blob: 35017d6330da31555805556276b32139d5099d16 [file] [log] [blame]
use super::{
ConstEvalFailure,
EvaluationResult,
FulfillmentError,
FulfillmentErrorCode,
MismatchedProjectionTypes,
ObjectSafetyViolation,
Obligation,
ObligationCause,
ObligationCauseCode,
OnUnimplementedDirective,
OnUnimplementedNote,
OutputTypeParameterMismatch,
Overflow,
PredicateObligation,
SelectionContext,
SelectionError,
TraitNotObjectSafe,
};
use crate::hir;
use crate::hir::Node;
use crate::hir::def_id::DefId;
use crate::infer::{self, InferCtxt};
use crate::infer::type_variable::{TypeVariableOrigin, TypeVariableOriginKind};
use crate::session::DiagnosticMessageId;
use crate::ty::{self, AdtKind, DefIdTree, ToPredicate, ToPolyTraitRef, Ty, TyCtxt, TypeFoldable};
use crate::ty::GenericParamDefKind;
use crate::ty::error::ExpectedFound;
use crate::ty::fast_reject;
use crate::ty::fold::TypeFolder;
use crate::ty::subst::Subst;
use crate::ty::SubtypePredicate;
use crate::util::nodemap::{FxHashMap, FxHashSet};
use errors::{Applicability, DiagnosticBuilder, pluralize, Style};
use std::fmt;
use syntax::ast;
use syntax::symbol::{sym, kw};
use syntax_pos::{DUMMY_SP, Span, ExpnKind, MultiSpan};
use rustc::hir::def_id::LOCAL_CRATE;
use syntax_pos::source_map::SourceMap;
use rustc_error_codes::*;
impl<'a, 'tcx> InferCtxt<'a, 'tcx> {
pub fn report_fulfillment_errors(
&self,
errors: &[FulfillmentError<'tcx>],
body_id: Option<hir::BodyId>,
fallback_has_occurred: bool,
) {
#[derive(Debug)]
struct ErrorDescriptor<'tcx> {
predicate: ty::Predicate<'tcx>,
index: Option<usize>, // None if this is an old error
}
let mut error_map: FxHashMap<_, Vec<_>> =
self.reported_trait_errors.borrow().iter().map(|(&span, predicates)| {
(span, predicates.iter().map(|predicate| ErrorDescriptor {
predicate: predicate.clone(),
index: None
}).collect())
}).collect();
for (index, error) in errors.iter().enumerate() {
// We want to ignore desugarings here: spans are equivalent even
// if one is the result of a desugaring and the other is not.
let mut span = error.obligation.cause.span;
let expn_data = span.ctxt().outer_expn_data();
if let ExpnKind::Desugaring(_) = expn_data.kind {
span = expn_data.call_site;
}
error_map.entry(span).or_default().push(
ErrorDescriptor {
predicate: error.obligation.predicate.clone(),
index: Some(index)
}
);
self.reported_trait_errors.borrow_mut()
.entry(span).or_default()
.push(error.obligation.predicate.clone());
}
// We do this in 2 passes because we want to display errors in order, though
// maybe it *is* better to sort errors by span or something.
let mut is_suppressed = vec![false; errors.len()];
for (_, error_set) in error_map.iter() {
// We want to suppress "duplicate" errors with the same span.
for error in error_set {
if let Some(index) = error.index {
// Suppress errors that are either:
// 1) strictly implied by another error.
// 2) implied by an error with a smaller index.
for error2 in error_set {
if error2.index.map_or(false, |index2| is_suppressed[index2]) {
// Avoid errors being suppressed by already-suppressed
// errors, to prevent all errors from being suppressed
// at once.
continue
}
if self.error_implies(&error2.predicate, &error.predicate) &&
!(error2.index >= error.index &&
self.error_implies(&error.predicate, &error2.predicate))
{
info!("skipping {:?} (implied by {:?})", error, error2);
is_suppressed[index] = true;
break
}
}
}
}
}
for (error, suppressed) in errors.iter().zip(is_suppressed) {
if !suppressed {
self.report_fulfillment_error(error, body_id, fallback_has_occurred);
}
}
}
// returns if `cond` not occurring implies that `error` does not occur - i.e., that
// `error` occurring implies that `cond` occurs.
fn error_implies(
&self,
cond: &ty::Predicate<'tcx>,
error: &ty::Predicate<'tcx>,
) -> bool {
if cond == error {
return true
}
let (cond, error) = match (cond, error) {
(&ty::Predicate::Trait(..), &ty::Predicate::Trait(ref error))
=> (cond, error),
_ => {
// FIXME: make this work in other cases too.
return false
}
};
for implication in super::elaborate_predicates(self.tcx, vec![cond.clone()]) {
if let ty::Predicate::Trait(implication) = implication {
let error = error.to_poly_trait_ref();
let implication = implication.to_poly_trait_ref();
// FIXME: I'm just not taking associated types at all here.
// Eventually I'll need to implement param-env-aware
// `Γ₁ ⊦ φ₁ => Γ₂ ⊦ φ₂` logic.
let param_env = ty::ParamEnv::empty();
if self.can_sub(param_env, error, implication).is_ok() {
debug!("error_implies: {:?} -> {:?} -> {:?}", cond, error, implication);
return true
}
}
}
false
}
fn report_fulfillment_error(
&self,
error: &FulfillmentError<'tcx>,
body_id: Option<hir::BodyId>,
fallback_has_occurred: bool,
) {
debug!("report_fulfillment_error({:?})", error);
match error.code {
FulfillmentErrorCode::CodeSelectionError(ref selection_error) => {
self.report_selection_error(
&error.obligation,
selection_error,
fallback_has_occurred,
error.points_at_arg_span,
);
}
FulfillmentErrorCode::CodeProjectionError(ref e) => {
self.report_projection_error(&error.obligation, e);
}
FulfillmentErrorCode::CodeAmbiguity => {
self.maybe_report_ambiguity(&error.obligation, body_id);
}
FulfillmentErrorCode::CodeSubtypeError(ref expected_found, ref err) => {
self.report_mismatched_types(
&error.obligation.cause,
expected_found.expected,
expected_found.found,
err.clone(),
).emit();
}
}
}
fn report_projection_error(
&self,
obligation: &PredicateObligation<'tcx>,
error: &MismatchedProjectionTypes<'tcx>,
) {
let predicate = self.resolve_vars_if_possible(&obligation.predicate);
if predicate.references_error() {
return
}
self.probe(|_| {
let err_buf;
let mut err = &error.err;
let mut values = None;
// try to find the mismatched types to report the error with.
//
// this can fail if the problem was higher-ranked, in which
// cause I have no idea for a good error message.
if let ty::Predicate::Projection(ref data) = predicate {
let mut selcx = SelectionContext::new(self);
let (data, _) = self.replace_bound_vars_with_fresh_vars(
obligation.cause.span,
infer::LateBoundRegionConversionTime::HigherRankedType,
data
);
let mut obligations = vec![];
let normalized_ty = super::normalize_projection_type(
&mut selcx,
obligation.param_env,
data.projection_ty,
obligation.cause.clone(),
0,
&mut obligations
);
debug!("report_projection_error obligation.cause={:?} obligation.param_env={:?}",
obligation.cause, obligation.param_env);
debug!("report_projection_error normalized_ty={:?} data.ty={:?}",
normalized_ty, data.ty);
let is_normalized_ty_expected = match &obligation.cause.code {
ObligationCauseCode::ItemObligation(_) |
ObligationCauseCode::BindingObligation(_, _) |
ObligationCauseCode::ObjectCastObligation(_) => false,
_ => true,
};
if let Err(error) = self.at(&obligation.cause, obligation.param_env)
.eq_exp(is_normalized_ty_expected, normalized_ty, data.ty)
{
values = Some(infer::ValuePairs::Types(
ExpectedFound::new(is_normalized_ty_expected, normalized_ty, data.ty)));
err_buf = error;
err = &err_buf;
}
}
let msg = format!("type mismatch resolving `{}`", predicate);
let error_id = (
DiagnosticMessageId::ErrorId(271),
Some(obligation.cause.span),
msg,
);
let fresh = self.tcx.sess.one_time_diagnostics.borrow_mut().insert(error_id);
if fresh {
let mut diag = struct_span_err!(
self.tcx.sess,
obligation.cause.span,
E0271,
"type mismatch resolving `{}`",
predicate
);
self.note_type_err(&mut diag, &obligation.cause, None, values, err);
self.note_obligation_cause(&mut diag, obligation);
diag.emit();
}
});
}
fn fuzzy_match_tys(&self, a: Ty<'tcx>, b: Ty<'tcx>) -> bool {
/// returns the fuzzy category of a given type, or None
/// if the type can be equated to any type.
