variant => {
// tuple args
$({
erase!($tuple_arg_ty);
return true;
})*
// struct args
$({
$(erase!($struct_arg_name);)*
return true;
})*
false
}
)*
}
}
}
pub enum DepConstructor<$tcx> {
$(
$variant $(( $tuple_arg_ty ))*
$({ $($struct_arg_name : $struct_arg_ty),* })*
),*
}
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash,
RustcEncodable, RustcDecodable)]
pub struct DepNode {
pub kind: DepKind,
pub hash: Fingerprint,
}
impl DepNode {
#[allow(unreachable_code, non_snake_case)]
pub fn new<'tcx>(tcx: TyCtxt<'tcx>,
dep: DepConstructor<'tcx>)
-> DepNode
{
match dep {
$(
DepConstructor :: $variant $(( replace!(($tuple_arg_ty) with arg) ))*
$({ $($struct_arg_name),* })*
=>
{
// tuple args
$({
erase!($tuple_arg_ty);
let hash = DepNodeParams::to_fingerprint(&arg, tcx);
let dep_node = DepNode {
kind: DepKind::$variant,
hash
};
#[cfg(debug_assertions)]
{
if !dep_node.kind.can_reconstruct_query_key() &&
(tcx.sess.opts.debugging_opts.incremental_info ||
tcx.sess.opts.debugging_opts.query_dep_graph)
{
tcx.dep_graph.register_dep_node_debug_str(dep_node, || {
arg.to_debug_str(tcx)
});
}
}
return dep_node;
})*
// struct args
$({
let tupled_args = ( $($struct_arg_name,)* );
let hash = DepNodeParams::to_fingerprint(&tupled_args,
tcx);
let dep_node = DepNode {
kind: DepKind::$variant,
hash
};
#[cfg(debug_assertions)]
{
if !dep_node.kind.can_reconstruct_query_key() &&
(tcx.sess.opts.debugging_opts.incremental_info ||
tcx.sess.opts.debugging_opts.query_dep_graph)
{
tcx.dep_graph.register_dep_node_debug_str(dep_node, || {
tupled_args.to_debug_str(tcx)
});
}
}
return dep_node;
})*
DepNode {
kind: DepKind::$variant,
hash: Fingerprint::ZERO,
}
}
)*
}
}
/// Construct a DepNode from the given DepKind and DefPathHash. This
/// method will assert that the given DepKind actually requires a
/// single DefId/DefPathHash parameter.
pub fn from_def_path_hash(kind: DepKind,
def_path_hash: DefPathHash)
-> DepNode {
debug_assert!(kind.can_reconstruct_query_key() && kind.has_params());
DepNode {
kind,
hash: def_path_hash.0,
}
}
/// Creates a new, parameterless DepNode. This method will assert
/// that the DepNode corresponding to the given DepKind actually
/// does not require any parameters.
pub fn new_no_params(kind: DepKind) -> DepNode {
debug_assert!(!kind.has_params());
DepNode {
kind,
hash: Fingerprint::ZERO,
}
}
/// Extracts the DefId corresponding to this DepNode. This will work
/// if two conditions are met:
///
/// 1. The Fingerprint of the DepNode actually is a DefPathHash, and
/// 2. the item that the DefPath refers to exists in the current tcx.
///
/// Condition (1) is determined by the DepKind variant of the
/// DepNode. Condition (2) might not be fulfilled if a DepNode
/// refers to something from the previous compilation session that
/// has been removed.
pub fn extract_def_id(&self, tcx: TyCtxt<'_>) -> Option<DefId> {
if self.kind.can_reconstruct_query_key() {
let def_path_hash = DefPathHash(self.hash);
tcx.def_path_hash_to_def_id.as_ref()?
.get(&def_path_hash).cloned()
} else {
None
}
}
/// Used in testing
pub fn from_label_string(label: &str,
def_path_hash: DefPathHash)
-> Result<DepNode, ()> {
let kind = match label {
$(
stringify!($variant) => DepKind::$variant,
)*
_ => return Err(()),
};
if !kind.can_reconstruct_query_key() {
return Err(());
}
if kind.has_params() {
Ok(def_path_hash.to_dep_node(kind))
} else {
Ok(DepNode::new_no_params(kind))
}
}
/// Used in testing
pub fn has_label_string(label: &str) -> bool {
match label {
$(
stringify!($variant) => true,
)*
_ => false,
}
}
}
/// Contains variant => str representations for constructing
/// DepNode groups for tests.
