blob: 0107a22772fd225adb9c65290c792fda151547c3 [file] [log] [blame]
// Decoding metadata from a single crate's metadata
use crate::rmeta::*;
use crate::rmeta::table::{FixedSizeEncoding, Table};
use rustc_index::vec::{Idx, IndexVec};
use rustc_data_structures::sync::{Lrc, Lock, LockGuard, Once, AtomicCell};
use rustc::hir::map::{DefKey, DefPath, DefPathData, DefPathHash};
use rustc::hir::map::definitions::DefPathTable;
use rustc::hir;
use rustc::middle::cstore::{CrateSource, ExternCrate};
use rustc::middle::cstore::{LinkagePreference, NativeLibrary, ForeignModule};
use rustc::middle::exported_symbols::{ExportedSymbol, SymbolExportLevel};
use rustc::hir::def::{self, Res, DefKind, CtorOf, CtorKind};
use rustc::hir::def_id::{CrateNum, DefId, DefIndex, LocalDefId, CRATE_DEF_INDEX, LOCAL_CRATE};
use rustc_data_structures::fingerprint::Fingerprint;
use rustc_data_structures::fx::FxHashMap;
use rustc_data_structures::svh::Svh;
use rustc::dep_graph::{self, DepNodeIndex};
use rustc::middle::lang_items;
use rustc::mir::{self, BodyAndCache, interpret, Promoted};
use rustc::mir::interpret::{AllocDecodingSession, AllocDecodingState};
use rustc::session::Session;
use rustc::ty::{self, Ty, TyCtxt};
use rustc::ty::codec::TyDecoder;
use rustc::util::common::record_time;
use rustc::util::captures::Captures;
use std::io;
use std::mem;
use std::num::NonZeroUsize;
use std::u32;
use rustc_serialize::{Decodable, Decoder, SpecializedDecoder, opaque};
use syntax::attr;
use syntax::ast::{self, Ident};
use syntax::source_map::{self, respan, Spanned};
use syntax_expand::base::{SyntaxExtensionKind, SyntaxExtension};
use syntax_expand::proc_macro::{AttrProcMacro, ProcMacroDerive, BangProcMacro};
use syntax_pos::{self, Span, BytePos, Pos, DUMMY_SP, hygiene::MacroKind};
use syntax_pos::symbol::{Symbol, sym};
use log::debug;
use proc_macro::bridge::client::ProcMacro;
pub use cstore_impl::{provide, provide_extern};
mod cstore_impl;
crate struct MetadataBlob(MetadataRef);
// A map from external crate numbers (as decoded from some crate file) to
// local crate numbers (as generated during this session). Each external
// crate may refer to types in other external crates, and each has their
// own crate numbers.
crate type CrateNumMap = IndexVec<CrateNum, CrateNum>;
crate struct CrateMetadata {
/// The primary crate data - binary metadata blob.
blob: MetadataBlob,
// --- Some data pre-decoded from the metadata blob, usually for performance ---
/// Properties of the whole crate.
/// NOTE(eddyb) we pass `'static` to a `'tcx` parameter because this
/// lifetime is only used behind `Lazy`, and therefore acts like an
/// universal (`for<'tcx>`), that is paired up with whichever `TyCtxt`
/// is being used to decode those values.
root: CrateRoot<'static>,
/// For each definition in this crate, we encode a key. When the
/// crate is loaded, we read all the keys and put them in this
/// hashmap, which gives the reverse mapping. This allows us to
/// quickly retrace a `DefPath`, which is needed for incremental
/// compilation support.
def_path_table: DefPathTable,
/// Trait impl data.
/// FIXME: Used only from queries and can use query cache,
/// so pre-decoding can probably be avoided.
trait_impls: FxHashMap<(u32, DefIndex), Lazy<[DefIndex]>>,
/// Proc macro descriptions for this crate, if it's a proc macro crate.
raw_proc_macros: Option<&'static [ProcMacro]>,
/// Source maps for code from the crate.
source_map_import_info: Once<Vec<ImportedSourceFile>>,
/// Used for decoding interpret::AllocIds in a cached & thread-safe manner.
alloc_decoding_state: AllocDecodingState,
/// The `DepNodeIndex` of the `DepNode` representing this upstream crate.
/// It is initialized on the first access in `get_crate_dep_node_index()`.
/// Do not access the value directly, as it might not have been initialized yet.
/// The field must always be initialized to `DepNodeIndex::INVALID`.
dep_node_index: AtomicCell<DepNodeIndex>,
// --- Other significant crate properties ---
/// ID of this crate, from the current compilation session's point of view.
cnum: CrateNum,
/// Maps crate IDs as they are were seen from this crate's compilation sessions into
/// IDs as they are seen from the current compilation session.
cnum_map: CrateNumMap,
/// Same ID set as `cnum_map` plus maybe some injected crates like panic runtime.
dependencies: Lock<Vec<CrateNum>>,
/// How to link (or not link) this crate to the currently compiled crate.
dep_kind: Lock<DepKind>,
/// Filesystem location of this crate.
source: CrateSource,
/// Whether or not this crate should be consider a private dependency
/// for purposes of the 'exported_private_dependencies' lint
private_dep: bool,
/// The hash for the host proc macro. Used to support `-Z dual-proc-macro`.
host_hash: Option<Svh>,
// --- Data used only for improving diagnostics ---
/// Information about the `extern crate` item or path that caused this crate to be loaded.
/// If this is `None`, then the crate was injected (e.g., by the allocator).
extern_crate: Lock<Option<ExternCrate>>,
}
/// Holds information about a syntax_pos::SourceFile imported from another crate.
/// See `imported_source_files()` for more information.
struct ImportedSourceFile {
/// This SourceFile's byte-offset within the source_map of its original crate
original_start_pos: syntax_pos::BytePos,
/// The end of this SourceFile within the source_map of its original crate
original_end_pos: syntax_pos::BytePos,
/// The imported SourceFile's representation within the local source_map
translated_source_file: Lrc<syntax_pos::SourceFile>,
}
pub(super) struct DecodeContext<'a, 'tcx> {
opaque: opaque::Decoder<'a>,
cdata: Option<&'a CrateMetadata>,
sess: Option<&'tcx Session>,
tcx: Option<TyCtxt<'tcx>>,
// Cache the last used source_file for translating spans as an optimization.
last_source_file_index: usize,
lazy_state: LazyState,
// Used for decoding interpret::AllocIds in a cached & thread-safe manner.
alloc_decoding_session: Option<AllocDecodingSession<'a>>,
}
/// Abstract over the various ways one can create metadata decoders.
