blob: eac3c107d22839fab2af2728d5dcded36d369018 [file] [log] [blame]
use crate::convert::TryFrom;
use crate::mem;
use crate::ops::{self, Add, Sub, Try};
use crate::usize;
use super::{FusedIterator, TrustedLen};
/// Objects that can be stepped over in both directions.
///
/// The `steps_between` function provides a way to efficiently compare
/// two `Step` objects.
#[unstable(
feature = "step_trait",
reason = "likely to be replaced by finer-grained traits",
issue = "42168"
)]
pub trait Step: Clone + PartialOrd + Sized {
/// Returns the number of steps between two step objects. The count is
/// inclusive of `start` and exclusive of `end`.
///
/// Returns `None` if it is not possible to calculate `steps_between`
/// without overflow.
fn steps_between(start: &Self, end: &Self) -> Option<usize>;
/// Replaces this step with `1`, returning a clone of itself.
///
/// The output of this method should always be greater than the output of replace_zero.
fn replace_one(&mut self) -> Self;
/// Replaces this step with `0`, returning a clone of itself.
///
/// The output of this method should always be less than the output of replace_one.
fn replace_zero(&mut self) -> Self;
/// Adds one to this step, returning the result.
fn add_one(&self) -> Self;
/// Subtracts one to this step, returning the result.
fn sub_one(&self) -> Self;
/// Adds a `usize`, returning `None` on overflow.
fn add_usize(&self, n: usize) -> Option<Self>;
/// Subtracts a `usize`, returning `None` on underflow.
fn sub_usize(&self, n: usize) -> Option<Self> {
// this default implementation makes the addition of `sub_usize` a non-breaking change
let _ = n;
unimplemented!()
}
}
// These are still macro-generated because the integer literals resolve to different types.
macro_rules! step_identical_methods {
() => {
#[inline]
fn replace_one(&mut self) -> Self {
mem::replace(self, 1)
}
#[inline]
fn replace_zero(&mut self) -> Self {
mem::replace(self, 0)
}
#[inline]
fn add_one(&self) -> Self {
Add::add(*self, 1)
}
#[inline]
fn sub_one(&self) -> Self {
Sub::sub(*self, 1)
}
}
}
macro_rules! step_impl_unsigned {
($($t:ty)*) => ($(
#[unstable(feature = "step_trait",
reason = "likely to be replaced by finer-grained traits",
issue = "42168")]
impl Step for $t {
#[inline]
fn steps_between(start: &$t, end: &$t) -> Option<usize> {
if *start < *end {
usize::try_from(*end - *start).ok()
} else {
Some(0)
}
}
#[inline]
#[allow(unreachable_patterns)]
fn add_usize(&self, n: usize) -> Option<Self> {
match <$t>::try_from(n) {
Ok(n_as_t) => self.checked_add(n_as_t),
Err(_) => None,
}
}
#[inline]
#[allow(unreachable_patterns)]
fn sub_usize(&self, n: usize) -> Option<Self> {
match <$t>::try_from(n) {
Ok(n_as_t) => self.checked_sub(n_as_t),
Err(_) => None,
}
}
step_identical_methods!();
}
)*)
}
macro_rules! step_impl_signed {
($( [$t:ty : $unsigned:ty] )*) => ($(
#[unstable(feature = "step_trait",
reason = "likely to be replaced by finer-grained traits",
issue = "42168")]
impl Step for $t {
#[inline]
fn steps_between(start: &$t, end: &$t) -> Option<usize> {
if *start < *end {
// Use .wrapping_sub and cast to unsigned to compute the
// difference that may not fit inside the range of $t.
usize::try_from(end.wrapping_sub(*start) as $unsigned).ok()
} else {
Some(0)
}
}
#[inline]
#[allow(unreachable_patterns)]
fn add_usize(&self, n: usize) -> Option<Self> {
match <$unsigned>::try_from(n) {
Ok(n_as_unsigned) => {
// Wrapping in unsigned space handles cases like
// `-120_i8.add_usize(200) == Some(80_i8)`,
// even though 200_usize is out of range for i8.
let wrapped = (*self as $unsigned).wrapping_add(n_as_unsigned) as $t;
if wrapped >= *self {
Some(wrapped)
} else {
None // Addition overflowed
}
}
Err(_) => None,
}
}
#[inline]
#[allow(unreachable_patterns)]
fn sub_usize(&self, n: usize) -> Option<Self> {
match <$unsigned>::try_from(n) {
Ok(n_as_unsigned) => {
// Wrapping in unsigned space handles cases like
// `80_i8.sub_usize(200) == Some(-120_i8)`,
// even though 200_usize is out of range for i8.