fn type_category(t: Ty<'_>) -> Option<u32> {
match t.kind {
ty::Bool => Some(0),
ty::Char => Some(1),
ty::Str => Some(2),
ty::Int(..) | ty::Uint(..) | ty::Infer(ty::IntVar(..)) => Some(3),
ty::Float(..) | ty::Infer(ty::FloatVar(..)) => Some(4),
ty::Ref(..) | ty::RawPtr(..) => Some(5),
ty::Array(..) | ty::Slice(..) => Some(6),
ty::FnDef(..) | ty::FnPtr(..) => Some(7),
ty::Dynamic(..) => Some(8),
ty::Closure(..) => Some(9),
ty::Tuple(..) => Some(10),
ty::Projection(..) => Some(11),
ty::Param(..) => Some(12),
ty::Opaque(..) => Some(13),
ty::Never => Some(14),
ty::Adt(adt, ..) => match adt.adt_kind() {
AdtKind::Struct => Some(15),
AdtKind::Union => Some(16),
AdtKind::Enum => Some(17),
},
ty::Generator(..) => Some(18),
ty::Foreign(..) => Some(19),
ty::GeneratorWitness(..) => Some(20),
ty::Placeholder(..) | ty::Bound(..) | ty::Infer(..) | ty::Error => None,
ty::UnnormalizedProjection(..) => bug!("only used with chalk-engine"),
}
}
match (type_category(a), type_category(b)) {
(Some(cat_a), Some(cat_b)) => match (&a.kind, &b.kind) {
(&ty::Adt(def_a, _), &ty::Adt(def_b, _)) => def_a == def_b,
_ => cat_a == cat_b
},
// infer and error can be equated to all types
_ => true
}
}
fn impl_similar_to(&self,
trait_ref: ty::PolyTraitRef<'tcx>,
obligation: &PredicateObligation<'tcx>)
-> Option<DefId>
{
let tcx = self.tcx;
let param_env = obligation.param_env;
let trait_ref = tcx.erase_late_bound_regions(&trait_ref);
let trait_self_ty = trait_ref.self_ty();
let mut self_match_impls = vec![];
let mut fuzzy_match_impls = vec![];
self.tcx.for_each_relevant_impl(
trait_ref.def_id, trait_self_ty, |def_id| {
let impl_substs = self.fresh_substs_for_item(obligation.cause.span, def_id);
let impl_trait_ref = tcx
.impl_trait_ref(def_id)
.unwrap()
.subst(tcx, impl_substs);
let impl_self_ty = impl_trait_ref.self_ty();
if let Ok(..) = self.can_eq(param_env, trait_self_ty, impl_self_ty) {
self_match_impls.push(def_id);
if trait_ref.substs.types().skip(1)
.zip(impl_trait_ref.substs.types().skip(1))
.all(|(u,v)| self.fuzzy_match_tys(u, v))
{
fuzzy_match_impls.push(def_id);
}
}
});
let impl_def_id = if self_match_impls.len() == 1 {
self_match_impls[0]
} else if fuzzy_match_impls.len() == 1 {
fuzzy_match_impls[0]
} else {
return None
};
tcx.has_attr(impl_def_id, sym::rustc_on_unimplemented).then_some(impl_def_id)
}
fn describe_generator(&self, body_id: hir::BodyId) -> Option<&'static str> {
self.tcx.hir().body(body_id).generator_kind.map(|gen_kind| {
match gen_kind {
hir::GeneratorKind::Gen => "a generator",
hir::GeneratorKind::Async(hir::AsyncGeneratorKind::Block) => "an async block",
hir::GeneratorKind::Async(hir::AsyncGeneratorKind::Fn) => "an async function",
hir::GeneratorKind::Async(hir::AsyncGeneratorKind::Closure) => "an async closure",
}
})
}
/// Used to set on_unimplemented's `ItemContext`
/// to be the enclosing (async) block/function/closure
fn describe_enclosure(&self, hir_id: hir::HirId) -> Option<&'static str> {
let hir = &self.tcx.hir();
let node = hir.find(hir_id)?;
if let hir::Node::Item(
hir::Item{kind: hir::ItemKind::Fn(sig, _, body_id), .. }) = &node {
self.describe_generator(*body_id).or_else(||
Some(if let hir::FnHeader{ asyncness: hir::IsAsync::Async, .. } = sig.header {
"an async function"
} else {
"a function"
})
)
} else if let hir::Node::Expr(hir::Expr {
kind: hir::ExprKind::Closure(_is_move, _, body_id, _, gen_movability), .. }) = &node {
self.describe_generator(*body_id).or_else(||
Some(if gen_movability.is_some() {
"an async closure"
} else {
"a closure"
})
)
} else if let hir::Node::Expr(hir::Expr { .. }) = &node {
let parent_hid = hir.get_parent_node(hir_id);
if parent_hid != hir_id {
return self.describe_enclosure(parent_hid);
} else {
None
}
} else {
None
}
}
fn on_unimplemented_note(
&self,
trait_ref: ty::PolyTraitRef<'tcx>,
obligation: &PredicateObligation<'tcx>,
) -> OnUnimplementedNote {
let def_id = self.impl_similar_to(trait_ref, obligation)
.unwrap_or_else(|| trait_ref.def_id());
let trait_ref = *trait_ref.skip_binder();
let mut flags = vec![];
flags.push((sym::item_context,
self.describe_enclosure(obligation.cause.body_id).map(|s|s.to_owned())));
match obligation.cause.code {
ObligationCauseCode::BuiltinDerivedObligation(..) |
ObligationCauseCode::ImplDerivedObligation(..) => {}
_ => {
// this is a "direct", user-specified, rather than derived,
// obligation.
flags.push((sym::direct, None));
}
}
if let ObligationCauseCode::ItemObligation(item) = obligation.cause.code {
// FIXME: maybe also have some way of handling methods
// from other traits? That would require name resolution,
// which we might want to be some sort of hygienic.
//
// Currently I'm leaving it for what I need for `try`.
if self.tcx.trait_of_item(item) == Some(trait_ref.def_id) {
let method = self.tcx.item_name(item);
flags.push((sym::from_method, None));
flags.push((sym::from_method, Some(method.to_string())));
}
}
if let Some(t) = self.get_parent_trait_ref(&obligation.cause.code) {
flags.push((sym::parent_trait, Some(t)));
}
if let Some(k) = obligation.cause.span.desugaring_kind() {
flags.push((sym::from_desugaring, None));
flags.push((sym::from_desugaring, Some(format!("{:?}", k))));
}
let generics = self.tcx.generics_of(def_id);
let self_ty = trait_ref.self_ty();
// This is also included through the generics list as `Self`,
// but the parser won't allow you to use it
flags.push((sym::_Self, Some(self_ty.to_string())));
if let Some(def) = self_ty.ty_adt_def() {
// We also want to be able to select self's original
// signature with no type arguments resolved
flags.push((sym::_Self, Some(self.tcx.type_of(def.did).to_string())));
}
for param in generics.params.iter() {
let value = match param.kind {
GenericParamDefKind::Type { .. } |
GenericParamDefKind::Const => {
trait_ref.substs[param.index as usize].to_string()
},
GenericParamDefKind::Lifetime => continue,
};
let name = param.name;
flags.push((name, Some(value)));
}
if let Some(true) = self_ty.ty_adt_def().map(|def| def.did.is_local()) {
flags.push((sym::crate_local, None));
}
// Allow targeting all integers using `{integral}`, even if the exact type was resolved
if self_ty.is_integral() {
flags.push((sym::_Self, Some("{integral}".to_owned())));
}
if let ty::Array(aty, len) = self_ty.kind {
flags.push((sym::_Self, Some("[]".to_owned())));
flags.push((sym::_Self, Some(format!("[{}]", aty))));
if let Some(def) = aty.ty_adt_def() {
// We also want to be able to select the array's type's original
// signature with no type arguments resolved
flags.push((
sym::_Self,
Some(format!("[{}]", self.tcx.type_of(def.did).to_string())),
));
let tcx = self.tcx;
if let Some(len) = len.try_eval_usize(tcx, ty::ParamEnv::empty()) {
flags.push((
sym::_Self,
Some(format!("[{}; {}]", self.tcx.type_of(def.did).to_string(), len)),
));
} else {
flags.push((
sym::_Self,
Some(format!("[{}; _]", self.tcx.type_of(def.did).to_string())),
));
}
}
}
if let Ok(Some(command)) = OnUnimplementedDirective::of_item(
self.tcx, trait_ref.def_id, def_id
) {
command.evaluate(self.tcx, trait_ref, &flags[..])
} else {
OnUnimplementedNote::default()
}
}
fn find_similar_impl_candidates(
&self,
trait_ref: ty::PolyTraitRef<'tcx>,
) -> Vec<ty::TraitRef<'tcx>> {
let simp = fast_reject::simplify_type(self.tcx, trait_ref.skip_binder().self_ty(), true);
let all_impls = self.tcx.all_impls(trait_ref.def_id());
match simp {
Some(simp) => all_impls.iter().filter_map(|&def_id| {
let imp = self.tcx.impl_trait_ref(def_id).unwrap();
let imp_simp = fast_reject::simplify_type(self.tcx, imp.self_ty(), true);
if let Some(imp_simp) = imp_simp {
if simp != imp_simp {
return None
}
}
Some(imp)
}).collect(),
None => all_impls.iter().map(|&def_id|
self.tcx.impl_trait_ref(def_id).unwrap()
).collect()
}
}
fn report_similar_impl_candidates(
&self,
impl_candidates: Vec<ty::TraitRef<'tcx>>,
err: &mut DiagnosticBuilder<'_>,
) {
if impl_candidates.is_empty() {
return;
}
let len = impl_candidates.len();
let end = if impl_candidates.len() <= 5 {
impl_candidates.len()
} else {
4
};
let normalize = |candidate| self.tcx.infer_ctxt().enter(|ref infcx| {
let normalized = infcx
.at(&ObligationCause::dummy(), ty::ParamEnv::empty())
.normalize(candidate)
.ok();
match normalized {
Some(normalized) => format!("\n {:?}", normalized.value),
None => format!("\n {:?}", candidate),
}
});
// Sort impl candidates so that ordering is consistent for UI tests.
let mut normalized_impl_candidates = impl_candidates
.iter()
.map(normalize)
.collect::<Vec<String>>();
// Sort before taking the `..end` range,
// because the ordering of `impl_candidates` may not be deterministic:
// https://github.com/rust-lang/rust/pull/57475#issuecomment-455519507
normalized_impl_candidates.sort();
err.help(&format!("the following implementations were found:{}{}",
normalized_impl_candidates[..end].join(""),
if len > 5 {
format!("\nand {} others", len - 4)
} else {
String::new()
}
));
}
/// Reports that an overflow has occurred and halts compilation. We
/// halt compilation unconditionally because it is important that
/// overflows never be masked -- they basically represent computations
/// whose result could not be truly determined and thus we can't say
/// if the program type checks or not -- and they are unusual
/// occurrences in any case.
pub fn report_overflow_error<T>(
&self,
obligation: &Obligation<'tcx, T>,
suggest_increasing_limit: bool,
) -> !
where T: fmt::Display + TypeFoldable<'tcx>
{
let predicate =
self.resolve_vars_if_possible(&obligation.predicate);
let mut err = struct_span_err!(
self.tcx.sess,
obligation.cause.span,
E0275,
"overflow evaluating the requirement `{}`",
predicate
);
if suggest_increasing_limit {
self.suggest_new_overflow_limit(&mut err);
}
self.note_obligation_cause_code(
&mut err,
&obligation.predicate,
&obligation.cause.code,
&mut vec![],
);
err.emit();
self.tcx.sess.abort_if_errors();
bug!();
}
/// Reports that a cycle was detected which led to overflow and halts
/// compilation. This is equivalent to `report_overflow_error` except
/// that we can give a more helpful error message (and, in particular,
/// we do not suggest increasing the overflow limit, which is not
/// going to help).