pub(super) trait Metadata<'a, 'tcx>: Copy {
fn raw_bytes(self) -> &'a [u8];
fn cdata(self) -> Option<&'a CrateMetadata> { None }
fn sess(self) -> Option<&'tcx Session> { None }
fn tcx(self) -> Option<TyCtxt<'tcx>> { None }
fn decoder(self, pos: usize) -> DecodeContext<'a, 'tcx> {
let tcx = self.tcx();
DecodeContext {
opaque: opaque::Decoder::new(self.raw_bytes(), pos),
cdata: self.cdata(),
sess: self.sess().or(tcx.map(|tcx| tcx.sess)),
tcx,
last_source_file_index: 0,
lazy_state: LazyState::NoNode,
alloc_decoding_session: self.cdata().map(|cdata| {
cdata.alloc_decoding_state.new_decoding_session()
}),
}
}
}
impl<'a, 'tcx> Metadata<'a, 'tcx> for &'a MetadataBlob {
fn raw_bytes(self) -> &'a [u8] {
&self.0
}
}
impl<'a, 'tcx> Metadata<'a, 'tcx> for (&'a MetadataBlob, &'tcx Session) {
fn raw_bytes(self) -> &'a [u8] {
let (blob, _) = self;
&blob.0
}
fn sess(self) -> Option<&'tcx Session> {
let (_, sess) = self;
Some(sess)
}
}
impl<'a, 'tcx> Metadata<'a, 'tcx> for &'a CrateMetadata {
fn raw_bytes(self) -> &'a [u8] {
self.blob.raw_bytes()
}
fn cdata(self) -> Option<&'a CrateMetadata> {
Some(self)
}
}
impl<'a, 'tcx> Metadata<'a, 'tcx> for (&'a CrateMetadata, &'tcx Session) {
fn raw_bytes(self) -> &'a [u8] {
self.0.raw_bytes()
}
fn cdata(self) -> Option<&'a CrateMetadata> {
Some(self.0)
}
fn sess(self) -> Option<&'tcx Session> {
Some(&self.1)
}
}
impl<'a, 'tcx> Metadata<'a, 'tcx> for (&'a CrateMetadata, TyCtxt<'tcx>) {
fn raw_bytes(self) -> &'a [u8] {
self.0.raw_bytes()
}
fn cdata(self) -> Option<&'a CrateMetadata> {
Some(self.0)
}
fn tcx(self) -> Option<TyCtxt<'tcx>> {
Some(self.1)
}
}
impl<'a, 'tcx, T: Decodable> Lazy<T> {
fn decode<M: Metadata<'a, 'tcx>>(self, metadata: M) -> T {
let mut dcx = metadata.decoder(self.position.get());
dcx.lazy_state = LazyState::NodeStart(self.position);
T::decode(&mut dcx).unwrap()
}
}
impl<'a: 'x, 'tcx: 'x, 'x, T: Decodable> Lazy<[T]> {
fn decode<M: Metadata<'a, 'tcx>>(
self,
metadata: M,
) -> impl ExactSizeIterator<Item = T> + Captures<'a> + Captures<'tcx> + 'x {
let mut dcx = metadata.decoder(self.position.get());
dcx.lazy_state = LazyState::NodeStart(self.position);
(0..self.meta).map(move |_| T::decode(&mut dcx).unwrap())
}
}
impl<'a, 'tcx> DecodeContext<'a, 'tcx> {
fn tcx(&self) -> TyCtxt<'tcx> {
self.tcx.expect("missing TyCtxt in DecodeContext")
}
fn cdata(&self) -> &'a CrateMetadata {
self.cdata.expect("missing CrateMetadata in DecodeContext")
}
fn read_lazy_with_meta<T: ?Sized + LazyMeta>(
&mut self,
meta: T::Meta,
) -> Result<Lazy<T>, <Self as Decoder>::Error> {
let min_size = T::min_size(meta);
let distance = self.read_usize()?;
let position = match self.lazy_state {
LazyState::NoNode => bug!("read_lazy_with_meta: outside of a metadata node"),
LazyState::NodeStart(start) => {
let start = start.get();
assert!(distance + min_size <= start);
start - distance - min_size
}
LazyState::Previous(last_min_end) => last_min_end.get() + distance,
};
self.lazy_state = LazyState::Previous(NonZeroUsize::new(position + min_size).unwrap());
Ok(Lazy::from_position_and_meta(NonZeroUsize::new(position).unwrap(), meta))
}
}
impl<'a, 'tcx> TyDecoder<'tcx> for DecodeContext<'a, 'tcx> {
#[inline]
fn tcx(&self) -> TyCtxt<'tcx> {
self.tcx.expect("missing TyCtxt in DecodeContext")
}
#[inline]
fn peek_byte(&self) -> u8 {
self.opaque.data[self.opaque.position()]
}
#[inline]
fn position(&self) -> usize {
self.opaque.position()
}
fn cached_ty_for_shorthand<F>(&mut self,
shorthand: usize,
or_insert_with: F)
-> Result<Ty<'tcx>, Self::Error>
where F: FnOnce(&mut Self) -> Result<Ty<'tcx>, Self::Error>
{
let tcx = self.tcx();
let key = ty::CReaderCacheKey {
cnum: self.cdata().cnum,
pos: shorthand,
};
if let Some(&ty) = tcx.rcache.borrow().get(&key) {
return Ok(ty);
}
let ty = or_insert_with(self)?;
tcx.rcache.borrow_mut().insert(key, ty);
Ok(ty)
}
fn with_position<F, R>(&mut self, pos: usize, f: F) -> R
where F: FnOnce(&mut Self) -> R
{
let new_opaque = opaque::Decoder::new(self.opaque.data, pos);
let old_opaque = mem::replace(&mut self.opaque, new_opaque);
let old_state = mem::replace(&mut self.lazy_state, LazyState::NoNode);
let r = f(self);
self.opaque = old_opaque;
self.lazy_state = old_state;
r
}
fn map_encoded_cnum_to_current(&self, cnum: CrateNum) -> CrateNum {
if cnum == LOCAL_CRATE {
self.cdata().cnum
} else {
self.cdata().cnum_map[cnum]
}
}
}
impl<'a, 'tcx, T> SpecializedDecoder<Lazy<T>> for DecodeContext<'a, 'tcx> {
fn specialized_decode(&mut self) -> Result<Lazy<T>, Self::Error> {
self.read_lazy_with_meta(())
}
}
impl<'a, 'tcx, T> SpecializedDecoder<Lazy<[T]>> for DecodeContext<'a, 'tcx> {
fn specialized_decode(&mut self) -> Result<Lazy<[T]>, Self::Error> {
let len = self.read_usize()?;
if len == 0 {
Ok(Lazy::empty())
} else {
self.read_lazy_with_meta(len)
}
}
}
impl<'a, 'tcx, I: Idx, T> SpecializedDecoder<Lazy<Table<I, T>>> for DecodeContext<'a, 'tcx>
where Option<T>: FixedSizeEncoding,
{
fn specialized_decode(&mut self) -> Result<Lazy<Table<I, T>>, Self::Error> {
let len = self.read_usize()?;
self.read_lazy_with_meta(len)
}
}
impl<'a, 'tcx> SpecializedDecoder<DefId> for DecodeContext<'a, 'tcx> {
#[inline]
fn specialized_decode(&mut self) -> Result<DefId, Self::Error> {
let krate = CrateNum::decode(self)?;
let index = DefIndex::decode(self)?;
Ok(DefId {
krate,
index,
})
}
}
impl<'a, 'tcx> SpecializedDecoder<DefIndex> for DecodeContext<'a, 'tcx> {
#[inline]
fn specialized_decode(&mut self) -> Result<DefIndex, Self::Error> {
Ok(DefIndex::from_u32(self.read_u32()?))
