blob: 1ea9362dc4260ea16c52a90cac5518903533a1ba [file] [log] [blame]
//! Set and unset common attributes on LLVM values.
use std::ffi::CString;
use rustc::hir::CodegenFnAttrFlags;
use rustc::hir::def_id::{DefId, LOCAL_CRATE};
use rustc::session::Session;
use rustc::session::config::{Sanitizer, OptLevel};
use rustc::ty::{self, TyCtxt, Ty};
use rustc::ty::layout::HasTyCtxt;
use rustc::ty::query::Providers;
use rustc_data_structures::small_c_str::SmallCStr;
use rustc_data_structures::fx::FxHashMap;
use rustc_target::abi::call::Conv;
use rustc_target::spec::PanicStrategy;
use rustc_codegen_ssa::traits::*;
use crate::abi::FnAbi;
use crate::attributes;
use crate::llvm::{self, Attribute};
use crate::llvm::AttributePlace::Function;
use crate::llvm_util;
pub use syntax::attr::{self, InlineAttr, OptimizeAttr};
use crate::context::CodegenCx;
use crate::value::Value;
/// Mark LLVM function to use provided inline heuristic.
#[inline]
fn inline(cx: &CodegenCx<'ll, '_>, val: &'ll Value, inline: InlineAttr) {
use self::InlineAttr::*;
match inline {
Hint => Attribute::InlineHint.apply_llfn(Function, val),
Always => Attribute::AlwaysInline.apply_llfn(Function, val),
Never => {
if cx.tcx().sess.target.target.arch != "amdgpu" {
Attribute::NoInline.apply_llfn(Function, val);
}
},
None => {
Attribute::InlineHint.unapply_llfn(Function, val);
Attribute::AlwaysInline.unapply_llfn(Function, val);
Attribute::NoInline.unapply_llfn(Function, val);
},
};
}
/// Tell LLVM to emit or not emit the information necessary to unwind the stack for the function.
#[inline]
pub fn emit_uwtable(val: &'ll Value, emit: bool) {
Attribute::UWTable.toggle_llfn(Function, val, emit);
}
/// Tell LLVM whether the function can or cannot unwind.
#[inline]
fn unwind(val: &'ll Value, can_unwind: bool) {
Attribute::NoUnwind.toggle_llfn(Function, val, !can_unwind);
}
/// Tell LLVM if this function should be 'naked', i.e., skip the epilogue and prologue.
#[inline]
fn naked(val: &'ll Value, is_naked: bool) {
Attribute::Naked.toggle_llfn(Function, val, is_naked);
}
pub fn set_frame_pointer_elimination(cx: &CodegenCx<'ll, '_>, llfn: &'ll Value) {
if cx.sess().must_not_eliminate_frame_pointers() {
llvm::AddFunctionAttrStringValue(
llfn, llvm::AttributePlace::Function,
const_cstr!("no-frame-pointer-elim"), const_cstr!("true"));
}
}
/// Tell LLVM what instrument function to insert.
#[inline]
fn set_instrument_function(cx: &CodegenCx<'ll, '_>, llfn: &'ll Value) {
if cx.sess().instrument_mcount() {
// Similar to `clang -pg` behavior. Handled by the
// `post-inline-ee-instrument` LLVM pass.
// The function name varies on platforms.
// See test/CodeGen/mcount.c in clang.
let mcount_name = CString::new(
cx.sess().target.target.options.target_mcount.as_str().as_bytes()).unwrap();
llvm::AddFunctionAttrStringValue(
llfn, llvm::AttributePlace::Function,
const_cstr!("instrument-function-entry-inlined"), &mcount_name);
}
}
fn set_probestack(cx: &CodegenCx<'ll, '_>, llfn: &'ll Value) {
// Only use stack probes if the target specification indicates that we
// should be using stack probes
if !cx.sess().target.target.options.stack_probes {
return
}
// Currently stack probes seem somewhat incompatible with the address
// sanitizer and thread sanitizer. With asan we're already protected from
// stack overflow anyway so we don't really need stack probes regardless.
match cx.sess().opts.debugging_opts.sanitizer {
Some(Sanitizer::Address) |
Some(Sanitizer::Thread) => return,
_ => {},
}
// probestack doesn't play nice either with `-C profile-generate`.
if cx.sess().opts.cg.profile_generate.enabled() {
return;
}
// probestack doesn't play nice either with gcov profiling.
if cx.sess().opts.debugging_opts.profile {
return;
}
// Flag our internal `__rust_probestack` function as the stack probe symbol.