pub fn report_overflow_error_cycle(&self, cycle: &[PredicateObligation<'tcx>]) -> ! {
let cycle = self.resolve_vars_if_possible(&cycle.to_owned());
assert!(cycle.len() > 0);
debug!("report_overflow_error_cycle: cycle={:?}", cycle);
self.report_overflow_error(&cycle[0], false);
}
pub fn report_extra_impl_obligation(&self,
error_span: Span,
item_name: ast::Name,
_impl_item_def_id: DefId,
trait_item_def_id: DefId,
requirement: &dyn fmt::Display)
-> DiagnosticBuilder<'tcx>
{
let msg = "impl has stricter requirements than trait";
let sp = self.tcx.sess.source_map().def_span(error_span);
let mut err = struct_span_err!(self.tcx.sess, sp, E0276, "{}", msg);
if let Some(trait_item_span) = self.tcx.hir().span_if_local(trait_item_def_id) {
let span = self.tcx.sess.source_map().def_span(trait_item_span);
err.span_label(span, format!("definition of `{}` from trait", item_name));
}
err.span_label(sp, format!("impl has extra requirement {}", requirement));
err
}
/// Gets the parent trait chain start
fn get_parent_trait_ref(&self, code: &ObligationCauseCode<'tcx>) -> Option<String> {
match code {
&ObligationCauseCode::BuiltinDerivedObligation(ref data) => {
let parent_trait_ref = self.resolve_vars_if_possible(
&data.parent_trait_ref);
match self.get_parent_trait_ref(&data.parent_code) {
Some(t) => Some(t),
None => Some(parent_trait_ref.skip_binder().self_ty().to_string()),
}
}
_ => None,
}
}
pub fn report_selection_error(
&self,
obligation: &PredicateObligation<'tcx>,
error: &SelectionError<'tcx>,
fallback_has_occurred: bool,
points_at_arg: bool,
) {
let tcx = self.tcx;
let span = obligation.cause.span;
let mut err = match *error {
SelectionError::Unimplemented => {
if let ObligationCauseCode::CompareImplMethodObligation {
item_name, impl_item_def_id, trait_item_def_id,
} = obligation.cause.code {
self.report_extra_impl_obligation(
span,
item_name,
impl_item_def_id,
trait_item_def_id,
&format!("`{}`", obligation.predicate))
.emit();
return;
}
match obligation.predicate {
ty::Predicate::Trait(ref trait_predicate) => {
let trait_predicate = self.resolve_vars_if_possible(trait_predicate);
if self.tcx.sess.has_errors() && trait_predicate.references_error() {
return;
}
let trait_ref = trait_predicate.to_poly_trait_ref();
let (
post_message,
pre_message,
) = self.get_parent_trait_ref(&obligation.cause.code)
.map(|t| (format!(" in `{}`", t), format!("within `{}`, ", t)))
.unwrap_or_default();
let OnUnimplementedNote {
message,
label,
note,
enclosing_scope,
} = self.on_unimplemented_note(trait_ref, obligation);
let have_alt_message = message.is_some() || label.is_some();
let is_try = self.tcx.sess.source_map().span_to_snippet(span)
.map(|s| &s == "?")
.unwrap_or(false);
let is_from =
format!("{}", trait_ref.print_only_trait_path())
.starts_with("std::convert::From<");
let (message, note) = if is_try && is_from {
(Some(format!(
"`?` couldn't convert the error to `{}`",
trait_ref.self_ty(),
)), Some(
"the question mark operation (`?`) implicitly performs a \
conversion on the error value using the `From` trait".to_owned()
))
} else {
(message, note)
};
let mut err = struct_span_err!(
self.tcx.sess,
span,
E0277,
"{}",
message.unwrap_or_else(|| format!(
"the trait bound `{}` is not satisfied{}",
trait_ref.to_predicate(),
post_message,
)));
let explanation =
if obligation.cause.code == ObligationCauseCode::MainFunctionType {
"consider using `()`, or a `Result`".to_owned()
} else {
format!(
"{}the trait `{}` is not implemented for `{}`",
pre_message,
trait_ref.print_only_trait_path(),
trait_ref.self_ty(),
)
};
if self.suggest_add_reference_to_arg(
&obligation,
&mut err,
&trait_ref,
points_at_arg,
have_alt_message,
) {
self.note_obligation_cause(&mut err, obligation);
err.emit();
return;
}
if let Some(ref s) = label {
// If it has a custom `#[rustc_on_unimplemented]`
// error message, let's display it as the label!
err.span_label(span, s.as_str());
err.help(&explanation);
} else {
err.span_label(span, explanation);
}
if let Some(ref s) = note {
// If it has a custom `#[rustc_on_unimplemented]` note, let's display it
err.note(s.as_str());
}
if let Some(ref s) = enclosing_scope {
let enclosing_scope_span = tcx.def_span(
tcx.hir()
.opt_local_def_id(obligation.cause.body_id)
.unwrap_or_else(|| {
tcx.hir().body_owner_def_id(hir::BodyId {
hir_id: obligation.cause.body_id,
})
}),
);
err.span_label(enclosing_scope_span, s.as_str());
}
self.suggest_borrow_on_unsized_slice(&obligation.cause.code, &mut err);
self.suggest_fn_call(&obligation, &mut err, &trait_ref, points_at_arg);
self.suggest_remove_reference(&obligation, &mut err, &trait_ref);
self.suggest_semicolon_removal(&obligation, &mut err, span, &trait_ref);
self.note_version_mismatch(&mut err, &trait_ref);
// Try to report a help message
if !trait_ref.has_infer_types() &&
self.predicate_can_apply(obligation.param_env, trait_ref) {
// If a where-clause may be useful, remind the
// user that they can add it.
//
// don't display an on-unimplemented note, as
// these notes will often be of the form
// "the type `T` can't be frobnicated"
// which is somewhat confusing.
self.suggest_restricting_param_bound(
&mut err,
&trait_ref,
obligation.cause.body_id,
);
} else {
if !have_alt_message {
// Can't show anything else useful, try to find similar impls.
let impl_candidates = self.find_similar_impl_candidates(trait_ref);
self.report_similar_impl_candidates(impl_candidates, &mut err);
}
self.suggest_change_mut(
&obligation,
&mut err,
&trait_ref,
points_at_arg,
);
}
// If this error is due to `!: Trait` not implemented but `(): Trait` is
// implemented, and fallback has occurred, then it could be due to a
// variable that used to fallback to `()` now falling back to `!`. Issue a
// note informing about the change in behaviour.
if trait_predicate.skip_binder().self_ty().is_never()
&& fallback_has_occurred
{
let predicate = trait_predicate.map_bound(|mut trait_pred| {
trait_pred.trait_ref.substs = self.tcx.mk_substs_trait(
self.tcx.mk_unit(),
&trait_pred.trait_ref.substs[1..],
);
trait_pred
});
let unit_obligation = Obligation {
predicate: ty::Predicate::Trait(predicate),
.. obligation.clone()
};
if self.predicate_may_hold(&unit_obligation) {
err.note("the trait is implemented for `()`. \
Possibly this error has been caused by changes to \
Rust's type-inference algorithm \
(see: https://github.com/rust-lang/rust/issues/48950 \
for more info). Consider whether you meant to use the \
type `()` here instead.");
}
}
err
}
ty::Predicate::Subtype(ref predicate) => {
// Errors for Subtype predicates show up as
// `FulfillmentErrorCode::CodeSubtypeError`,
// not selection error.
span_bug!(span, "subtype requirement gave wrong error: `{:?}`", predicate)
}
ty::Predicate::RegionOutlives(ref predicate) => {
let predicate = self.resolve_vars_if_possible(predicate);
let err = self.region_outlives_predicate(&obligation.cause,
&predicate).err().unwrap();
struct_span_err!(
self.tcx.sess, span, E0279,
"the requirement `{}` is not satisfied (`{}`)",
predicate, err,
)
}
ty::Predicate::Projection(..) | ty::Predicate::TypeOutlives(..) => {
let predicate =
self.resolve_vars_if_possible(&obligation.predicate);
struct_span_err!(self.tcx.sess, span, E0280,
"the requirement `{}` is not satisfied",
predicate)
}
ty::Predicate::ObjectSafe(trait_def_id) => {
let violations = self.tcx.object_safety_violations(trait_def_id);
self.tcx.report_object_safety_error(
span,
trait_def_id,
violations,
)
}
ty::Predicate::ClosureKind(closure_def_id, closure_substs, kind) => {
let found_kind = self.closure_kind(closure_def_id, closure_substs).unwrap();
let closure_span = self.tcx.sess.source_map()
.def_span(self.tcx.hir().span_if_local(closure_def_id).unwrap());
let hir_id = self.tcx.hir().as_local_hir_id(closure_def_id).unwrap();
let mut err = struct_span_err!(
self.tcx.sess, closure_span, E0525,
"expected a closure that implements the `{}` trait, \
but this closure only implements `{}`",
kind,
found_kind);
err.span_label(
closure_span,
format!("this closure implements `{}`, not `{}`", found_kind, kind));
err.span_label(
obligation.cause.span,
format!("the requirement to implement `{}` derives from here", kind));
// Additional context information explaining why the closure only implements
// a particular trait.
if let Some(tables) = self.in_progress_tables {
let tables = tables.borrow();
match (found_kind, tables.closure_kind_origins().get(hir_id)) {
(ty::ClosureKind::FnOnce, Some((span, name))) => {
err.span_label(*span, format!(
"closure is `FnOnce` because it moves the \
variable `{}` out of its environment", name));
},
(ty::ClosureKind::FnMut, Some((span, name))) => {
err.span_label(*span, format!(
"closure is `FnMut` because it mutates the \
variable `{}` here", name));
},
_ => {}
}
}
err.emit();
return;
}
ty::Predicate::WellFormed(ty) => {
if !self.tcx.sess.opts.debugging_opts.chalk {
// WF predicates cannot themselves make
// errors. They can only block due to
// ambiguity; otherwise, they always
// degenerate into other obligations
// (which may fail).
span_bug!(span, "WF predicate not satisfied for {:?}", ty);
} else {
// FIXME: we'll need a better message which takes into account
// which bounds actually failed to hold.
self.tcx.sess.struct_span_err(
span,
&format!("the type `{}` is not well-formed (chalk)", ty)
)
}
}
ty::Predicate::ConstEvaluatable(..) => {
// Errors for `ConstEvaluatable` predicates show up as
// `SelectionError::ConstEvalFailure`,
// not `Unimplemented`.
span_bug!(span,
"const-evaluatable requirement gave wrong error: `{:?}`", obligation)
}
}
}
OutputTypeParameterMismatch(ref found_trait_ref, ref expected_trait_ref, _) => {
let found_trait_ref = self.resolve_vars_if_possible(&*found_trait_ref);
let expected_trait_ref = self.resolve_vars_if_possible(&*expected_trait_ref);
if expected_trait_ref.self_ty().references_error() {
return;
}
let found_trait_ty = found_trait_ref.self_ty();
let found_did = match found_trait_ty.kind {
ty::Closure(did, _) | ty::Foreign(did) | ty::FnDef(did, _) => Some(did),
ty::Adt(def, _) => Some(def.did),
_ => None,
};
let found_span = found_did.and_then(|did|
self.tcx.hir().span_if_local(did)
).map(|sp| self.tcx.sess.source_map().def_span(sp)); // the sp could be an fn def
if self.reported_closure_mismatch.borrow().contains(&(span, found_span)) {
// We check closures twice, with obligations flowing in different directions,
// but we want to complain about them only once.