}
}
impl<'a, 'tcx> SpecializedDecoder<LocalDefId> for DecodeContext<'a, 'tcx> {
#[inline]
fn specialized_decode(&mut self) -> Result<LocalDefId, Self::Error> {
self.specialized_decode().map(|i| LocalDefId::from_def_id(i))
}
}
impl<'a, 'tcx> SpecializedDecoder<interpret::AllocId> for DecodeContext<'a, 'tcx> {
fn specialized_decode(&mut self) -> Result<interpret::AllocId, Self::Error> {
if let Some(alloc_decoding_session) = self.alloc_decoding_session {
alloc_decoding_session.decode_alloc_id(self)
} else {
bug!("Attempting to decode interpret::AllocId without CrateMetadata")
}
}
}
impl<'a, 'tcx> SpecializedDecoder<Span> for DecodeContext<'a, 'tcx> {
fn specialized_decode(&mut self) -> Result<Span, Self::Error> {
let tag = u8::decode(self)?;
if tag == TAG_INVALID_SPAN {
return Ok(DUMMY_SP)
}
debug_assert_eq!(tag, TAG_VALID_SPAN);
let lo = BytePos::decode(self)?;
let len = BytePos::decode(self)?;
let hi = lo + len;
let sess = if let Some(sess) = self.sess {
sess
} else {
bug!("Cannot decode Span without Session.")
};
let imported_source_files = self.cdata().imported_source_files(&sess.source_map());
let source_file = {
// Optimize for the case that most spans within a translated item
// originate from the same source_file.
let last_source_file = &imported_source_files[self.last_source_file_index];
if lo >= last_source_file.original_start_pos &&
lo <= last_source_file.original_end_pos {
last_source_file
} else {
let mut a = 0;
let mut b = imported_source_files.len();
while b - a > 1 {
let m = (a + b) / 2;
if imported_source_files[m].original_start_pos > lo {
b = m;
} else {
a = m;
}
}
self.last_source_file_index = a;
&imported_source_files[a]
}
};
// Make sure our binary search above is correct.
debug_assert!(lo >= source_file.original_start_pos &&
lo <= source_file.original_end_pos);
// Make sure we correctly filtered out invalid spans during encoding
debug_assert!(hi >= source_file.original_start_pos &&
hi <= source_file.original_end_pos);
let lo = (lo + source_file.translated_source_file.start_pos)
- source_file.original_start_pos;
let hi = (hi + source_file.translated_source_file.start_pos)
- source_file.original_start_pos;
Ok(Span::with_root_ctxt(lo, hi))
}
}
impl SpecializedDecoder<Ident> for DecodeContext<'_, '_> {
fn specialized_decode(&mut self) -> Result<Ident, Self::Error> {
// FIXME(jseyfried): intercrate hygiene
Ok(Ident::with_dummy_span(Symbol::decode(self)?))
}
}
impl<'a, 'tcx> SpecializedDecoder<Fingerprint> for DecodeContext<'a, 'tcx> {
fn specialized_decode(&mut self) -> Result<Fingerprint, Self::Error> {
Fingerprint::decode_opaque(&mut self.opaque)
}
}
impl<'a, 'tcx, T: Decodable> SpecializedDecoder<mir::ClearCrossCrate<T>>
for DecodeContext<'a, 'tcx> {
#[inline]
fn specialized_decode(&mut self) -> Result<mir::ClearCrossCrate<T>, Self::Error> {
Ok(mir::ClearCrossCrate::Clear)
}
}
implement_ty_decoder!( DecodeContext<'a, 'tcx> );
impl MetadataBlob {
crate fn new(metadata_ref: MetadataRef) -> MetadataBlob {
MetadataBlob(metadata_ref)
}
crate fn is_compatible(&self) -> bool {
self.raw_bytes().starts_with(METADATA_HEADER)
}
crate fn get_rustc_version(&self) -> String {
Lazy::<String>::from_position(
NonZeroUsize::new(METADATA_HEADER.len() + 4).unwrap(),
).decode(self)
}
crate fn get_root(&self) -> CrateRoot<'tcx> {
let slice = self.raw_bytes();
let offset = METADATA_HEADER.len();
let pos = (((slice[offset + 0] as u32) << 24) | ((slice[offset + 1] as u32) << 16) |
((slice[offset + 2] as u32) << 8) |
((slice[offset + 3] as u32) << 0)) as usize;
Lazy::<CrateRoot<'tcx>>::from_position(
NonZeroUsize::new(pos).unwrap(),
).decode(self)
}
crate fn list_crate_metadata(&self,
out: &mut dyn io::Write) -> io::Result<()> {
write!(out, "=External Dependencies=\n")?;
let root = self.get_root();
for (i, dep) in root.crate_deps
.decode(self)
.enumerate() {
write!(out, "{} {}{}\n", i + 1, dep.name, dep.extra_filename)?;
}
write!(out, "\n")?;
Ok(())
}
}
impl<'tcx> EntryKind<'tcx> {
fn def_kind(&self) -> Option<DefKind> {
Some(match *self {
EntryKind::Const(..) => DefKind::Const,
EntryKind::AssocConst(..) => DefKind::AssocConst,
EntryKind::ImmStatic |
EntryKind::MutStatic |
EntryKind::ForeignImmStatic |
EntryKind::ForeignMutStatic => DefKind::Static,
EntryKind::Struct(_, _) => DefKind::Struct,
EntryKind::Union(_, _) => DefKind::Union,
EntryKind::Fn(_) |
EntryKind::ForeignFn(_) => DefKind::Fn,
EntryKind::Method(_) => DefKind::Method,
EntryKind::Type => DefKind::TyAlias,
EntryKind::TypeParam => DefKind::TyParam,
EntryKind::ConstParam => DefKind::ConstParam,
EntryKind::OpaqueTy => DefKind::OpaqueTy,
EntryKind::AssocType(_) => DefKind::AssocTy,
EntryKind::AssocOpaqueTy(_) => DefKind::AssocOpaqueTy,
EntryKind::Mod(_) => DefKind::Mod,
EntryKind::Variant(_) => DefKind::Variant,
EntryKind::Trait(_) => DefKind::Trait,
EntryKind::TraitAlias => DefKind::TraitAlias,
EntryKind::Enum(..) => DefKind::Enum,
EntryKind::MacroDef(_) => DefKind::Macro(MacroKind::Bang),
EntryKind::ForeignType => DefKind::ForeignTy,
EntryKind::ForeignMod |
EntryKind::GlobalAsm |
EntryKind::Impl(_) |
EntryKind::Field |
EntryKind::Generator(_) |
EntryKind::Closure => return None,
})
}
}
impl CrateRoot<'_> {
crate fn is_proc_macro_crate(&self) -> bool {
self.proc_macro_data.is_some()
}
crate fn name(&self) -> Symbol {
self.name
}
crate fn disambiguator(&self) -> CrateDisambiguator {
self.disambiguator
}
crate fn hash(&self) -> Svh {
self.hash
}
crate fn triple(&self) -> &TargetTriple {