// This is defined in the `compiler-builtins` crate for each architecture.
llvm::AddFunctionAttrStringValue(
llfn, llvm::AttributePlace::Function,
const_cstr!("probe-stack"), const_cstr!("__rust_probestack"));
}
fn translate_obsolete_target_features(feature: &str) -> &str {
const LLVM9_FEATURE_CHANGES: &[(&str, &str)] = &[
("+fp-only-sp", "-fp64"),
("-fp-only-sp", "+fp64"),
("+d16", "-d32"),
("-d16", "+d32"),
];
if llvm_util::get_major_version() >= 9 {
for &(old, new) in LLVM9_FEATURE_CHANGES {
if feature == old {
return new;
}
}
} else {
for &(old, new) in LLVM9_FEATURE_CHANGES {
if feature == new {
return old;
}
}
}
feature
}
pub fn llvm_target_features(sess: &Session) -> impl Iterator<Item = &str> {
const RUSTC_SPECIFIC_FEATURES: &[&str] = &[
"crt-static",
];
let cmdline = sess.opts.cg.target_feature.split(',')
.filter(|f| !RUSTC_SPECIFIC_FEATURES.iter().any(|s| f.contains(s)));
sess.target.target.options.features.split(',')
.chain(cmdline)
.filter(|l| !l.is_empty())
.map(translate_obsolete_target_features)
}
pub fn apply_target_cpu_attr(cx: &CodegenCx<'ll, '_>, llfn: &'ll Value) {
let target_cpu = SmallCStr::new(llvm_util::target_cpu(cx.tcx.sess));
llvm::AddFunctionAttrStringValue(
llfn,
llvm::AttributePlace::Function,
const_cstr!("target-cpu"),
target_cpu.as_c_str());
}
/// Sets the `NonLazyBind` LLVM attribute on a given function,
/// assuming the codegen options allow skipping the PLT.
pub fn non_lazy_bind(sess: &Session, llfn: &'ll Value) {
// Don't generate calls through PLT if it's not necessary
if !sess.needs_plt() {
Attribute::NonLazyBind.apply_llfn(Function, llfn);
}
}
pub(crate) fn default_optimisation_attrs(sess: &Session, llfn: &'ll Value) {
match sess.opts.optimize {
OptLevel::Size => {
llvm::Attribute::MinSize.unapply_llfn(Function, llfn);
llvm::Attribute::OptimizeForSize.apply_llfn(Function, llfn);
llvm::Attribute::OptimizeNone.unapply_llfn(Function, llfn);
},
OptLevel::SizeMin => {
llvm::Attribute::MinSize.apply_llfn(Function, llfn);
llvm::Attribute::OptimizeForSize.apply_llfn(Function, llfn);
llvm::Attribute::OptimizeNone.unapply_llfn(Function, llfn);
}
OptLevel::No => {
llvm::Attribute::MinSize.unapply_llfn(Function, llfn);
llvm::Attribute::OptimizeForSize.unapply_llfn(Function, llfn);
llvm::Attribute::OptimizeNone.unapply_llfn(Function, llfn);
}
_ => {}
}
}
/// Composite function which sets LLVM attributes for function depending on its AST (`#[attribute]`)
/// attributes.
pub fn from_fn_attrs(
cx: &CodegenCx<'ll, 'tcx>,
llfn: &'ll Value,
instance: ty::Instance<'tcx>,
fn_abi: &FnAbi<'tcx, Ty<'tcx>>,
) {
let codegen_fn_attrs = cx.tcx.codegen_fn_attrs(instance.def_id());
match codegen_fn_attrs.optimize {
OptimizeAttr::None => {
default_optimisation_attrs(cx.tcx.sess, llfn);
}
OptimizeAttr::Speed => {
llvm::Attribute::MinSize.unapply_llfn(Function, llfn);
llvm::Attribute::OptimizeForSize.unapply_llfn(Function, llfn);
llvm::Attribute::OptimizeNone.unapply_llfn(Function, llfn);
}
OptimizeAttr::Size => {
llvm::Attribute::MinSize.apply_llfn(Function, llfn);
llvm::Attribute::OptimizeForSize.apply_llfn(Function, llfn);
llvm::Attribute::OptimizeNone.unapply_llfn(Function, llfn);
}
}
// FIXME(eddyb) consolidate these two `inline` calls (and avoid overwrites).
if instance.def.is_inline(cx.tcx) {
inline(cx, llfn, attributes::InlineAttr::Hint);
}
inline(cx, llfn, codegen_fn_attrs.inline);
// The `uwtable` attribute according to LLVM is:
//
// This attribute indicates that the ABI being targeted requires that an
// unwind table entry be produced for this function even if we can show
// that no exceptions passes by it. This is normally the case for the
// ELF x86-64 abi, but it can be disabled for some compilation units.
//
// Typically when we're compiling with `-C panic=abort` (which implies this
// `no_landing_pads` check) we don't need `uwtable` because we can't
// generate any exceptions! On Windows, however, exceptions include other
// events such as illegal instructions, segfaults, etc. This means that on
// Windows we end up still needing the `uwtable` attribute even if the `-C
// panic=abort` flag is passed.