return;
}
self.reported_closure_mismatch.borrow_mut().insert((span, found_span));
let found = match found_trait_ref.skip_binder().substs.type_at(1).kind {
ty::Tuple(ref tys) => vec![ArgKind::empty(); tys.len()],
_ => vec![ArgKind::empty()],
};
let expected_ty = expected_trait_ref.skip_binder().substs.type_at(1);
let expected = match expected_ty.kind {
ty::Tuple(ref tys) => tys.iter()
.map(|t| ArgKind::from_expected_ty(t.expect_ty(), Some(span))).collect(),
_ => vec![ArgKind::Arg("_".to_owned(), expected_ty.to_string())],
};
if found.len() == expected.len() {
self.report_closure_arg_mismatch(span,
found_span,
found_trait_ref,
expected_trait_ref)
} else {
let (closure_span, found) = found_did
.and_then(|did| self.tcx.hir().get_if_local(did))
.map(|node| {
let (found_span, found) = self.get_fn_like_arguments(node);
(Some(found_span), found)
}).unwrap_or((found_span, found));
self.report_arg_count_mismatch(span,
closure_span,
expected,
found,
found_trait_ty.is_closure())
}
}
TraitNotObjectSafe(did) => {
let violations = self.tcx.object_safety_violations(did);
self.tcx.report_object_safety_error(span, did, violations)
}
// already reported in the query
ConstEvalFailure(err) => {
self.tcx.sess.delay_span_bug(
span,
&format!("constant in type had an ignored error: {:?}", err),
);
return;
}
Overflow => {
bug!("overflow should be handled before the `report_selection_error` path");
}
};
self.note_obligation_cause(&mut err, obligation);
err.emit();
}
/// If the `Self` type of the unsatisfied trait `trait_ref` implements a trait
/// with the same path as `trait_ref`, a help message about
/// a probable version mismatch is added to `err`
fn note_version_mismatch(
&self,
err: &mut DiagnosticBuilder<'_>,
trait_ref: &ty::PolyTraitRef<'tcx>,
) {
let get_trait_impl = |trait_def_id| {
let mut trait_impl = None;
self.tcx.for_each_relevant_impl(trait_def_id, trait_ref.self_ty(), |impl_def_id| {
if trait_impl.is_none() {
trait_impl = Some(impl_def_id);
}
});
trait_impl
};
let required_trait_path = self.tcx.def_path_str(trait_ref.def_id());
let all_traits = self.tcx.all_traits(LOCAL_CRATE);
let traits_with_same_path: std::collections::BTreeSet<_> = all_traits
.iter()
.filter(|trait_def_id| **trait_def_id != trait_ref.def_id())
.filter(|trait_def_id| self.tcx.def_path_str(**trait_def_id) == required_trait_path)
.collect();
for trait_with_same_path in traits_with_same_path {
if let Some(impl_def_id) = get_trait_impl(*trait_with_same_path) {
let impl_span = self.tcx.def_span(impl_def_id);
err.span_help(impl_span, "trait impl with same name found");
let trait_crate = self.tcx.crate_name(trait_with_same_path.krate);
let crate_msg = format!(
"Perhaps two different versions of crate `{}` are being used?",
trait_crate
);
err.note(&crate_msg);
}
}
}
fn suggest_restricting_param_bound(
&self,
mut err: &mut DiagnosticBuilder<'_>,
trait_ref: &ty::PolyTraitRef<'_>,
body_id: hir::HirId,
) {
let self_ty = trait_ref.self_ty();
let (param_ty, projection) = match &self_ty.kind {
ty::Param(_) => (true, None),
ty::Projection(projection) => (false, Some(projection)),
_ => return,
};
let suggest_restriction = |
generics: &hir::Generics,
msg,
err: &mut DiagnosticBuilder<'_>,
| {
let span = generics.where_clause.span_for_predicates_or_empty_place();
if !span.from_expansion() && span.desugaring_kind().is_none() {
err.span_suggestion(
generics.where_clause.span_for_predicates_or_empty_place().shrink_to_hi(),
&format!("consider further restricting {}", msg),
format!(
"{} {} ",
if !generics.where_clause.predicates.is_empty() {
","
} else {
" where"
},
trait_ref.to_predicate(),
),
Applicability::MachineApplicable,
);
}
};
// FIXME: Add check for trait bound that is already present, particularly `?Sized` so we
// don't suggest `T: Sized + ?Sized`.
let mut hir_id = body_id;
while let Some(node) = self.tcx.hir().find(hir_id) {
match node {
hir::Node::TraitItem(hir::TraitItem {
generics,
kind: hir::TraitItemKind::Method(..), ..
}) if param_ty && self_ty == self.tcx.types.self_param => {
// Restricting `Self` for a single method.
suggest_restriction(&generics, "`Self`", err);
return;
}
hir::Node::Item(hir::Item {
kind: hir::ItemKind::Fn(_, generics, _), ..
}) |
hir::Node::TraitItem(hir::TraitItem {
generics,
kind: hir::TraitItemKind::Method(..), ..
}) |
hir::Node::ImplItem(hir::ImplItem {
generics,
kind: hir::ImplItemKind::Method(..), ..
}) |
hir::Node::Item(hir::Item {
kind: hir::ItemKind::Trait(_, _, generics, _, _), ..
}) |
hir::Node::Item(hir::Item {
kind: hir::ItemKind::Impl(_, _, _, generics, ..), ..
}) if projection.is_some() => {
// Missing associated type bound.
suggest_restriction(&generics, "the associated type", err);
return;
}
hir::Node::Item(hir::Item { kind: hir::ItemKind::Struct(_, generics), span, .. }) |
hir::Node::Item(hir::Item { kind: hir::ItemKind::Enum(_, generics), span, .. }) |
hir::Node::Item(hir::Item { kind: hir::ItemKind::Union(_, generics), span, .. }) |
hir::Node::Item(hir::Item {
kind: hir::ItemKind::Trait(_, _, generics, ..), span, ..
}) |
hir::Node::Item(hir::Item {
kind: hir::ItemKind::Impl(_, _, _, generics, ..), span, ..
}) |
hir::Node::Item(hir::Item {
kind: hir::ItemKind::Fn(_, generics, _), span, ..
}) |
hir::Node::Item(hir::Item {
kind: hir::ItemKind::TyAlias(_, generics), span, ..
}) |
hir::Node::Item(hir::Item {
kind: hir::ItemKind::TraitAlias(generics, _), span, ..
}) |
hir::Node::Item(hir::Item {
kind: hir::ItemKind::OpaqueTy(hir::OpaqueTy { generics, .. }), span, ..
}) |
hir::Node::TraitItem(hir::TraitItem { generics, span, .. }) |
hir::Node::ImplItem(hir::ImplItem { generics, span, .. })
if param_ty => {
// Missing generic type parameter bound.
let param_name = self_ty.to_string();
let constraint = trait_ref.print_only_trait_path().to_string();
if suggest_constraining_type_param(
generics,
&mut err,
&param_name,
&constraint,
self.tcx.sess.source_map(),
*span,
) {
return;
}
}
hir::Node::Crate => return,
_ => {}
}
hir_id = self.tcx.hir().get_parent_item(hir_id);
}
}
/// When encountering an assignment of an unsized trait, like `let x = ""[..];`, provide a
/// suggestion to borrow the initializer in order to use have a slice instead.
fn suggest_borrow_on_unsized_slice(
&self,
code: &ObligationCauseCode<'tcx>,
err: &mut DiagnosticBuilder<'tcx>,
) {
if let &ObligationCauseCode::VariableType(hir_id) = code {
let parent_node = self.tcx.hir().get_parent_node(hir_id);
if let Some(Node::Local(ref local)) = self.tcx.hir().find(parent_node) {
if let Some(ref expr) = local.init {
if let hir::ExprKind::Index(_, _) = expr.kind {
if let Ok(snippet) = self.tcx.sess.source_map().span_to_snippet(expr.span) {
err.span_suggestion(
expr.span,
"consider borrowing here",
format!("&{}", snippet),
Applicability::MachineApplicable
);
}
}
}
}
}
}
fn mk_obligation_for_def_id(
&self,
def_id: DefId,
output_ty: Ty<'tcx>,
cause: ObligationCause<'tcx>,
param_env: ty::ParamEnv<'tcx>,
) -> PredicateObligation<'tcx> {
let new_trait_ref = ty::TraitRef {
def_id,
substs: self.tcx.mk_substs_trait(output_ty, &[]),
};
Obligation::new(cause, param_env, new_trait_ref.to_predicate())
}
/// Given a closure's `DefId`, return the given name of the closure.
///
/// This doesn't account for reassignments, but it's only used for suggestions.
fn get_closure_name(
&self,
def_id: DefId,
err: &mut DiagnosticBuilder<'_>,
msg: &str,
) -> Option<String> {
let get_name = |err: &mut DiagnosticBuilder<'_>, kind: &hir::PatKind| -> Option<String> {
// Get the local name of this closure. This can be inaccurate because
// of the possibility of reassignment, but this should be good enough.
match &kind {
hir::PatKind::Binding(hir::BindingAnnotation::Unannotated, _, name, None) => {
Some(format!("{}", name))
}
_ => {
err.note(&msg);
None
}
}
};
let hir = self.tcx.hir();
let hir_id = hir.as_local_hir_id(def_id)?;
let parent_node = hir.get_parent_node(hir_id);
match hir.find(parent_node) {
Some(hir::Node::Stmt(hir::Stmt {
kind: hir::StmtKind::Local(local), ..
})) => get_name(err, &local.pat.kind),
// Different to previous arm because one is `&hir::Local` and the other
// is `P<hir::Local>`.