&self.triple
}
crate fn decode_crate_deps(
&self,
metadata: &'a MetadataBlob,
) -> impl ExactSizeIterator<Item = CrateDep> + Captures<'a> {
self.crate_deps.decode(metadata)
}
}
impl<'a, 'tcx> CrateMetadata {
crate fn new(
sess: &Session,
blob: MetadataBlob,
root: CrateRoot<'static>,
raw_proc_macros: Option<&'static [ProcMacro]>,
cnum: CrateNum,
cnum_map: CrateNumMap,
dep_kind: DepKind,
source: CrateSource,
private_dep: bool,
host_hash: Option<Svh>,
) -> CrateMetadata {
let def_path_table = record_time(&sess.perf_stats.decode_def_path_tables_time, || {
root.def_path_table.decode((&blob, sess))
});
let trait_impls = root.impls.decode((&blob, sess))
.map(|trait_impls| (trait_impls.trait_id, trait_impls.impls)).collect();
let alloc_decoding_state =
AllocDecodingState::new(root.interpret_alloc_index.decode(&blob).collect());
let dependencies = Lock::new(cnum_map.iter().cloned().collect());
CrateMetadata {
blob,
root,
def_path_table,
trait_impls,
raw_proc_macros,
source_map_import_info: Once::new(),
alloc_decoding_state,
dep_node_index: AtomicCell::new(DepNodeIndex::INVALID),
cnum,
cnum_map,
dependencies,
dep_kind: Lock::new(dep_kind),
source,
private_dep,
host_hash,
extern_crate: Lock::new(None),
}
}
fn is_proc_macro(&self, id: DefIndex) -> bool {
self.root.proc_macro_data.and_then(|data| data.decode(self).find(|x| *x == id)).is_some()
}
fn maybe_kind(&self, item_id: DefIndex) -> Option<EntryKind<'tcx>> {
self.root.per_def.kind.get(self, item_id).map(|k| k.decode(self))
}
fn kind(&self, item_id: DefIndex) -> EntryKind<'tcx> {
assert!(!self.is_proc_macro(item_id));
self.maybe_kind(item_id).unwrap_or_else(|| {
bug!(
"CrateMetadata::kind({:?}): id not found, in crate {:?} with number {}",
item_id,
self.root.name,
self.cnum,
)
})
}
fn local_def_id(&self, index: DefIndex) -> DefId {
DefId {
krate: self.cnum,
index,
}
}
fn raw_proc_macro(&self, id: DefIndex) -> &ProcMacro {
// DefIndex's in root.proc_macro_data have a one-to-one correspondence
// with items in 'raw_proc_macros'.
// NOTE: If you update the order of macros in 'proc_macro_data' for any reason,
// you must also update src/libsyntax_ext/proc_macro_harness.rs
// Failing to do so will result in incorrect data being associated
// with proc macros when deserialized.
let pos = self.root.proc_macro_data.unwrap().decode(self).position(|i| i == id).unwrap();
&self.raw_proc_macros.unwrap()[pos]
}
fn item_name(&self, item_index: DefIndex) -> Symbol {
if !self.is_proc_macro(item_index) {
self.def_key(item_index)
.disambiguated_data
.data
.get_opt_name()
.expect("no name in item_name")
} else {
Symbol::intern(self.raw_proc_macro(item_index).name())
}
}
fn def_kind(&self, index: DefIndex) -> Option<DefKind> {
if !self.is_proc_macro(index) {
self.kind(index).def_kind()
} else {
Some(DefKind::Macro(
macro_kind(self.raw_proc_macro(index))
))
}
}
fn get_span(&self, index: DefIndex, sess: &Session) -> Span {
self.root.per_def.span.get(self, index).unwrap().decode((self, sess))
}
fn load_proc_macro(&self, id: DefIndex, sess: &Session) -> SyntaxExtension {
let (name, kind, helper_attrs) = match *self.raw_proc_macro(id) {
ProcMacro::CustomDerive { trait_name, attributes, client } => {
let helper_attrs =
attributes.iter().cloned().map(Symbol::intern).collect::<Vec<_>>();
(
trait_name,
SyntaxExtensionKind::Derive(Box::new(ProcMacroDerive { client })),
helper_attrs,
)
}
ProcMacro::Attr { name, client } => (
name, SyntaxExtensionKind::Attr(Box::new(AttrProcMacro { client })), Vec::new()
),
ProcMacro::Bang { name, client } => (
name, SyntaxExtensionKind::Bang(Box::new(BangProcMacro { client })), Vec::new()
)
};
SyntaxExtension::new(
&sess.parse_sess,
kind,
self.get_span(id, sess),
helper_attrs,
self.root.edition,
Symbol::intern(name),
&self.get_item_attrs(id, sess),
)
}
fn get_trait_def(&self, item_id: DefIndex, sess: &Session) -> ty::TraitDef {
match self.kind(item_id) {
EntryKind::Trait(data) => {
let data = data.decode((self, sess));
ty::TraitDef::new(self.local_def_id(item_id),
data.unsafety,
data.paren_sugar,
data.has_auto_impl,
data.is_marker,
self.def_path_table.def_path_hash(item_id))
},
EntryKind::TraitAlias => {
ty::TraitDef::new(self.local_def_id(item_id),
hir::Unsafety::Normal,
false,
false,
false,
self.def_path_table.def_path_hash(item_id))
},
_ => bug!("def-index does not refer to trait or trait alias"),
}
}
fn get_variant(
&self,
tcx: TyCtxt<'tcx>,
kind: &EntryKind<'_>,
index: DefIndex,
parent_did: DefId,
) -> ty::VariantDef {
let data = match kind {
EntryKind::Variant(data) |
EntryKind::Struct(data, _) |
EntryKind::Union(data, _) => data.decode(self),
_ => bug!(),
};
let adt_kind = match kind {
EntryKind::Variant(_) => ty::AdtKind::Enum,
EntryKind::Struct(..) => ty::AdtKind::Struct,
EntryKind::Union(..) => ty::AdtKind::Union,
_ => bug!(),
};
let variant_did = if adt_kind == ty::AdtKind::Enum {
Some(self.local_def_id(index))
} else {
None
};
let ctor_did = data.ctor.map(|index| self.local_def_id(index));
ty::VariantDef::new(
tcx,
Ident::with_dummy_span(self.item_name(index)),
variant_did,
ctor_did,
data.discr,
self.root.per_def.children.get(self, index).unwrap_or(Lazy::empty())
.decode(self).map(|index| ty::FieldDef {
did: self.local_def_id(index),
ident: Ident::with_dummy_span(self.item_name(index)),
vis: self.get_visibility(index),
}).collect(),
data.ctor_kind,
adt_kind,
parent_did,
false,
)
}
fn get_adt_def(&self, item_id: DefIndex, tcx: TyCtxt<'tcx>) -> &'tcx ty::AdtDef {