#[allow(dead_code, non_upper_case_globals)]
pub mod label_strs {
$(
pub const $variant: &str = stringify!($variant);
)*
}
);
}
impl fmt::Debug for DepNode {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "{:?}", self.kind)?;
if !self.kind.has_params() && !self.kind.is_anon() {
return Ok(());
}
write!(f, "(")?;
crate::ty::tls::with_opt(|opt_tcx| {
if let Some(tcx) = opt_tcx {
if let Some(def_id) = self.extract_def_id(tcx) {
write!(f, "{}", tcx.def_path_debug_str(def_id))?;
} else if let Some(ref s) = tcx.dep_graph.dep_node_debug_str(*self) {
write!(f, "{}", s)?;
} else {
write!(f, "{}", self.hash)?;
}
} else {
write!(f, "{}", self.hash)?;
}
Ok(())
})?;
write!(f, ")")
}
}
impl DefPathHash {
pub fn to_dep_node(self, kind: DepKind) -> DepNode {
DepNode::from_def_path_hash(kind, self)
}
}
rustc_dep_node_append!([define_dep_nodes!][ <'tcx>
// We use this for most things when incr. comp. is turned off.
[] Null,
// Represents the `Krate` as a whole (the `hir::Krate` value) (as
// distinct from the krate module). This is basically a hash of
// the entire krate, so if you read from `Krate` (e.g., by calling
// `tcx.hir().krate()`), we will have to assume that any change
// means that you need to be recompiled. This is because the
// `Krate` value gives you access to all other items. To avoid
// this fate, do not call `tcx.hir().krate()`; instead, prefer
// wrappers like `tcx.visit_all_items_in_krate()`. If there is no
// suitable wrapper, you can use `tcx.dep_graph.ignore()` to gain
// access to the krate, but you must remember to add suitable
// edges yourself for the individual items that you read.
[eval_always] Krate,
// Represents the body of a function or method. The def-id is that of the
// function/method.
[eval_always] HirBody(DefId),
// Represents the HIR node with the given node-id
[eval_always] Hir(DefId),
// Represents metadata from an extern crate.
[eval_always] CrateMetadata(CrateNum),
[eval_always] AllLocalTraitImpls,
[anon] TraitSelect,
[] CompileCodegenUnit(Symbol),
[eval_always] Analysis(CrateNum),
]);
pub trait RecoverKey<'tcx>: Sized {
fn recover(tcx: TyCtxt<'tcx>, dep_node: &DepNode) -> Option<Self>;
}
impl RecoverKey<'tcx> for CrateNum {
fn recover(tcx: TyCtxt<'tcx>, dep_node: &DepNode) -> Option<Self> {
dep_node.extract_def_id(tcx).map(|id| id.krate)
}
}
impl RecoverKey<'tcx> for DefId {
fn recover(tcx: TyCtxt<'tcx>, dep_node: &DepNode) -> Option<Self> {
dep_node.extract_def_id(tcx)
}
}
impl RecoverKey<'tcx> for DefIndex {
fn recover(tcx: TyCtxt<'tcx>, dep_node: &DepNode) -> Option<Self> {
dep_node.extract_def_id(tcx).map(|id| id.index)
}
}
trait DepNodeParams<'tcx>: fmt::Debug {
const CAN_RECONSTRUCT_QUERY_KEY: bool;
/// This method turns the parameters of a DepNodeConstructor into an opaque
/// Fingerprint to be used in DepNode.
/// Not all DepNodeParams support being turned into a Fingerprint (they
/// don't need to if the corresponding DepNode is anonymous).
fn to_fingerprint(&self, _: TyCtxt<'tcx>) -> Fingerprint {
panic!("Not implemented. Accidentally called on anonymous node?")