Some(hir::Node::Local(local)) => get_name(err, &local.pat.kind),
_ => return None,
}
}
/// We tried to apply the bound to an `fn` or closure. Check whether calling it would
/// evaluate to a type that *would* satisfy the trait binding. If it would, suggest calling
/// it: `bar(foo)` → `bar(foo())`. This case is *very* likely to be hit if `foo` is `async`.
fn suggest_fn_call(
&self,
obligation: &PredicateObligation<'tcx>,
err: &mut DiagnosticBuilder<'_>,
trait_ref: &ty::Binder<ty::TraitRef<'tcx>>,
points_at_arg: bool,
) {
let self_ty = trait_ref.self_ty();
let (def_id, output_ty, callable) = match self_ty.kind {
ty::Closure(def_id, substs) => {
(def_id, self.closure_sig(def_id, substs).output(), "closure")
}
ty::FnDef(def_id, _) => {
(def_id, self_ty.fn_sig(self.tcx).output(), "function")
}
_ => return,
};
let msg = format!("use parentheses to call the {}", callable);
let obligation = self.mk_obligation_for_def_id(
trait_ref.def_id(),
output_ty.skip_binder(),
obligation.cause.clone(),
obligation.param_env,
);
match self.evaluate_obligation(&obligation) {
Ok(EvaluationResult::EvaluatedToOk) |
Ok(EvaluationResult::EvaluatedToOkModuloRegions) |
Ok(EvaluationResult::EvaluatedToAmbig) => {}
_ => return,
}
let hir = self.tcx.hir();
// Get the name of the callable and the arguments to be used in the suggestion.
let snippet = match hir.get_if_local(def_id) {
Some(hir::Node::Expr(hir::Expr {
kind: hir::ExprKind::Closure(_, decl, _, span, ..),
..
})) => {
err.span_label(*span, "consider calling this closure");
let name = match self.get_closure_name(def_id, err, &msg) {
Some(name) => name,
None => return,
};
let args = decl.inputs.iter()
.map(|_| "_")
.collect::<Vec<_>>()
.join(", ");
format!("{}({})", name, args)
}
Some(hir::Node::Item(hir::Item {
ident,
kind: hir::ItemKind::Fn(.., body_id),
..
})) => {
err.span_label(ident.span, "consider calling this function");
let body = hir.body(*body_id);
let args = body.params.iter()
.map(|arg| match &arg.pat.kind {
hir::PatKind::Binding(_, _, ident, None)
// FIXME: provide a better suggestion when encountering `SelfLower`, it
// should suggest a method call.
if ident.name != kw::SelfLower => ident.to_string(),
_ => "_".to_string(),
})
.collect::<Vec<_>>()
.join(", ");
format!("{}({})", ident, args)
}
_ => return,
};
if points_at_arg {
// When the obligation error has been ensured to have been caused by
// an argument, the `obligation.cause.span` points at the expression
// of the argument, so we can provide a suggestion. This is signaled
// by `points_at_arg`. Otherwise, we give a more general note.
err.span_suggestion(
obligation.cause.span,
&msg,
snippet,
Applicability::HasPlaceholders,
);
} else {
err.help(&format!("{}: `{}`", msg, snippet));
}
}
fn suggest_add_reference_to_arg(
&self,
obligation: &PredicateObligation<'tcx>,
err: &mut DiagnosticBuilder<'tcx>,
trait_ref: &ty::Binder<ty::TraitRef<'tcx>>,
points_at_arg: bool,
has_custom_message: bool,
) -> bool {
if !points_at_arg {
return false;
}
let span = obligation.cause.span;
let param_env = obligation.param_env;
let trait_ref = trait_ref.skip_binder();
if let ObligationCauseCode::ImplDerivedObligation(obligation) = &obligation.cause.code {
// Try to apply the original trait binding obligation by borrowing.
let self_ty = trait_ref.self_ty();
let found = self_ty.to_string();
let new_self_ty = self.tcx.mk_imm_ref(self.tcx.lifetimes.re_static, self_ty);
let substs = self.tcx.mk_substs_trait(new_self_ty, &[]);
let new_trait_ref = ty::TraitRef::new(obligation.parent_trait_ref.def_id(), substs);
let new_obligation = Obligation::new(
ObligationCause::dummy(),
param_env,
new_trait_ref.to_predicate(),
);
if self.predicate_must_hold_modulo_regions(&new_obligation) {
if let Ok(snippet) = self.tcx.sess.source_map().span_to_snippet(span) {
// We have a very specific type of error, where just borrowing this argument
// might solve the problem. In cases like this, the important part is the
// original type obligation, not the last one that failed, which is arbitrary.
// Because of this, we modify the error to refer to the original obligation and
// return early in the caller.
let msg = format!(
"the trait bound `{}: {}` is not satisfied",
found,
obligation.parent_trait_ref.skip_binder().print_only_trait_path(),
);
if has_custom_message {
err.note(&msg);
} else {
err.message = vec![(msg, Style::NoStyle)];
}
if snippet.starts_with('&') {
// This is already a literal borrow and the obligation is failing
// somewhere else in the obligation chain. Do not suggest non-sense.
return false;
}
err.span_label(span, &format!(
"expected an implementor of trait `{}`",
obligation.parent_trait_ref.skip_binder().print_only_trait_path(),
));
err.span_suggestion(
span,
"consider borrowing here",
format!("&{}", snippet),
Applicability::MaybeIncorrect,
);
return true;
}
}
}
false
}
/// Whenever references are used by mistake, like `for (i, e) in &vec.iter().enumerate()`,
/// suggest removing these references until we reach a type that implements the trait.
fn suggest_remove_reference(
&self,
obligation: &PredicateObligation<'tcx>,
err: &mut DiagnosticBuilder<'tcx>,
trait_ref: &ty::Binder<ty::TraitRef<'tcx>>,
) {
let trait_ref = trait_ref.skip_binder();
let span = obligation.cause.span;
if let Ok(snippet) = self.tcx.sess.source_map().span_to_snippet(span) {
let refs_number = snippet.chars()
.filter(|c| !c.is_whitespace())
.take_while(|c| *c == '&')
.count();
if let Some('\'') = snippet.chars()
.filter(|c| !c.is_whitespace())
.skip(refs_number)
.next()
{ // Do not suggest removal of borrow from type arguments.
return;
}
let mut trait_type = trait_ref.self_ty();
for refs_remaining in 0..refs_number {
if let ty::Ref(_, t_type, _) = trait_type.kind {
trait_type = t_type;
let new_obligation = self.mk_obligation_for_def_id(
trait_ref.def_id,
trait_type,
ObligationCause::dummy(),
obligation.param_env,
);
if self.predicate_may_hold(&new_obligation) {
let sp = self.tcx.sess.source_map()
.span_take_while(span, |c| c.is_whitespace() || *c == '&');
let remove_refs = refs_remaining + 1;
let format_str = format!("consider removing {} leading `&`-references",
remove_refs);
err.span_suggestion_short(
sp, &format_str, String::new(), Applicability::MachineApplicable
);
break;
}
} else {
break;
}
}
}
}
/// Check if the trait bound is implemented for a different mutability and note it in the
/// final error.
fn suggest_change_mut(
&self,
obligation: &PredicateObligation<'tcx>,
err: &mut DiagnosticBuilder<'tcx>,
trait_ref: &ty::Binder<ty::TraitRef<'tcx>>,
points_at_arg: bool,
) {
let span = obligation.cause.span;
if let Ok(snippet) = self.tcx.sess.source_map().span_to_snippet(span) {
let refs_number = snippet.chars()
.filter(|c| !c.is_whitespace())
.take_while(|c| *c == '&')
.count();
if let Some('\'') = snippet.chars()
.filter(|c| !c.is_whitespace())
.skip(refs_number)
.next()
{ // Do not suggest removal of borrow from type arguments.
return;
}
let trait_ref = self.resolve_vars_if_possible(trait_ref);
if trait_ref.has_infer_types() {
// Do not ICE while trying to find if a reborrow would succeed on a trait with
// unresolved bindings.
return;
}
if let ty::Ref(region, t_type, mutability) = trait_ref.skip_binder().self_ty().kind {
let trait_type = match mutability {
hir::Mutability::Mutable => self.tcx.mk_imm_ref(region, t_type),
hir::Mutability::Immutable => self.tcx.mk_mut_ref(region, t_type),
};
let new_obligation = self.mk_obligation_for_def_id(
trait_ref.skip_binder().def_id,
trait_type,
ObligationCause::dummy(),
obligation.param_env,
);
if self.evaluate_obligation_no_overflow(
&new_obligation,
).must_apply_modulo_regions() {
let sp = self.tcx.sess.source_map()
.span_take_while(span, |c| c.is_whitespace() || *c == '&');
if points_at_arg &&
mutability == hir::Mutability::Immutable &&
refs_number > 0
{
err.span_suggestion(
sp,
"consider changing this borrow's mutability",
"&mut ".to_string(),
Applicability::MachineApplicable,
);
} else {
err.note(&format!(
"`{}` is implemented for `{:?}`, but not for `{:?}`",
trait_ref.print_only_trait_path(),
trait_type,
trait_ref.skip_binder().self_ty(),
));
}
}
}
}
}
fn suggest_semicolon_removal(
&self,
obligation: &PredicateObligation<'tcx>,
err: &mut DiagnosticBuilder<'tcx>,
span: Span,
trait_ref: &ty::Binder<ty::TraitRef<'tcx>>,
) {
let hir = self.tcx.hir();
let parent_node = hir.get_parent_node(obligation.cause.body_id);
let node = hir.find(parent_node);
if let Some(hir::Node::Item(hir::Item {
kind: hir::ItemKind::Fn(sig, _, body_id),
..
})) = node {
let body = hir.body(*body_id);
if let hir::ExprKind::Block(blk, _) = &body.value.kind {
if sig.decl.output.span().overlaps(span) && blk.expr.is_none() &&
"()" == &trait_ref.self_ty().to_string()
{
// FIXME(estebank): When encountering a method with a trait
// bound not satisfied in the return type with a body that has
// no return, suggest removal of semicolon on last statement.
// Once that is added, close #54771.
if let Some(ref stmt) = blk.stmts.last() {
let sp = self.tcx.sess.source_map().end_point(stmt.span);
err.span_label(sp, "consider removing this semicolon");
}
}
}
}
}
/// Given some node representing a fn-like thing in the HIR map,
/// returns a span and `ArgKind` information that describes the
/// arguments it expects. This can be supplied to
/// `report_arg_count_mismatch`.
pub fn get_fn_like_arguments(&self, node: Node<'_>) -> (Span, Vec<ArgKind>) {
match node {
Node::Expr(&hir::Expr {
kind: hir::ExprKind::Closure(_, ref _decl, id, span, _),
..
}) => {
(self.tcx.sess.source_map().def_span(span),
self.tcx.hir().body(id).params.iter()
.map(|arg| {
if let hir::Pat {
kind: hir::PatKind::Tuple(ref args, _),
span,
..