let kind = self.kind(item_id);
let did = self.local_def_id(item_id);
let (adt_kind, repr) = match kind {
EntryKind::Enum(repr) => (ty::AdtKind::Enum, repr),
EntryKind::Struct(_, repr) => (ty::AdtKind::Struct, repr),
EntryKind::Union(_, repr) => (ty::AdtKind::Union, repr),
_ => bug!("get_adt_def called on a non-ADT {:?}", did),
};
let variants = if let ty::AdtKind::Enum = adt_kind {
self.root.per_def.children.get(self, item_id).unwrap_or(Lazy::empty())
.decode(self)
.map(|index| {
self.get_variant(tcx, &self.kind(index), index, did)
})
.collect()
} else {
std::iter::once(self.get_variant(tcx, &kind, item_id, did)).collect()
};
tcx.alloc_adt_def(did, adt_kind, variants, repr)
}
fn get_explicit_predicates(
&self,
item_id: DefIndex,
tcx: TyCtxt<'tcx>,
) -> ty::GenericPredicates<'tcx> {
self.root.per_def.explicit_predicates.get(self, item_id).unwrap().decode((self, tcx))
}
fn get_inferred_outlives(
&self,
item_id: DefIndex,
tcx: TyCtxt<'tcx>,
) -> &'tcx [(ty::Predicate<'tcx>, Span)] {
self.root.per_def.inferred_outlives.get(self, item_id).map(|predicates| {
predicates.decode((self, tcx))
}).unwrap_or_default()
}
fn get_super_predicates(
&self,
item_id: DefIndex,
tcx: TyCtxt<'tcx>,
) -> ty::GenericPredicates<'tcx> {
self.root.per_def.super_predicates.get(self, item_id).unwrap().decode((self, tcx))
}
fn get_generics(&self, item_id: DefIndex, sess: &Session) -> ty::Generics {
self.root.per_def.generics.get(self, item_id).unwrap().decode((self, sess))
}
fn get_type(&self, id: DefIndex, tcx: TyCtxt<'tcx>) -> Ty<'tcx> {
self.root.per_def.ty.get(self, id).unwrap().decode((self, tcx))
}
fn get_stability(&self, id: DefIndex) -> Option<attr::Stability> {
match self.is_proc_macro(id) {
true => self.root.proc_macro_stability.clone(),
false => self.root.per_def.stability.get(self, id).map(|stab| stab.decode(self)),
}
}
fn get_deprecation(&self, id: DefIndex) -> Option<attr::Deprecation> {
self.root.per_def.deprecation.get(self, id)
.filter(|_| !self.is_proc_macro(id))
.map(|depr| depr.decode(self))
}
fn get_visibility(&self, id: DefIndex) -> ty::Visibility {
match self.is_proc_macro(id) {
true => ty::Visibility::Public,
false => self.root.per_def.visibility.get(self, id).unwrap().decode(self),
}
}
fn get_impl_data(&self, id: DefIndex) -> ImplData {
match self.kind(id) {
EntryKind::Impl(data) => data.decode(self),
_ => bug!(),
}
}
fn get_parent_impl(&self, id: DefIndex) -> Option<DefId> {
self.get_impl_data(id).parent_impl
}
fn get_impl_polarity(&self, id: DefIndex) -> ty::ImplPolarity {
self.get_impl_data(id).polarity
}
fn get_impl_defaultness(&self, id: DefIndex) -> hir::Defaultness {
self.get_impl_data(id).defaultness
}
fn get_coerce_unsized_info(
&self,
id: DefIndex,
) -> Option<ty::adjustment::CoerceUnsizedInfo> {
self.get_impl_data(id).coerce_unsized_info
}
fn get_impl_trait(&self, id: DefIndex, tcx: TyCtxt<'tcx>) -> Option<ty::TraitRef<'tcx>> {
self.root.per_def.impl_trait_ref.get(self, id).map(|tr| tr.decode((self, tcx)))
}
/// Iterates over all the stability attributes in the given crate.
fn get_lib_features(&self, tcx: TyCtxt<'tcx>) -> &'tcx [(ast::Name, Option<ast::Name>)] {
// FIXME: For a proc macro crate, not sure whether we should return the "host"
// features or an empty Vec. Both don't cause ICEs.
tcx.arena.alloc_from_iter(self.root
.lib_features
.decode(self))
}
/// Iterates over the language items in the given crate.
fn get_lang_items(&self, tcx: TyCtxt<'tcx>) -> &'tcx [(DefId, usize)] {
if self.root.is_proc_macro_crate() {
// Proc macro crates do not export any lang-items to the target.
&[]
} else {
tcx.arena.alloc_from_iter(self.root
.lang_items
.decode(self)
.map(|(def_index, index)| (self.local_def_id(def_index), index)))
}
}
/// Iterates over the diagnostic items in the given crate.
fn get_diagnostic_items(
&self,
tcx: TyCtxt<'tcx>,
) -> &'tcx FxHashMap<Symbol, DefId> {
tcx.arena.alloc(if self.root.is_proc_macro_crate() {
// Proc macro crates do not export any diagnostic-items to the target.
Default::default()
} else {
self.root
.diagnostic_items
.decode(self)
.map(|(name, def_index)| (name, self.local_def_id(def_index)))
.collect()
})
}
/// Iterates over each child of the given item.
fn each_child_of_item<F>(&self, id: DefIndex, mut callback: F, sess: &Session)
where F: FnMut(def::Export<hir::HirId>)
{
if let Some(proc_macros_ids) = self.root.proc_macro_data.map(|d| d.decode(self)) {
/* If we are loading as a proc macro, we want to return the view of this crate
* as a proc macro crate.
*/
if id == CRATE_DEF_INDEX {
for def_index in proc_macros_ids {
let raw_macro = self.raw_proc_macro(def_index);
let res = Res::Def(
DefKind::Macro(macro_kind(raw_macro)),
self.local_def_id(def_index),
);
let ident = Ident::from_str(raw_macro.name());
callback(def::Export {
ident: ident,
res: res,
vis: ty::Visibility::Public,
span: DUMMY_SP,
});
}
}
return
}
// Find the item.
let kind = match self.maybe_kind(id) {
None => return,
Some(kind) => kind,
};
// Iterate over all children.
let macros_only = self.dep_kind.lock().macros_only();
let children = self.root.per_def.children.get(self, id).unwrap_or(Lazy::empty());
for child_index in children.decode((self, sess)) {
if macros_only {
continue
}
// Get the item.
if let Some(child_kind) = self.maybe_kind(child_index) {
match child_kind {
EntryKind::MacroDef(..) => {}
_ if macros_only => continue,
_ => {}
}
// Hand off the item to the callback.
match child_kind {
// FIXME(eddyb) Don't encode these in children.