let wrapped = (*self as $unsigned).wrapping_sub(n_as_unsigned) as $t;
if wrapped <= *self {
Some(wrapped)
} else {
None // Subtraction underflowed
}
}
Err(_) => None,
}
}
step_identical_methods!();
}
)*)
}
step_impl_unsigned!(usize u8 u16 u32 u64 u128);
step_impl_signed!([isize: usize][i8: u8][i16: u16]);
step_impl_signed!([i32: u32][i64: u64][i128: u128]);
macro_rules! range_exact_iter_impl {
($($t:ty)*) => ($(
#[stable(feature = "rust1", since = "1.0.0")]
impl ExactSizeIterator for ops::Range<$t> { }
)*)
}
macro_rules! range_incl_exact_iter_impl {
($($t:ty)*) => ($(
#[stable(feature = "inclusive_range", since = "1.26.0")]
impl ExactSizeIterator for ops::RangeInclusive<$t> { }
)*)
}
macro_rules! range_trusted_len_impl {
($($t:ty)*) => ($(
#[unstable(feature = "trusted_len", issue = "37572")]
unsafe impl TrustedLen for ops::Range<$t> { }
)*)
}
macro_rules! range_incl_trusted_len_impl {
($($t:ty)*) => ($(
#[unstable(feature = "trusted_len", issue = "37572")]
unsafe impl TrustedLen for ops::RangeInclusive<$t> { }
)*)
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<A: Step> Iterator for ops::Range<A> {
type Item = A;
#[inline]
fn next(&mut self) -> Option<A> {
if self.start < self.end {
// We check for overflow here, even though it can't actually
// happen. Adding this check does however help llvm vectorize loops
// for some ranges that don't get vectorized otherwise,
// and this won't actually result in an extra check in an optimized build.
if let Some(mut n) = self.start.add_usize(1) {
mem::swap(&mut n, &mut self.start);
Some(n)
} else {
None
}
} else {
None
}
}
#[inline]
fn size_hint(&self) -> (usize, Option<usize>) {
match Step::steps_between(&self.start, &self.end) {
Some(hint) => (hint, Some(hint)),
None => (usize::MAX, None),
}
}
#[inline]
fn nth(&mut self, n: usize) -> Option<A> {
if let Some(plus_n) = self.start.add_usize(n) {
if plus_n < self.end {
self.start = plus_n.add_one();
return Some(plus_n);
}
}
self.start = self.end.clone();
None
}
#[inline]
fn last(mut self) -> Option<A> {
self.next_back()
}
#[inline]
fn min(mut self) -> Option<A> {
self.next()
}
#[inline]
fn max(mut self) -> Option<A> {
self.next_back()
}
}
// These macros generate `ExactSizeIterator` impls for various range types.
// Range<{u,i}64> and RangeInclusive<{u,i}{32,64,size}> are excluded
// because they cannot guarantee having a length <= usize::MAX, which is
// required by ExactSizeIterator.
range_exact_iter_impl!(usize u8 u16 u32 isize i8 i16 i32);
range_incl_exact_iter_impl!(u8 u16 i8 i16);
// These macros generate `TrustedLen` impls.
//
// They need to guarantee that .size_hint() is either exact, or that
// the upper bound is None when it does not fit the type limits.
range_trusted_len_impl!(usize isize u8 i8 u16 i16 u32 i32 u64 i64 u128 i128);
range_incl_trusted_len_impl!(usize isize u8 i8 u16 i16 u32 i32 u64 i64 u128 i128);
#[stable(feature = "rust1", since = "1.0.0")]
impl<A: Step> DoubleEndedIterator for ops::Range<A> {
#[inline]
fn next_back(&mut self) -> Option<A> {
if self.start < self.end {
self.end = self.end.sub_one();
Some(self.end.clone())
} else {
None
}
}
#[inline]
fn nth_back(&mut self, n: usize) -> Option<A> {
if let Some(minus_n) = self.end.sub_usize(n) {
if minus_n > self.start {
self.end = minus_n.sub_one();
return Some(self.end.clone());
}
}
self.end = self.start.clone();
None
}
}
#[stable(feature = "fused", since = "1.26.0")]
impl<A: Step> FusedIterator for ops::Range<A> {}
#[stable(feature = "rust1", since = "1.0.0")]
impl<A: Step> Iterator for ops::RangeFrom<A> {
type Item = A;
#[inline]
fn next(&mut self) -> Option<A> {
let mut n = self.start.add_one();
mem::swap(&mut n, &mut self.start);
Some(n)
}
#[inline]
fn size_hint(&self) -> (usize, Option<usize>) {