} = *arg.pat {
ArgKind::Tuple(
Some(span),
args.iter().map(|pat| {
let snippet = self.tcx.sess.source_map()
.span_to_snippet(pat.span).unwrap();
(snippet, "_".to_owned())
}).collect::<Vec<_>>(),
)
} else {
let name = self.tcx.sess.source_map()
.span_to_snippet(arg.pat.span).unwrap();
ArgKind::Arg(name, "_".to_owned())
}
})
.collect::<Vec<ArgKind>>())
}
Node::Item(&hir::Item {
span,
kind: hir::ItemKind::Fn(ref sig, ..),
..
}) |
Node::ImplItem(&hir::ImplItem {
span,
kind: hir::ImplItemKind::Method(ref sig, _),
..
}) |
Node::TraitItem(&hir::TraitItem {
span,
kind: hir::TraitItemKind::Method(ref sig, _),
..
}) => {
(self.tcx.sess.source_map().def_span(span), sig.decl.inputs.iter()
.map(|arg| match arg.clone().kind {
hir::TyKind::Tup(ref tys) => ArgKind::Tuple(
Some(arg.span),
vec![("_".to_owned(), "_".to_owned()); tys.len()]
),
_ => ArgKind::empty()
}).collect::<Vec<ArgKind>>())
}
Node::Ctor(ref variant_data) => {
let span = variant_data.ctor_hir_id()
.map(|hir_id| self.tcx.hir().span(hir_id))
.unwrap_or(DUMMY_SP);
let span = self.tcx.sess.source_map().def_span(span);
(span, vec![ArgKind::empty(); variant_data.fields().len()])
}
_ => panic!("non-FnLike node found: {:?}", node),
}
}
/// Reports an error when the number of arguments needed by a
/// trait match doesn't match the number that the expression
/// provides.
pub fn report_arg_count_mismatch(
&self,
span: Span,
found_span: Option<Span>,
expected_args: Vec<ArgKind>,
found_args: Vec<ArgKind>,
is_closure: bool,
) -> DiagnosticBuilder<'tcx> {
let kind = if is_closure { "closure" } else { "function" };
let args_str = |arguments: &[ArgKind], other: &[ArgKind]| {
let arg_length = arguments.len();
let distinct = match &other[..] {
&[ArgKind::Tuple(..)] => true,
_ => false,
};
match (arg_length, arguments.get(0)) {
(1, Some(&ArgKind::Tuple(_, ref fields))) => {
format!("a single {}-tuple as argument", fields.len())
}
_ => format!("{} {}argument{}",
arg_length,
if distinct && arg_length > 1 { "distinct " } else { "" },
pluralize!(arg_length))
}
};
let expected_str = args_str(&expected_args, &found_args);
let found_str = args_str(&found_args, &expected_args);
let mut err = struct_span_err!(
self.tcx.sess,
span,
E0593,
"{} is expected to take {}, but it takes {}",
kind,
expected_str,
found_str,
);
err.span_label(span, format!("expected {} that takes {}", kind, expected_str));
if let Some(found_span) = found_span {
err.span_label(found_span, format!("takes {}", found_str));
// move |_| { ... }
// ^^^^^^^^-- def_span
//
// move |_| { ... }
// ^^^^^-- prefix
let prefix_span = self.tcx.sess.source_map().span_until_non_whitespace(found_span);
// move |_| { ... }
// ^^^-- pipe_span
let pipe_span = if let Some(span) = found_span.trim_start(prefix_span) {
span
} else {
found_span
};
// Suggest to take and ignore the arguments with expected_args_length `_`s if
// found arguments is empty (assume the user just wants to ignore args in this case).
// For example, if `expected_args_length` is 2, suggest `|_, _|`.
if found_args.is_empty() && is_closure {
let underscores = vec!["_"; expected_args.len()].join(", ");
err.span_suggestion(
pipe_span,
&format!(
"consider changing the closure to take and ignore the expected argument{}",
if expected_args.len() < 2 {
""
} else {
"s"
}
),
format!("|{}|", underscores),
Applicability::MachineApplicable,
);
}
if let &[ArgKind::Tuple(_, ref fields)] = &found_args[..] {
if fields.len() == expected_args.len() {
let sugg = fields.iter()
.map(|(name, _)| name.to_owned())
.collect::<Vec<String>>()
.join(", ");
err.span_suggestion(
found_span,
"change the closure to take multiple arguments instead of a single tuple",
format!("|{}|", sugg),
Applicability::MachineApplicable,
);
}
}
if let &[ArgKind::Tuple(_, ref fields)] = &expected_args[..] {
if fields.len() == found_args.len() && is_closure {
let sugg = format!(
"|({}){}|",
found_args.iter()
.map(|arg| match arg {
ArgKind::Arg(name, _) => name.to_owned(),
_ => "_".to_owned(),
})
.collect::<Vec<String>>()
.join(", "),
// add type annotations if available
if found_args.iter().any(|arg| match arg {
ArgKind::Arg(_, ty) => ty != "_",
_ => false,
}) {
format!(": ({})",
fields.iter()
.map(|(_, ty)| ty.to_owned())
.collect::<Vec<String>>()
.join(", "))
} else {
String::new()
},
);
err.span_suggestion(
found_span,
"change the closure to accept a tuple instead of individual arguments",
sugg,
Applicability::MachineApplicable,
);
}
}
}
err
}
fn report_closure_arg_mismatch(
&self,
span: Span,
found_span: Option<Span>,
expected_ref: ty::PolyTraitRef<'tcx>,
found: ty::PolyTraitRef<'tcx>,
) -> DiagnosticBuilder<'tcx> {
fn build_fn_sig_string<'tcx>(tcx: TyCtxt<'tcx>, trait_ref: &ty::TraitRef<'tcx>) -> String {
let inputs = trait_ref.substs.type_at(1);
let sig = if let ty::Tuple(inputs) = inputs.kind {
tcx.mk_fn_sig(
inputs.iter().map(|k| k.expect_ty()),
tcx.mk_ty_infer(ty::TyVar(ty::TyVid { index: 0 })),
false,
hir::Unsafety::Normal,
::rustc_target::spec::abi::Abi::Rust
)
} else {
tcx.mk_fn_sig(
::std::iter::once(inputs),
tcx.mk_ty_infer(ty::TyVar(ty::TyVid { index: 0 })),
false,
hir::Unsafety::Normal,
::rustc_target::spec::abi::Abi::Rust
)
};
ty::Binder::bind(sig).to_string()
}
let argument_is_closure = expected_ref.skip_binder().substs.type_at(0).is_closure();
let mut err = struct_span_err!(self.tcx.sess, span, E0631,
"type mismatch in {} arguments",
if argument_is_closure { "closure" } else { "function" });
let found_str = format!(
"expected signature of `{}`",
build_fn_sig_string(self.tcx, found.skip_binder())
);
err.span_label(span, found_str);
let found_span = found_span.unwrap_or(span);
let expected_str = format!(
"found signature of `{}`",
build_fn_sig_string(self.tcx, expected_ref.skip_binder())
);
err.span_label(found_span, expected_str);
err
}
}
impl<'tcx> TyCtxt<'tcx> {
pub fn recursive_type_with_infinite_size_error(self,
type_def_id: DefId)
-> DiagnosticBuilder<'tcx>
{
assert!(type_def_id.is_local());
let span = self.hir().span_if_local(type_def_id).unwrap();
let span = self.sess.source_map().def_span(span);
let mut err = struct_span_err!(self.sess, span, E0072,
"recursive type `{}` has infinite size",
self.def_path_str(type_def_id));
err.span_label(span, "recursive type has infinite size");
err.help(&format!("insert indirection (e.g., a `Box`, `Rc`, or `&`) \
at some point to make `{}` representable",
self.def_path_str(type_def_id)));
err
}
pub fn report_object_safety_error(
self,
span: Span,
trait_def_id: DefId,
violations: Vec<ObjectSafetyViolation>,
) -> DiagnosticBuilder<'tcx> {
let trait_str = self.def_path_str(trait_def_id);
let span = self.sess.source_map().def_span(span);
let mut err = struct_span_err!(
self.sess, span, E0038,
"the trait `{}` cannot be made into an object",
trait_str);
err.span_label(span, format!("the trait `{}` cannot be made into an object", trait_str));
let mut reported_violations = FxHashSet::default();
for violation in violations {
if reported_violations.insert(violation.clone()) {
match violation.span() {
Some(span) => err.span_label(span, violation.error_msg()),
None => err.note(&violation.error_msg()),
};
}
}
if self.sess.trait_methods_not_found.borrow().contains(&span) {
// Avoid emitting error caused by non-existing method (#58734)
err.cancel();
}
err
}
}
impl<'a, 'tcx> InferCtxt<'a, 'tcx> {
fn maybe_report_ambiguity(
&self,
obligation: &PredicateObligation<'tcx>,
body_id: Option<hir::BodyId>,
) {
// Unable to successfully determine, probably means
// insufficient type information, but could mean
// ambiguous impls. The latter *ought* to be a
// coherence violation, so we don't report it here.
let predicate = self.resolve_vars_if_possible(&obligation.predicate);
let span = obligation.cause.span;
debug!(
"maybe_report_ambiguity(predicate={:?}, obligation={:?} body_id={:?}, code={:?})",
predicate,
obligation,
body_id,
obligation.cause.code,
);
// Ambiguity errors are often caused as fallout from earlier
// errors. So just ignore them if this infcx is tainted.
if self.is_tainted_by_errors() {
return;
}
match predicate {
ty::Predicate::Trait(ref data) => {
let trait_ref = data.to_poly_trait_ref();
let self_ty = trait_ref.self_ty();
debug!("self_ty {:?} {:?} trait_ref {:?}", self_ty, self_ty.kind, trait_ref);
if predicate.references_error() {
return;
}
// Typically, this ambiguity should only happen if
// there are unresolved type inference variables
// (otherwise it would suggest a coherence
// failure). But given #21974 that is not necessarily
// the case -- we can have multiple where clauses that
// are only distinguished by a region, which results
// in an ambiguity even when all types are fully
// known, since we don't dispatch based on region
// relationships.