EntryKind::ForeignMod => {
let child_children =
self.root.per_def.children.get(self, child_index)
.unwrap_or(Lazy::empty());
for child_index in child_children.decode((self, sess)) {
if let Some(kind) = self.def_kind(child_index) {
callback(def::Export {
res: Res::Def(kind, self.local_def_id(child_index)),
ident: Ident::with_dummy_span(self.item_name(child_index)),
vis: self.get_visibility(child_index),
span: self.root.per_def.span.get(self, child_index).unwrap()
.decode((self, sess)),
});
}
}
continue;
}
EntryKind::Impl(_) => continue,
_ => {}
}
let def_key = self.def_key(child_index);
let span = self.get_span(child_index, sess);
if let (Some(kind), Some(name)) =
(self.def_kind(child_index), def_key.disambiguated_data.data.get_opt_name()) {
let ident = Ident::with_dummy_span(name);
let vis = self.get_visibility(child_index);
let def_id = self.local_def_id(child_index);
let res = Res::Def(kind, def_id);
callback(def::Export { res, ident, vis, span });
// For non-re-export structs and variants add their constructors to children.
// Re-export lists automatically contain constructors when necessary.
match kind {
DefKind::Struct => {
if let Some(ctor_def_id) = self.get_ctor_def_id(child_index) {
let ctor_kind = self.get_ctor_kind(child_index);
let ctor_res = Res::Def(
DefKind::Ctor(CtorOf::Struct, ctor_kind),
ctor_def_id,
);
let vis = self.get_visibility(ctor_def_id.index);
callback(def::Export { res: ctor_res, vis, ident, span });
}
}
DefKind::Variant => {
// Braced variants, unlike structs, generate unusable names in
// value namespace, they are reserved for possible future use.
// It's ok to use the variant's id as a ctor id since an
// error will be reported on any use of such resolution anyway.
let ctor_def_id = self.get_ctor_def_id(child_index).unwrap_or(def_id);
let ctor_kind = self.get_ctor_kind(child_index);
let ctor_res = Res::Def(
DefKind::Ctor(CtorOf::Variant, ctor_kind),
ctor_def_id,
);
let mut vis = self.get_visibility(ctor_def_id.index);
if ctor_def_id == def_id && vis == ty::Visibility::Public {
// For non-exhaustive variants lower the constructor visibility to
// within the crate. We only need this for fictive constructors,
// for other constructors correct visibilities
// were already encoded in metadata.
let attrs = self.get_item_attrs(def_id.index, sess);
if attr::contains_name(&attrs, sym::non_exhaustive) {
let crate_def_id = self.local_def_id(CRATE_DEF_INDEX);
vis = ty::Visibility::Restricted(crate_def_id);
}
}
callback(def::Export { res: ctor_res, ident, vis, span });
}
_ => {}
}
}
}
}
if let EntryKind::Mod(data) = kind {
for exp in data.decode((self, sess)).reexports.decode((self, sess)) {
match exp.res {
Res::Def(DefKind::Macro(..), _) => {}
_ if macros_only => continue,
_ => {}
}
callback(exp);
}
}
}
fn is_item_mir_available(&self, id: DefIndex) -> bool {
!self.is_proc_macro(id) &&
self.root.per_def.mir.get(self, id).is_some()
}
fn get_optimized_mir(&self, tcx: TyCtxt<'tcx>, id: DefIndex) -> BodyAndCache<'tcx> {
let mut cache = self.root.per_def.mir.get(self, id)
.filter(|_| !self.is_proc_macro(id))
.unwrap_or_else(|| {
bug!("get_optimized_mir: missing MIR for `{:?}`", self.local_def_id(id))
})
.decode((self, tcx));
cache.ensure_predecessors();
cache
}
fn get_promoted_mir(
&self,
tcx: TyCtxt<'tcx>,
id: DefIndex,
) -> IndexVec<Promoted, BodyAndCache<'tcx>> {
let mut cache = self.root.per_def.promoted_mir.get(self, id)
.filter(|_| !self.is_proc_macro(id))
.unwrap_or_else(|| {
bug!("get_promoted_mir: missing MIR for `{:?}`", self.local_def_id(id))
})
.decode((self, tcx));
for body in cache.iter_mut() {
body.ensure_predecessors();
}
cache
}
fn mir_const_qualif(&self, id: DefIndex) -> mir::ConstQualifs {
match self.kind(id) {
EntryKind::Const(qualif, _) |
EntryKind::AssocConst(AssocContainer::ImplDefault, qualif, _) |
EntryKind::AssocConst(AssocContainer::ImplFinal, qualif, _) => {
qualif
}
_ => bug!(),
}
}
fn get_associated_item(&self, id: DefIndex) -> ty::AssocItem {
let def_key = self.def_key(id);
let parent = self.local_def_id(def_key.parent.unwrap());
let name = def_key.disambiguated_data.data.get_opt_name().unwrap();
let (kind, container, has_self) = match self.kind(id) {
EntryKind::AssocConst(container, _, _) => {
(ty::AssocKind::Const, container, false)
}
EntryKind::Method(data) => {
let data = data.decode(self);
(ty::AssocKind::Method, data.container, data.has_self)
}
EntryKind::AssocType(container) => {
(ty::AssocKind::Type, container, false)
}
EntryKind::AssocOpaqueTy(container) => {
(ty::AssocKind::OpaqueTy, container, false)
}
_ => bug!("cannot get associated-item of `{:?}`", def_key)
};
ty::AssocItem {
ident: Ident::with_dummy_span(name),
kind,
vis: self.get_visibility(id),
defaultness: container.defaultness(),
def_id: self.local_def_id(id),
container: container.with_def_id(parent),
method_has_self_argument: has_self
}
}
fn get_item_variances(&self, id: DefIndex) -> Vec<ty::Variance> {
self.root.per_def.variances.get(self, id).unwrap_or(Lazy::empty())
.decode(self).collect()
}
fn get_ctor_kind(&self, node_id: DefIndex) -> CtorKind {
match self.kind(node_id) {
EntryKind::Struct(data, _) |
EntryKind::Union(data, _) |
EntryKind::Variant(data) => data.decode(self).ctor_kind,
_ => CtorKind::Fictive,
}
}
fn get_ctor_def_id(&self, node_id: DefIndex) -> Option<DefId> {
match self.kind(node_id) {
EntryKind::Struct(data, _) => {
data.decode(self).ctor.map(|index| self.local_def_id(index))
}
EntryKind::Variant(data) => {
data.decode(self).ctor.map(|index| self.local_def_id(index))
}
_ => None,
}
}
fn get_item_attrs(&self, node_id: DefIndex, sess: &Session) -> Lrc<[ast::Attribute]> {
// The attributes for a tuple struct/variant are attached to the definition, not the ctor;
// we assume that someone passing in a tuple struct ctor is actually wanting to
// look at the definition
let def_key = self.def_key(node_id);
let item_id = if def_key.disambiguated_data.data == DefPathData::Ctor {
def_key.parent.unwrap()
} else {
node_id
};
Lrc::from(self.root.per_def.attributes.get(self, item_id).unwrap_or(Lazy::empty())
.decode((self, sess))
.collect::<Vec<_>>())
}
fn get_struct_field_names(
&self,
id: DefIndex,
sess: &Session,
) -> Vec<Spanned<ast::Name>> {
self.root.per_def.children.get(self, id).unwrap_or(Lazy::empty())
.decode(self)
.map(|index| respan(self.get_span(index, sess), self.item_name(index)))
.collect()
}
// Translate a DefId from the current compilation environment to a DefId
// for an external crate.