(usize::MAX, None)
}
#[inline]
fn nth(&mut self, n: usize) -> Option<A> {
let plus_n = self.start.add_usize(n).expect("overflow in RangeFrom::nth");
self.start = plus_n.add_one();
Some(plus_n)
}
}
#[stable(feature = "fused", since = "1.26.0")]
impl<A: Step> FusedIterator for ops::RangeFrom<A> {}
#[unstable(feature = "trusted_len", issue = "37572")]
unsafe impl<A: Step> TrustedLen for ops::RangeFrom<A> {}
#[stable(feature = "inclusive_range", since = "1.26.0")]
impl<A: Step> Iterator for ops::RangeInclusive<A> {
type Item = A;
#[inline]
fn next(&mut self) -> Option<A> {
self.compute_is_empty();
if self.is_empty.unwrap_or_default() {
return None;
}
let is_iterating = self.start < self.end;
self.is_empty = Some(!is_iterating);
Some(if is_iterating {
let n = self.start.add_one();
mem::replace(&mut self.start, n)
} else {
self.start.clone()
})
}
#[inline]
fn size_hint(&self) -> (usize, Option<usize>) {
if self.is_empty() {
return (0, Some(0));
}
match Step::steps_between(&self.start, &self.end) {
Some(hint) => (hint.saturating_add(1), hint.checked_add(1)),
None => (usize::MAX, None),
}
}
#[inline]
fn nth(&mut self, n: usize) -> Option<A> {
self.compute_is_empty();
if self.is_empty.unwrap_or_default() {
return None;
}
if let Some(plus_n) = self.start.add_usize(n) {
use crate::cmp::Ordering::*;
match plus_n.partial_cmp(&self.end) {
Some(Less) => {
self.is_empty = Some(false);
self.start = plus_n.add_one();
return Some(plus_n);
}
Some(Equal) => {
self.is_empty = Some(true);
return Some(plus_n);
}
_ => {}
}
}
self.is_empty = Some(true);
None
}
#[inline]
fn try_fold<B, F, R>(&mut self, init: B, mut f: F) -> R
where
Self: Sized,
F: FnMut(B, Self::Item) -> R,
R: Try<Ok = B>,
{
self.compute_is_empty();
if self.is_empty() {
return Try::from_ok(init);
}
let mut accum = init;
while self.start < self.end {
let n = self.start.add_one();
let n = mem::replace(&mut self.start, n);
accum = f(accum, n)?;
}
self.is_empty = Some(true);
if self.start == self.end {
accum = f(accum, self.start.clone())?;
}
Try::from_ok(accum)
}
#[inline]
fn last(mut self) -> Option<A> {
self.next_back()
}
#[inline]
fn min(mut self) -> Option<A> {
self.next()
}
#[inline]
fn max(mut self) -> Option<A> {
self.next_back()
}
}
#[stable(feature = "inclusive_range", since = "1.26.0")]
impl<A: Step> DoubleEndedIterator for ops::RangeInclusive<A> {
#[inline]
fn next_back(&mut self) -> Option<A> {
self.compute_is_empty();
if self.is_empty.unwrap_or_default() {
return None;
}
let is_iterating = self.start < self.end;
self.is_empty = Some(!is_iterating);
Some(if is_iterating {
let n = self.end.sub_one();
mem::replace(&mut self.end, n)
} else {
self.end.clone()
})
}
#[inline]
fn nth_back(&mut self, n: usize) -> Option<A> {
self.compute_is_empty();
if self.is_empty.unwrap_or_default() {
return None;
}
if let Some(minus_n) = self.end.sub_usize(n) {
use crate::cmp::Ordering::*;
match minus_n.partial_cmp(&self.start) {
Some(Greater) => {
self.is_empty = Some(false);
self.end = minus_n.sub_one();
return Some(minus_n);
}
Some(Equal) => {
self.is_empty = Some(true);
return Some(minus_n);
}
_ => {}
}
}
self.is_empty = Some(true);
None
}
#[inline]
fn try_rfold<B, F, R>(&mut self, init: B, mut f: F) -> R
where
Self: Sized,
F: FnMut(B, Self::Item) -> R,
R: Try<Ok = B>,
{
self.compute_is_empty();
if self.is_empty() {
return Try::from_ok(init);
}
let mut accum = init;
while self.start < self.end {
let n = self.end.sub_one();
let n = mem::replace(&mut self.end, n);
accum = f(accum, n)?;
}
self.is_empty = Some(true);
if self.start == self.end {
accum = f(accum, self.start.clone())?;
}
Try::from_ok(accum)
}
}
#[stable(feature = "fused", since = "1.26.0")]
impl<A: Step> FusedIterator for ops::RangeInclusive<A> {}