// This is kind of a hack: it frequently happens that some earlier
// error prevents types from being fully inferred, and then we get
// a bunch of uninteresting errors saying something like "<generic
// #0> doesn't implement Sized". It may even be true that we
// could just skip over all checks where the self-ty is an
// inference variable, but I was afraid that there might be an
// inference variable created, registered as an obligation, and
// then never forced by writeback, and hence by skipping here we'd
// be ignoring the fact that we don't KNOW the type works
// out. Though even that would probably be harmless, given that
// we're only talking about builtin traits, which are known to be
// inhabited. We used to check for `self.tcx.sess.has_errors()` to
// avoid inundating the user with unnecessary errors, but we now
// check upstream for type errors and dont add the obligations to
// begin with in those cases.
if
self.tcx.lang_items().sized_trait()
.map_or(false, |sized_id| sized_id == trait_ref.def_id())
{
self.need_type_info_err(body_id, span, self_ty).emit();
} else {
let mut err = struct_span_err!(
self.tcx.sess,
span,
E0283,
"type annotations needed: cannot resolve `{}`",
predicate,
);
self.note_obligation_cause(&mut err, obligation);
err.emit();
}
}
ty::Predicate::WellFormed(ty) => {
// Same hacky approach as above to avoid deluging user
// with error messages.
if !ty.references_error() && !self.tcx.sess.has_errors() {
self.need_type_info_err(body_id, span, ty).emit();
}
}
ty::Predicate::Subtype(ref data) => {
if data.references_error() || self.tcx.sess.has_errors() {
// no need to overload user in such cases
} else {
let &SubtypePredicate { a_is_expected: _, a, b } = data.skip_binder();
// both must be type variables, or the other would've been instantiated
assert!(a.is_ty_var() && b.is_ty_var());
self.need_type_info_err(body_id,
obligation.cause.span,
a).emit();
}
}
_ => {
if !self.tcx.sess.has_errors() {
let mut err = struct_span_err!(
self.tcx.sess,
obligation.cause.span,
E0284,
"type annotations needed: cannot resolve `{}`",
predicate,
);
self.note_obligation_cause(&mut err, obligation);
err.emit();
}
}
}
}
/// Returns `true` if the trait predicate may apply for *some* assignment
/// to the type parameters.
fn predicate_can_apply(
&self,
param_env: ty::ParamEnv<'tcx>,
pred: ty::PolyTraitRef<'tcx>,
) -> bool {
struct ParamToVarFolder<'a, 'tcx> {
infcx: &'a InferCtxt<'a, 'tcx>,
var_map: FxHashMap<Ty<'tcx>, Ty<'tcx>>,
}
impl<'a, 'tcx> TypeFolder<'tcx> for ParamToVarFolder<'a, 'tcx> {
fn tcx<'b>(&'b self) -> TyCtxt<'tcx> { self.infcx.tcx }
fn fold_ty(&mut self, ty: Ty<'tcx>) -> Ty<'tcx> {
if let ty::Param(ty::ParamTy {name, .. }) = ty.kind {
let infcx = self.infcx;
self.var_map.entry(ty).or_insert_with(||
infcx.next_ty_var(
TypeVariableOrigin {
kind: TypeVariableOriginKind::TypeParameterDefinition(name),
span: DUMMY_SP,
}
)
)
} else {
ty.super_fold_with(self)
}
}
}
self.probe(|_| {
let mut selcx = SelectionContext::new(self);
let cleaned_pred = pred.fold_with(&mut ParamToVarFolder {
infcx: self,
var_map: Default::default()
});
let cleaned_pred = super::project::normalize(
&mut selcx,
param_env,
ObligationCause::dummy(),
&cleaned_pred
).value;
let obligation = Obligation::new(
ObligationCause::dummy(),
param_env,
cleaned_pred.to_predicate()
);
self.predicate_may_hold(&obligation)
})
}
fn note_obligation_cause(
&self,
err: &mut DiagnosticBuilder<'_>,
obligation: &PredicateObligation<'tcx>,
) {
// First, attempt to add note to this error with an async-await-specific
// message, and fall back to regular note otherwise.
if !self.note_obligation_cause_for_async_await(err, obligation) {
self.note_obligation_cause_code(err, &obligation.predicate, &obligation.cause.code,
&mut vec![]);
}
}
/// Adds an async-await specific note to the diagnostic:
///
/// ```ignore (diagnostic)
/// note: future does not implement `std::marker::Send` because this value is used across an
/// await
/// --> $DIR/issue-64130-non-send-future-diags.rs:15:5
/// |
/// LL | let g = x.lock().unwrap();
/// | - has type `std::sync::MutexGuard<'_, u32>`
/// LL | baz().await;
/// | ^^^^^^^^^^^ await occurs here, with `g` maybe used later
/// LL | }
/// | - `g` is later dropped here
/// ```
///
/// Returns `true` if an async-await specific note was added to the diagnostic.
fn note_obligation_cause_for_async_await(
&self,
err: &mut DiagnosticBuilder<'_>,
obligation: &PredicateObligation<'tcx>,
) -> bool {
debug!("note_obligation_cause_for_async_await: obligation.predicate={:?} \
obligation.cause.span={:?}", obligation.predicate, obligation.cause.span);
let source_map = self.tcx.sess.source_map();
// Look into the obligation predicate to determine the type in the generator which meant
// that the predicate was not satisifed.
let (trait_ref, target_ty) = match obligation.predicate {
ty::Predicate::Trait(trait_predicate) =>
(trait_predicate.skip_binder().trait_ref, trait_predicate.skip_binder().self_ty()),
_ => return false,
};
debug!("note_obligation_cause_for_async_await: target_ty={:?}", target_ty);
// Attempt to detect an async-await error by looking at the obligation causes, looking
// for only generators, generator witnesses, opaque types or `std::future::GenFuture` to
// be present.
//
// When a future does not implement a trait because of a captured type in one of the
// generators somewhere in the call stack, then the result is a chain of obligations.
// Given a `async fn` A that calls a `async fn` B which captures a non-send type and that
// future is passed as an argument to a function C which requires a `Send` type, then the
// chain looks something like this:
//
// - `BuiltinDerivedObligation` with a generator witness (B)
// - `BuiltinDerivedObligation` with a generator (B)
// - `BuiltinDerivedObligation` with `std::future::GenFuture` (B)
// - `BuiltinDerivedObligation` with `impl std::future::Future` (B)
// - `BuiltinDerivedObligation` with `impl std::future::Future` (B)
// - `BuiltinDerivedObligation` with a generator witness (A)
// - `BuiltinDerivedObligation` with a generator (A)
// - `BuiltinDerivedObligation` with `std::future::GenFuture` (A)
// - `BuiltinDerivedObligation` with `impl std::future::Future` (A)
// - `BuiltinDerivedObligation` with `impl std::future::Future` (A)
// - `BindingObligation` with `impl_send (Send requirement)
//
// The first obligations in the chain can be used to get the details of the type that is
// captured but the entire chain must be inspected to detect this case.
let mut generator = None;
let mut next_code = Some(&obligation.cause.code);
while let Some(code) = next_code {
debug!("note_obligation_cause_for_async_await: code={:?}", code);
match code {
ObligationCauseCode::BuiltinDerivedObligation(derived_obligation) |
ObligationCauseCode::ImplDerivedObligation(derived_obligation) => {
debug!("note_obligation_cause_for_async_await: self_ty.kind={:?}",
derived_obligation.parent_trait_ref.self_ty().kind);
match derived_obligation.parent_trait_ref.self_ty().kind {
ty::Adt(ty::AdtDef { did, .. }, ..) if
self.tcx.is_diagnostic_item(sym::gen_future, *did) => {},
ty::Generator(did, ..) => generator = generator.or(Some(did)),
ty::GeneratorWitness(_) | ty::Opaque(..) => {},
_ => return false,
}
next_code = Some(derived_obligation.parent_code.as_ref());
},
ObligationCauseCode::ItemObligation(_) | ObligationCauseCode::BindingObligation(..)
if generator.is_some() => break,
_ => return false,
}
}
let generator_did = generator.expect("can only reach this if there was a generator");
// Only continue to add a note if the generator is from an `async` function.
let parent_node = self.tcx.parent(generator_did)
.and_then(|parent_did| self.tcx.hir().get_if_local(parent_did));
debug!("note_obligation_cause_for_async_await: parent_node={:?}", parent_node);
if let Some(hir::Node::Item(hir::Item {
kind: hir::ItemKind::Fn(sig, _, _),
..
})) = parent_node {
debug!("note_obligation_cause_for_async_await: header={:?}", sig.header);
if sig.header.asyncness != hir::IsAsync::Async {
return false;
}
}
let span = self.tcx.def_span(generator_did);
// Do not ICE on closure typeck (#66868).
if let None = self.tcx.hir().as_local_hir_id(generator_did) {
return false;
}
let tables = self.tcx.typeck_tables_of(generator_did);
debug!("note_obligation_cause_for_async_await: generator_did={:?} span={:?} ",
generator_did, span);
// Look for a type inside the generator interior that matches the target type to get
// a span.
let target_span = tables.generator_interior_types.iter()
.find(|ty::GeneratorInteriorTypeCause { ty, .. }| ty::TyS::same_type(*ty, target_ty))
.map(|ty::GeneratorInteriorTypeCause { span, scope_span, .. }|
(span, source_map.span_to_snippet(*span), scope_span));
if let Some((target_span, Ok(snippet), scope_span)) = target_span {
// Look at the last interior type to get a span for the `.await`.
let await_span = tables.generator_interior_types.iter().map(|i| i.span).last().unwrap();
let mut span = MultiSpan::from_span(await_span);
span.push_span_label(
await_span, format!("await occurs here, with `{}` maybe used later", snippet));
span.push_span_label(*target_span, format!("has type `{}`", target_ty));
// If available, use the scope span to annotate the drop location.
if let Some(scope_span) = scope_span {
span.push_span_label(
source_map.end_point(*scope_span),
format!("`{}` is later dropped here", snippet),
);
}
err.span_note(span, &format!(
"future does not implement `{}` as this value is used across an await",
trait_ref.print_only_trait_path(),
));
// Add a note for the item obligation that remains - normally a note pointing to the
// bound that introduced the obligation (e.g. `T: Send`).