fn reverse_translate_def_id(&self, did: DefId) -> Option<DefId> {
for (local, &global) in self.cnum_map.iter_enumerated() {
if global == did.krate {
return Some(DefId {
krate: local,
index: did.index,
});
}
}
None
}
fn get_inherent_implementations_for_type(
&self,
tcx: TyCtxt<'tcx>,
id: DefIndex,
) -> &'tcx [DefId] {
tcx.arena.alloc_from_iter(
self.root.per_def.inherent_impls.get(self, id).unwrap_or(Lazy::empty())
.decode(self)
.map(|index| self.local_def_id(index))
)
}
fn get_implementations_for_trait(
&self,
tcx: TyCtxt<'tcx>,
filter: Option<DefId>,
) -> &'tcx [DefId] {
if self.root.is_proc_macro_crate() {
// proc-macro crates export no trait impls.
return &[]
}
// Do a reverse lookup beforehand to avoid touching the crate_num
// hash map in the loop below.
let filter = match filter.map(|def_id| self.reverse_translate_def_id(def_id)) {
Some(Some(def_id)) => Some((def_id.krate.as_u32(), def_id.index)),
Some(None) => return &[],
None => None,
};
if let Some(filter) = filter {
if let Some(impls) = self.trait_impls.get(&filter) {
tcx.arena.alloc_from_iter(impls.decode(self).map(|idx| self.local_def_id(idx)))
} else {
&[]
}
} else {
tcx.arena.alloc_from_iter(self.trait_impls.values().flat_map(|impls| {
impls.decode(self).map(|idx| self.local_def_id(idx))
}))
}
}
fn get_trait_of_item(&self, id: DefIndex) -> Option<DefId> {
let def_key = self.def_key(id);
match def_key.disambiguated_data.data {
DefPathData::TypeNs(..) | DefPathData::ValueNs(..) => (),
// Not an associated item
_ => return None,
}
def_key.parent.and_then(|parent_index| {
match self.kind(parent_index) {
EntryKind::Trait(_) |
EntryKind::TraitAlias => Some(self.local_def_id(parent_index)),
_ => None,
}
})
}
fn get_native_libraries(&self, sess: &Session) -> Vec<NativeLibrary> {
if self.root.is_proc_macro_crate() {
// Proc macro crates do not have any *target* native libraries.
vec![]
} else {
self.root.native_libraries.decode((self, sess)).collect()
}
}
fn get_foreign_modules(&self, tcx: TyCtxt<'tcx>) -> &'tcx [ForeignModule] {
if self.root.is_proc_macro_crate() {
// Proc macro crates do not have any *target* foreign modules.
&[]
} else {
tcx.arena.alloc_from_iter(self.root.foreign_modules.decode((self, tcx.sess)))
}
}
fn get_dylib_dependency_formats(
&self,
tcx: TyCtxt<'tcx>,
) -> &'tcx [(CrateNum, LinkagePreference)] {
tcx.arena.alloc_from_iter(self.root
.dylib_dependency_formats
.decode(self)
.enumerate()
.flat_map(|(i, link)| {
let cnum = CrateNum::new(i + 1);
link.map(|link| (self.cnum_map[cnum], link))
}))
}
fn get_missing_lang_items(&self, tcx: TyCtxt<'tcx>) -> &'tcx [lang_items::LangItem] {
if self.root.is_proc_macro_crate() {
// Proc macro crates do not depend on any target weak lang-items.
&[]
} else {
tcx.arena.alloc_from_iter(self.root
.lang_items_missing
.decode(self))
}
}
fn get_fn_param_names(&self, id: DefIndex) -> Vec<ast::Name> {
let param_names = match self.kind(id) {
EntryKind::Fn(data) |
EntryKind::ForeignFn(data) => data.decode(self).param_names,
EntryKind::Method(data) => data.decode(self).fn_data.param_names,
_ => Lazy::empty(),
};
param_names.decode(self).collect()
}
fn exported_symbols(
&self,
tcx: TyCtxt<'tcx>,
) -> Vec<(ExportedSymbol<'tcx>, SymbolExportLevel)> {
if self.root.is_proc_macro_crate() {
// If this crate is a custom derive crate, then we're not even going to
// link those in so we skip those crates.
vec![]
} else {
self.root.exported_symbols.decode((self, tcx)).collect()
}
}
fn get_rendered_const(&self, id: DefIndex) -> String {
match self.kind(id) {
EntryKind::Const(_, data) |
EntryKind::AssocConst(_, _, data) => data.decode(self).0,
_ => bug!(),
}
}
fn get_macro(&self, id: DefIndex) -> MacroDef {
match self.kind(id) {
EntryKind::MacroDef(macro_def) => macro_def.decode(self),
_ => bug!(),
}
}
// This replicates some of the logic of the crate-local `is_const_fn_raw` query, because we
// don't serialize constness for tuple variant and tuple struct constructors.
fn is_const_fn_raw(&self, id: DefIndex) -> bool {
let constness = match self.kind(id) {
EntryKind::Method(data) => data.decode(self).fn_data.constness,
EntryKind::Fn(data) => data.decode(self).constness,
// Some intrinsics can be const fn. While we could recompute this (at least until we
// stop having hardcoded whitelists and move to stability attributes), it seems cleaner
// to treat all const fns equally.
EntryKind::ForeignFn(data) => data.decode(self).constness,
EntryKind::Variant(..) | EntryKind::Struct(..) => hir::Constness::Const,
_ => hir::Constness::NotConst,
};
constness == hir::Constness::Const
}
fn asyncness(&self, id: DefIndex) -> hir::IsAsync {
match self.kind(id) {
EntryKind::Fn(data) => data.decode(self).asyncness,
EntryKind::Method(data) => data.decode(self).fn_data.asyncness,
EntryKind::ForeignFn(data) => data.decode(self).asyncness,
_ => bug!("asyncness: expected function kind"),
}
}
fn is_foreign_item(&self, id: DefIndex) -> bool {
match self.kind(id) {
EntryKind::ForeignImmStatic |
EntryKind::ForeignMutStatic |
EntryKind::ForeignFn(_) => true,
_ => false,
}
}
fn static_mutability(&self, id: DefIndex) -> Option<hir::Mutability> {
match self.kind(id) {
EntryKind::ImmStatic |
EntryKind::ForeignImmStatic => Some(hir::Mutability::Immutable),
EntryKind::MutStatic |
EntryKind::ForeignMutStatic => Some(hir::Mutability::Mutable),
_ => None,
}
}
fn fn_sig(&self, id: DefIndex, tcx: TyCtxt<'tcx>) -> ty::PolyFnSig<'tcx> {
self.root.per_def.fn_sig.get(self, id).unwrap().decode((self, tcx))
}
#[inline]
fn def_key(&self, index: DefIndex) -> DefKey {
let mut key = self.def_path_table.def_key(index);
if self.is_proc_macro(index) {
let name = self.raw_proc_macro(index).name();
key.disambiguated_data.data = DefPathData::MacroNs(Symbol::intern(name));
}
key
}
// Returns the path leading to the thing with this `id`.
fn def_path(&self, id: DefIndex) -> DefPath {
debug!("def_path(cnum={:?}, id={:?})", self.cnum, id);
DefPath::make(self.cnum, id, |parent| self.def_key(parent))
}
#[inline]
fn def_path_hash(&self, index: DefIndex) -> DefPathHash {
self.def_path_table.def_path_hash(index)
}
/// Imports the source_map from an external crate into the source_map of the crate
/// currently being compiled (the "local crate").
