blob: dc29e057455d131141ab42aae6f9effd2e176622 [file] [log] [blame]
use crate::util::check_builtin_macro_attribute;
use syntax::ast::{ItemKind, Mutability, Stmt, Ty, TyKind, Unsafety};
use syntax::ast::{self, Param, Attribute, Expr, FnSig, FnHeader, Generics, Ident};
use syntax::expand::allocator::{AllocatorKind, AllocatorMethod, AllocatorTy, ALLOCATOR_METHODS};
use syntax::ptr::P;
use syntax::symbol::{kw, sym, Symbol};
use syntax_expand::base::{Annotatable, ExtCtxt};
use syntax_pos::Span;
pub fn expand(
ecx: &mut ExtCtxt<'_>,
_span: Span,
meta_item: &ast::MetaItem,
item: Annotatable,
) -> Vec<Annotatable> {
check_builtin_macro_attribute(ecx, meta_item, sym::global_allocator);
let not_static = |item: Annotatable| {
ecx.parse_sess.span_diagnostic.span_err(item.span(), "allocators must be statics");
vec![item]
};
let item = match item {
Annotatable::Item(item) => match item.kind {
ItemKind::Static(..) => item,
_ => return not_static(Annotatable::Item(item)),
}
_ => return not_static(item),
};
// Generate a bunch of new items using the AllocFnFactory
let span = ecx.with_def_site_ctxt(item.span);
let f = AllocFnFactory {
span,
kind: AllocatorKind::Global,
global: item.ident,
cx: ecx,
};
// Generate item statements for the allocator methods.
let stmts = ALLOCATOR_METHODS.iter().map(|method| f.allocator_fn(method)).collect();
// Generate anonymous constant serving as container for the allocator methods.
let const_ty = ecx.ty(span, TyKind::Tup(Vec::new()));
let const_body = ecx.expr_block(ecx.block(span, stmts));
let const_item =
ecx.item_const(span, Ident::new(kw::Underscore, span), const_ty, const_body);
// Return the original item and the new methods.
vec![Annotatable::Item(item), Annotatable::Item(const_item)]
}
struct AllocFnFactory<'a, 'b> {
span: Span,
kind: AllocatorKind,
global: Ident,
cx: &'b ExtCtxt<'a>,
}
impl AllocFnFactory<'_, '_> {
fn allocator_fn(&self, method: &AllocatorMethod) -> Stmt {
let mut abi_args = Vec::new();
let mut i = 0;
let ref mut mk = || {
let name = self.cx.ident_of(&format!("arg{}", i), self.span);
i += 1;
name
};
let args = method
.inputs
.iter()
.map(|ty| self.arg_ty(ty, &mut abi_args, mk))
.collect();
let result = self.call_allocator(method.name, args);
let (output_ty, output_expr) = self.ret_ty(&method.output, result);
let decl = self.cx.fn_decl(abi_args, ast::FunctionRetTy::Ty(output_ty));
let header = FnHeader { unsafety: Unsafety::Unsafe, ..FnHeader::default() };
let sig = FnSig { decl, header };
let kind = ItemKind::Fn(sig, Generics::default(), self.cx.block_expr(output_expr));
let item = self.cx.item(
self.span,
self.cx.ident_of(&self.kind.fn_name(method.name), self.span),
self.attrs(),
kind,
);
self.cx.stmt_item(self.span, item)
}
fn call_allocator(&self, method: &str, mut args: Vec<P<Expr>>) -> P<Expr> {
let method = self.cx.std_path(&[
Symbol::intern("alloc"),
Symbol::intern("GlobalAlloc"),
Symbol::intern(method),
]);
let method = self.cx.expr_path(self.cx.path(self.span, method));
let allocator = self.cx.path_ident(self.span, self.global);
let allocator = self.cx.expr_path(allocator);
let allocator = self.cx.expr_addr_of(self.span, allocator);
args.insert(0, allocator);
self.cx.expr_call(self.span, method, args)
}
fn attrs(&self) -> Vec<Attribute> {
let special = sym::rustc_std_internal_symbol;
let special = self.cx.meta_word(self.span, special);
vec![self.cx.attribute(special)]
}
fn arg_ty(
&self,
ty: &AllocatorTy,
args: &mut Vec<Param>,
ident: &mut dyn FnMut() -> Ident,
) -> P<Expr> {
match *ty {
AllocatorTy::Layout => {
let usize = self.cx.path_ident(self.span, Ident::new(sym::usize, self.span));
let ty_usize = self.cx.ty_path(usize);
let size = ident();
let align = ident();
args.push(self.cx.param(self.span, size, ty_usize.clone()));
args.push(self.cx.param(self.span, align, ty_usize));
let layout_new = self.cx.std_path(&[
Symbol::intern("alloc"),
Symbol::intern("Layout"),
Symbol::intern("from_size_align_unchecked"),
]);
let layout_new = self.cx.expr_path(self.cx.path(self.span, layout_new));
let size = self.cx.expr_ident(self.span, size);
let align = self.cx.expr_ident(self.span, align);
let layout = self.cx.expr_call(self.span, layout_new, vec![size, align]);
layout
}
AllocatorTy::Ptr => {
let ident = ident();
args.push(self.cx.param(self.span, ident, self.ptr_u8()));
let arg = self.cx.expr_ident(self.span, ident);
self.cx.expr_cast(self.span, arg, self.ptr_u8())
}
AllocatorTy::Usize => {
let ident = ident();
args.push(self.cx.param(self.span, ident, self.usize()));
self.cx.expr_ident(self.span, ident)
}
AllocatorTy::ResultPtr | AllocatorTy::Unit => {
panic!("can't convert AllocatorTy to an argument")
}
}
}
fn ret_ty(&self, ty: &AllocatorTy, expr: P<Expr>) -> (P<Ty>, P<Expr>) {
match *ty {
AllocatorTy::ResultPtr => {
// We're creating:
//
// #expr as *mut u8
let expr = self.cx.expr_cast(self.span, expr, self.ptr_u8());
(self.ptr_u8(), expr)
}
AllocatorTy::Unit => (self.cx.ty(self.span, TyKind::Tup(Vec::new())), expr),
AllocatorTy::Layout | AllocatorTy::Usize | AllocatorTy::Ptr => {
panic!("can't convert `AllocatorTy` to an output")
}
}
}
fn usize(&self) -> P<Ty> {
let usize = self.cx.path_ident(self.span, Ident::new(sym::usize, self.span));
self.cx.ty_path(usize)
}
fn ptr_u8(&self) -> P<Ty> {
let u8 = self.cx.path_ident(self.span, Ident::new(sym::u8, self.span));
let ty_u8 = self.cx.ty_path(u8);
self.cx.ty_ptr(self.span, ty_u8, Mutability::Mutable)
}
}