debug!("note_obligation_cause_for_async_await: next_code={:?}", next_code);
self.note_obligation_cause_code(
err,
&obligation.predicate,
next_code.unwrap(),
&mut Vec::new(),
);
true
} else {
false
}
}
fn note_obligation_cause_code<T>(&self,
err: &mut DiagnosticBuilder<'_>,
predicate: &T,
cause_code: &ObligationCauseCode<'tcx>,
obligated_types: &mut Vec<&ty::TyS<'tcx>>)
where T: fmt::Display
{
let tcx = self.tcx;
match *cause_code {
ObligationCauseCode::ExprAssignable |
ObligationCauseCode::MatchExpressionArm { .. } |
ObligationCauseCode::MatchExpressionArmPattern { .. } |
ObligationCauseCode::IfExpression { .. } |
ObligationCauseCode::IfExpressionWithNoElse |
ObligationCauseCode::MainFunctionType |
ObligationCauseCode::StartFunctionType |
ObligationCauseCode::IntrinsicType |
ObligationCauseCode::MethodReceiver |
ObligationCauseCode::ReturnNoExpression |
ObligationCauseCode::MiscObligation => {}
ObligationCauseCode::SliceOrArrayElem => {
err.note("slice and array elements must have `Sized` type");
}
ObligationCauseCode::TupleElem => {
err.note("only the last element of a tuple may have a dynamically sized type");
}
ObligationCauseCode::ProjectionWf(data) => {
err.note(&format!(
"required so that the projection `{}` is well-formed",
data,
));
}
ObligationCauseCode::ReferenceOutlivesReferent(ref_ty) => {
err.note(&format!(
"required so that reference `{}` does not outlive its referent",
ref_ty,
));
}
ObligationCauseCode::ObjectTypeBound(object_ty, region) => {
err.note(&format!(
"required so that the lifetime bound of `{}` for `{}` is satisfied",
region,
object_ty,
));
}
ObligationCauseCode::ItemObligation(item_def_id) => {
let item_name = tcx.def_path_str(item_def_id);
let msg = format!("required by `{}`", item_name);
if let Some(sp) = tcx.hir().span_if_local(item_def_id) {
let sp = tcx.sess.source_map().def_span(sp);
err.span_label(sp, &msg);
} else {
err.note(&msg);
}
}
ObligationCauseCode::BindingObligation(item_def_id, span) => {
let item_name = tcx.def_path_str(item_def_id);
let msg = format!("required by this bound in `{}`", item_name);
if let Some(ident) = tcx.opt_item_name(item_def_id) {
err.span_label(ident.span, "");
}
if span != DUMMY_SP {
err.span_label(span, &msg);
} else {
err.note(&msg);
}
}
ObligationCauseCode::ObjectCastObligation(object_ty) => {
err.note(&format!("required for the cast to the object type `{}`",
self.ty_to_string(object_ty)));
}
ObligationCauseCode::Coercion { source: _, target } => {
err.note(&format!("required by cast to type `{}`",
self.ty_to_string(target)));
}
ObligationCauseCode::RepeatVec(suggest_const_in_array_repeat_expressions) => {
err.note("the `Copy` trait is required because the \
repeated element will be copied");
if suggest_const_in_array_repeat_expressions {
err.note("this array initializer can be evaluated at compile-time, for more \
information, see issue \
https://github.com/rust-lang/rust/issues/49147");
if tcx.sess.opts.unstable_features.is_nightly_build() {
err.help("add `#![feature(const_in_array_repeat_expressions)]` to the \
crate attributes to enable");
}
}
}
ObligationCauseCode::VariableType(_) => {
err.note("all local variables must have a statically known size");
if !self.tcx.features().unsized_locals {
err.help("unsized locals are gated as an unstable feature");
}
}
ObligationCauseCode::SizedArgumentType => {
err.note("all function arguments must have a statically known size");
if !self.tcx.features().unsized_locals {
err.help("unsized locals are gated as an unstable feature");
}
}
ObligationCauseCode::SizedReturnType => {
err.note("the return type of a function must have a \
statically known size");
}
ObligationCauseCode::SizedYieldType => {
err.note("the yield type of a generator must have a \
statically known size");
}
ObligationCauseCode::AssignmentLhsSized => {
err.note("the left-hand-side of an assignment must have a statically known size");
}
ObligationCauseCode::TupleInitializerSized => {
err.note("tuples must have a statically known size to be initialized");
}
ObligationCauseCode::StructInitializerSized => {
err.note("structs must have a statically known size to be initialized");
}
ObligationCauseCode::FieldSized { adt_kind: ref item, last } => {
match *item {
AdtKind::Struct => {
if last {
err.note("the last field of a packed struct may only have a \
dynamically sized type if it does not need drop to be run");
} else {
err.note("only the last field of a struct may have a dynamically \
sized type");
}
}
AdtKind::Union => {
err.note("no field of a union may have a dynamically sized type");
}
AdtKind::Enum => {
err.note("no field of an enum variant may have a dynamically sized type");
}
}
}
ObligationCauseCode::ConstSized => {
err.note("constant expressions must have a statically known size");
}
ObligationCauseCode::ConstPatternStructural => {
err.note("constants used for pattern-matching must derive `PartialEq` and `Eq`");
}
ObligationCauseCode::SharedStatic => {
err.note("shared static variables must have a type that implements `Sync`");
}
ObligationCauseCode::BuiltinDerivedObligation(ref data) => {
let parent_trait_ref = self.resolve_vars_if_possible(&data.parent_trait_ref);
let ty = parent_trait_ref.skip_binder().self_ty();
err.note(&format!("required because it appears within the type `{}`", ty));
obligated_types.push(ty);
let parent_predicate = parent_trait_ref.to_predicate();
if !self.is_recursive_obligation(obligated_types, &data.parent_code) {
self.note_obligation_cause_code(err,
&parent_predicate,
&data.parent_code,
obligated_types);
}
}
ObligationCauseCode::ImplDerivedObligation(ref data) => {
let parent_trait_ref = self.resolve_vars_if_possible(&data.parent_trait_ref);
err.note(
&format!("required because of the requirements on the impl of `{}` for `{}`",
parent_trait_ref.print_only_trait_path(),
parent_trait_ref.skip_binder().self_ty()));
let parent_predicate = parent_trait_ref.to_predicate();
self.note_obligation_cause_code(err,
&parent_predicate,
&data.parent_code,
obligated_types);
}
ObligationCauseCode::CompareImplMethodObligation { .. } => {
err.note(
&format!("the requirement `{}` appears on the impl method \
but not on the corresponding trait method",
predicate));
}
ObligationCauseCode::ReturnType |
ObligationCauseCode::ReturnValue(_) |
ObligationCauseCode::BlockTailExpression(_) => (),
ObligationCauseCode::TrivialBound => {
err.help("see issue #48214");
if tcx.sess.opts.unstable_features.is_nightly_build() {
err.help("add `#![feature(trivial_bounds)]` to the \
crate attributes to enable",
);
}
}
ObligationCauseCode::AssocTypeBound(ref data) => {
err.span_label(data.original, "associated type defined here");
if let Some(sp) = data.impl_span {
err.span_label(sp, "in this `impl` item");
}
for sp in &data.bounds {
err.span_label(*sp, "restricted in this bound");
}
}
}
}
fn suggest_new_overflow_limit(&self, err: &mut DiagnosticBuilder<'_>) {
let current_limit = self.tcx.sess.recursion_limit.get();
let suggested_limit = current_limit * 2;
err.help(&format!("consider adding a `#![recursion_limit=\"{}\"]` attribute to your crate",
suggested_limit));
}
fn is_recursive_obligation(&self,
obligated_types: &mut Vec<&ty::TyS<'tcx>>,
cause_code: &ObligationCauseCode<'tcx>) -> bool {
if let ObligationCauseCode::BuiltinDerivedObligation(ref data) = cause_code {
let parent_trait_ref = self.resolve_vars_if_possible(&data.parent_trait_ref);
if obligated_types.iter().any(|ot| ot == &parent_trait_ref.skip_binder().self_ty()) {
return true;
}
}
false
}
}
/// Summarizes information
#[derive(Clone)]
pub enum ArgKind {
/// An argument of non-tuple type. Parameters are (name, ty)
Arg(String, String),
/// An argument of tuple type. For a "found" argument, the span is
/// the locationo in the source of the pattern. For a "expected"
/// argument, it will be None. The vector is a list of (name, ty)
/// strings for the components of the tuple.
Tuple(Option<Span>, Vec<(String, String)>),
}
impl ArgKind {
fn empty() -> ArgKind {
ArgKind::Arg("_".to_owned(), "_".to_owned())
}
/// Creates an `ArgKind` from the expected type of an
/// argument. It has no name (`_`) and an optional source span.
pub fn from_expected_ty(t: Ty<'_>, span: Option<Span>) -> ArgKind {
match t.kind {
ty::Tuple(ref tys) => ArgKind::Tuple(
span,
tys.iter()
.map(|ty| ("_".to_owned(), ty.to_string()))
.collect::<Vec<_>>()
),
_ => ArgKind::Arg("_".to_owned(), t.to_string()),
}
}
}
/// Suggest restricting a type param with a new bound.
pub fn suggest_constraining_type_param(
generics: &hir::Generics,
err: &mut DiagnosticBuilder<'_>,
param_name: &str,
constraint: &str,
source_map: &SourceMap,
span: Span,
) -> bool {
let restrict_msg = "consider further restricting this bound";
if let Some(param) = generics.params.iter().filter(|p| {
p.name.ident().as_str() == param_name
}).next() {
if param_name.starts_with("impl ") {
// `impl Trait` in argument:
// `fn foo(x: impl Trait) {}` → `fn foo(t: impl Trait + Trait2) {}`
err.span_suggestion(
param.span,
restrict_msg,
// `impl CurrentTrait + MissingTrait`
format!("{} + {}", param_name, constraint),
Applicability::MachineApplicable,
);
} else if generics.where_clause.predicates.is_empty() &&
param.bounds.is_empty()
{
// If there are no bounds whatsoever, suggest adding a constraint
// to the type parameter:
// `fn foo<T>(t: T) {}` → `fn foo<T: Trait>(t: T) {}`
err.span_suggestion(
param.span,
"consider restricting this bound",
format!("{}: {}", param_name, constraint),
Applicability::MachineApplicable,
);
} else if !generics.where_clause.predicates.is_empty() {
// There is a `where` clause, so suggest expanding it:
// `fn foo<T>(t: T) where T: Debug {}` →
// `fn foo<T>(t: T) where T: Debug, T: Trait {}`
err.span_suggestion(
generics.where_clause.span().unwrap().shrink_to_hi(),
&format!("consider further restricting type parameter `{}`", param_name),
format!(", {}: {}", param_name, constraint),
Applicability::MachineApplicable,
);
} else {
// If there is no `where` clause lean towards constraining to the
// type parameter:
// `fn foo<X: Bar, T>(t: T, x: X) {}` → `fn foo<T: Trait>(t: T) {}`
// `fn foo<T: Bar>(t: T) {}` → `fn foo<T: Bar + Trait>(t: T) {}`
let sp = param.span.with_hi(span.hi());
let span = source_map.span_through_char(sp, ':');
if sp != param.span && sp != span {
// Only suggest if we have high certainty that the span
// covers the colon in `foo<T: Trait>`.
err.span_suggestion(
span,
restrict_msg,
format!("{}: {} + ", param_name, constraint),
Applicability::MachineApplicable,
);
} else {
err.span_label(
param.span,
&format!("consider adding a `where {}: {}` bound", param_name, constraint),
);
}
}
return true;
}
false
}