///
/// The import algorithm works analogous to how AST items are inlined from an
/// external crate's metadata:
/// For every SourceFile in the external source_map an 'inline' copy is created in the
/// local source_map. The correspondence relation between external and local
/// SourceFiles is recorded in the `ImportedSourceFile` objects returned from this
/// function. When an item from an external crate is later inlined into this
/// crate, this correspondence information is used to translate the span
/// information of the inlined item so that it refers the correct positions in
/// the local source_map (see `<decoder::DecodeContext as SpecializedDecoder<Span>>`).
///
/// The import algorithm in the function below will reuse SourceFiles already
/// existing in the local source_map. For example, even if the SourceFile of some
/// source file of libstd gets imported many times, there will only ever be
/// one SourceFile object for the corresponding file in the local source_map.
///
/// Note that imported SourceFiles do not actually contain the source code of the
/// file they represent, just information about length, line breaks, and
/// multibyte characters. This information is enough to generate valid debuginfo
/// for items inlined from other crates.
///
/// Proc macro crates don't currently export spans, so this function does not have
/// to work for them.
fn imported_source_files(
&'a self,
local_source_map: &source_map::SourceMap,
) -> &[ImportedSourceFile] {
self.source_map_import_info.init_locking(|| {
let external_source_map = self.root.source_map.decode(self);
external_source_map.map(|source_file_to_import| {
// We can't reuse an existing SourceFile, so allocate a new one
// containing the information we need.
let syntax_pos::SourceFile { name,
name_was_remapped,
src_hash,
start_pos,
end_pos,
mut lines,
mut multibyte_chars,
mut non_narrow_chars,
mut normalized_pos,
name_hash,
.. } = source_file_to_import;
let source_length = (end_pos - start_pos).to_usize();
// Translate line-start positions and multibyte character
// position into frame of reference local to file.
// `SourceMap::new_imported_source_file()` will then translate those
// coordinates to their new global frame of reference when the
// offset of the SourceFile is known.
for pos in &mut lines {
*pos = *pos - start_pos;
}
for mbc in &mut multibyte_chars {
mbc.pos = mbc.pos - start_pos;
}
for swc in &mut non_narrow_chars {
*swc = *swc - start_pos;
}
for np in &mut normalized_pos {
np.pos = np.pos - start_pos;
}
let local_version = local_source_map.new_imported_source_file(name,
name_was_remapped,
self.cnum.as_u32(),
src_hash,
name_hash,
source_length,
lines,
multibyte_chars,
non_narrow_chars,
normalized_pos);
debug!("CrateMetaData::imported_source_files alloc \
source_file {:?} original (start_pos {:?} end_pos {:?}) \
translated (start_pos {:?} end_pos {:?})",
local_version.name, start_pos, end_pos,
local_version.start_pos, local_version.end_pos);
ImportedSourceFile {
original_start_pos: start_pos,
original_end_pos: end_pos,
translated_source_file: local_version,
}
}).collect()
})
}
/// Get the `DepNodeIndex` corresponding this crate. The result of this
/// method is cached in the `dep_node_index` field.
fn get_crate_dep_node_index(&self, tcx: TyCtxt<'tcx>) -> DepNodeIndex {
let mut dep_node_index = self.dep_node_index.load();
if unlikely!(dep_node_index == DepNodeIndex::INVALID) {
// We have not cached the DepNodeIndex for this upstream crate yet,
// so use the dep-graph to find it out and cache it.
// Note that multiple threads can enter this block concurrently.
// That is fine because the DepNodeIndex remains constant
// throughout the whole compilation session, and multiple stores
// would always write the same value.
let def_path_hash = self.def_path_hash(CRATE_DEF_INDEX);
let dep_node = def_path_hash.to_dep_node(dep_graph::DepKind::CrateMetadata);
dep_node_index = tcx.dep_graph.dep_node_index_of(&dep_node);
assert!(dep_node_index != DepNodeIndex::INVALID);
self.dep_node_index.store(dep_node_index);
}
dep_node_index
}
crate fn dependencies(&self) -> LockGuard<'_, Vec<CrateNum>> {
self.dependencies.borrow()
}
crate fn add_dependency(&self, cnum: CrateNum) {
self.dependencies.borrow_mut().push(cnum);
}
crate fn update_extern_crate(&self, new_extern_crate: ExternCrate) -> bool {
let mut extern_crate = self.extern_crate.borrow_mut();
let update = Some(new_extern_crate.rank()) > extern_crate.as_ref().map(ExternCrate::rank);
if update {
*extern_crate = Some(new_extern_crate);
}
update
}
crate fn source(&self) -> &CrateSource {
&self.source
}
crate fn dep_kind(&self) -> DepKind {
*self.dep_kind.lock()
}
crate fn update_dep_kind(&self, f: impl FnOnce(DepKind) -> DepKind) {
self.dep_kind.with_lock(|dep_kind| *dep_kind = f(*dep_kind))
}
crate fn panic_strategy(&self) -> PanicStrategy {
self.root.panic_strategy
}
crate fn needs_panic_runtime(&self) -> bool {
self.root.needs_panic_runtime
}
crate fn is_panic_runtime(&self) -> bool {
self.root.panic_runtime
}
crate fn is_sanitizer_runtime(&self) -> bool {
self.root.sanitizer_runtime
}
crate fn is_profiler_runtime(&self) -> bool {
self.root.profiler_runtime
}
crate fn needs_allocator(&self) -> bool {
self.root.needs_allocator
}
crate fn has_global_allocator(&self) -> bool {
self.root.has_global_allocator
}
crate fn has_default_lib_allocator(&self) -> bool {
self.root.has_default_lib_allocator
}
crate fn is_proc_macro_crate(&self) -> bool {
self.root.is_proc_macro_crate()
}
crate fn name(&self) -> Symbol {
self.root.name
}
crate fn disambiguator(&self) -> CrateDisambiguator {
self.root.disambiguator
}
crate fn hash(&self) -> Svh {
self.root.hash
}
}
// Cannot be implemented on 'ProcMacro', as libproc_macro
// does not depend on libsyntax
fn macro_kind(raw: &ProcMacro) -> MacroKind {
match raw {
ProcMacro::CustomDerive { .. } => MacroKind::Derive,
ProcMacro::Attr { .. } => MacroKind::Attr,
ProcMacro::Bang { .. } => MacroKind::Bang
}
}