}
fn to_debug_str(&self, _: TyCtxt<'tcx>) -> String {
format!("{:?}", self)
}
}
impl<'tcx, T> DepNodeParams<'tcx> for T
where
T: HashStable<StableHashingContext<'tcx>> + fmt::Debug,
{
default const CAN_RECONSTRUCT_QUERY_KEY: bool = false;
default fn to_fingerprint(&self, tcx: TyCtxt<'tcx>) -> Fingerprint {
let mut hcx = tcx.create_stable_hashing_context();
let mut hasher = StableHasher::new();
self.hash_stable(&mut hcx, &mut hasher);
hasher.finish()
}
default fn to_debug_str(&self, _: TyCtxt<'tcx>) -> String {
format!("{:?}", *self)
}
}
impl<'tcx> DepNodeParams<'tcx> for DefId {
const CAN_RECONSTRUCT_QUERY_KEY: bool = true;
fn to_fingerprint(&self, tcx: TyCtxt<'_>) -> Fingerprint {
tcx.def_path_hash(*self).0
}
fn to_debug_str(&self, tcx: TyCtxt<'tcx>) -> String {
tcx.def_path_str(*self)
}
}
impl<'tcx> DepNodeParams<'tcx> for DefIndex {
const CAN_RECONSTRUCT_QUERY_KEY: bool = true;
fn to_fingerprint(&self, tcx: TyCtxt<'_>) -> Fingerprint {
tcx.hir().definitions().def_path_hash(*self).0
}
fn to_debug_str(&self, tcx: TyCtxt<'tcx>) -> String {
tcx.def_path_str(DefId::local(*self))
}
}
impl<'tcx> DepNodeParams<'tcx> for CrateNum {
const CAN_RECONSTRUCT_QUERY_KEY: bool = true;
fn to_fingerprint(&self, tcx: TyCtxt<'_>) -> Fingerprint {
let def_id = DefId { krate: *self, index: CRATE_DEF_INDEX };
tcx.def_path_hash(def_id).0
}
fn to_debug_str(&self, tcx: TyCtxt<'tcx>) -> String {
tcx.crate_name(*self).to_string()
}
}
impl<'tcx> DepNodeParams<'tcx> for (DefId, DefId) {
const CAN_RECONSTRUCT_QUERY_KEY: bool = false;
// We actually would not need to specialize the implementation of this
// method but it's faster to combine the hashes than to instantiate a full
// hashing context and stable-hashing state.
fn to_fingerprint(&self, tcx: TyCtxt<'_>) -> Fingerprint {
let (def_id_0, def_id_1) = *self;
let def_path_hash_0 = tcx.def_path_hash(def_id_0);
let def_path_hash_1 = tcx.def_path_hash(def_id_1);
def_path_hash_0.0.combine(def_path_hash_1.0)
}
fn to_debug_str(&self, tcx: TyCtxt<'tcx>) -> String {
let (def_id_0, def_id_1) = *self;
format!("({}, {})", tcx.def_path_debug_str(def_id_0), tcx.def_path_debug_str(def_id_1))
}
}
impl<'tcx> DepNodeParams<'tcx> for HirId {
const CAN_RECONSTRUCT_QUERY_KEY: bool = false;
// We actually would not need to specialize the implementation of this
// method but it's faster to combine the hashes than to instantiate a full
// hashing context and stable-hashing state.
fn to_fingerprint(&self, tcx: TyCtxt<'_>) -> Fingerprint {
let HirId { owner, local_id } = *self;
let def_path_hash = tcx.def_path_hash(DefId::local(owner));
let local_id = Fingerprint::from_smaller_hash(local_id.as_u32().into());
def_path_hash.0.combine(local_id)
}
}
/// A "work product" corresponds to a `.o` (or other) file that we
/// save in between runs. These IDs do not have a `DefId` but rather
/// some independent path or string that persists between runs without
/// the need to be mapped or unmapped. (This ensures we can serialize
/// them even in the absence of a tcx.)
#[derive(
Clone,
Copy,
Debug,
PartialEq,
Eq,
PartialOrd,
Ord,
Hash,
RustcEncodable,
RustcDecodable,
HashStable
)]
pub struct WorkProductId {
hash: Fingerprint,
}
impl WorkProductId {
pub fn from_cgu_name(cgu_name: &str) -> WorkProductId {
let mut hasher = StableHasher::new();
cgu_name.len().hash(&mut hasher);
cgu_name.hash(&mut hasher);
WorkProductId { hash: hasher.finish() }
}
pub fn from_fingerprint(fingerprint: Fingerprint) -> WorkProductId {
WorkProductId { hash: fingerprint }
}
}