//
// You can also find more info on why Windows is whitelisted here in:
// https://bugzilla.mozilla.org/show_bug.cgi?id=1302078
if !cx.sess().no_landing_pads() ||
cx.sess().target.target.options.requires_uwtable {
attributes::emit_uwtable(llfn, true);
}
set_frame_pointer_elimination(cx, llfn);
set_instrument_function(cx, llfn);
set_probestack(cx, llfn);
if codegen_fn_attrs.flags.contains(CodegenFnAttrFlags::COLD) {
Attribute::Cold.apply_llfn(Function, llfn);
}
if codegen_fn_attrs.flags.contains(CodegenFnAttrFlags::FFI_RETURNS_TWICE) {
Attribute::ReturnsTwice.apply_llfn(Function, llfn);
}
if codegen_fn_attrs.flags.contains(CodegenFnAttrFlags::NAKED) {
naked(llfn, true);
}
if codegen_fn_attrs.flags.contains(CodegenFnAttrFlags::ALLOCATOR) {
Attribute::NoAlias.apply_llfn(
llvm::AttributePlace::ReturnValue, llfn);
}
unwind(llfn, if cx.tcx.sess.panic_strategy() != PanicStrategy::Unwind {
// In panic=abort mode we assume nothing can unwind anywhere, so
// optimize based on this!
false
} else if codegen_fn_attrs.flags.contains(CodegenFnAttrFlags::UNWIND) {
// If a specific #[unwind] attribute is present, use that.
true
} else if codegen_fn_attrs.flags.contains(CodegenFnAttrFlags::RUSTC_ALLOCATOR_NOUNWIND) {
// Special attribute for allocator functions, which can't unwind.
false
} else {
if fn_abi.conv == Conv::Rust {
// Any Rust method (or `extern "Rust" fn` or `extern
// "rust-call" fn`) is explicitly allowed to unwind
// (unless it has no-unwind attribute, handled above).
true
} else {
// Anything else is either:
//
// 1. A foreign item using a non-Rust ABI (like `extern "C" { fn foo(); }`), or
//
// 2. A Rust item using a non-Rust ABI (like `extern "C" fn foo() { ... }`).
//
// Foreign items (case 1) are assumed to not unwind; it is
// UB otherwise. (At least for now; see also
// rust-lang/rust#63909 and Rust RFC 2753.)
//
// Items defined in Rust with non-Rust ABIs (case 2) are also
// not supposed to unwind. Whether this should be enforced
// (versus stating it is UB) and *how* it would be enforced
// is currently under discussion; see rust-lang/rust#58794.
//
// In either case, we mark item as explicitly nounwind.
false
}
});
// Always annotate functions with the target-cpu they are compiled for.
// Without this, ThinLTO won't inline Rust functions into Clang generated
// functions (because Clang annotates functions this way too).
apply_target_cpu_attr(cx, llfn);
let features = llvm_target_features(cx.tcx.sess)
.map(|s| s.to_string())
.chain(
codegen_fn_attrs.target_features
.iter()
.map(|f| {
let feature = &f.as_str();
format!("+{}", llvm_util::to_llvm_feature(cx.tcx.sess, feature))
})
)
.collect::<Vec<String>>()
.join(",");
if !features.is_empty() {
let val = CString::new(features).unwrap();
llvm::AddFunctionAttrStringValue(
llfn, llvm::AttributePlace::Function,
const_cstr!("target-features"), &val);
}
// Note that currently the `wasm-import-module` doesn't do anything, but
// eventually LLVM 7 should read this and ferry the appropriate import
// module to the output file.
if cx.tcx.sess.target.target.arch == "wasm32" {
if let Some(module) = wasm_import_module(cx.tcx, instance.def_id()) {
llvm::AddFunctionAttrStringValue(
llfn,
llvm::AttributePlace::Function,
const_cstr!("wasm-import-module"),
&module,
);
}
}
}
pub fn provide(providers: &mut Providers<'_>) {
providers.target_features_whitelist = |tcx, cnum| {
assert_eq!(cnum, LOCAL_CRATE);
if tcx.sess.opts.actually_rustdoc {
// rustdoc needs to be able to document functions that use all the features, so
// whitelist them all
tcx.arena.alloc(llvm_util::all_known_features()
.map(|(a, b)| (a.to_string(), b))
.collect())
} else {
tcx.arena.alloc(llvm_util::target_feature_whitelist(tcx.sess)
.iter()
.map(|&(a, b)| (a.to_string(), b))
.collect())
}
};
provide_extern(providers);
}
pub fn provide_extern(providers: &mut Providers<'_>) {
providers.wasm_import_module_map = |tcx, cnum| {
// Build up a map from DefId to a `NativeLibrary` structure, where
// `NativeLibrary` internally contains information about
// `#[link(wasm_import_module = "...")]` for example.
let native_libs = tcx.native_libraries(cnum);
let def_id_to_native_lib = native_libs.iter().filter_map(|lib|
lib.foreign_module.map(|id| (id, lib))
).collect::<FxHashMap<_, _>>();
let mut ret = FxHashMap::default();
for lib in tcx.foreign_modules(cnum).iter() {
let module = def_id_to_native_lib
.get(&lib.def_id)
.and_then(|s| s.wasm_import_module);
let module = match module {
Some(s) => s,
None => continue,
};
ret.extend(lib.foreign_items.iter().map(|id| {
assert_eq!(id.krate, cnum);
(*id, module.to_string())
}));
}
tcx.arena.alloc(ret)
};
}
fn wasm_import_module(tcx: TyCtxt<'_>, id: DefId) -> Option<CString> {
tcx.wasm_import_module_map(id.krate)
.get(&id)
.map(|s| CString::new(&s[..]).unwrap())
}