blob: 0a19d64200ce70dbb754b0c269b5570d5a23b7ea [file] [log] [blame]
use ArgumentType::*;
use Position::*;
use fmt_macros as parse;
use errors::DiagnosticBuilder;
use errors::Applicability;
use errors::pluralize;
use syntax::ast;
use syntax_expand::base::{self, *};
use syntax::token;
use syntax::ptr::P;
use syntax::symbol::{Symbol, sym};
use syntax::tokenstream::TokenStream;
use syntax_pos::{MultiSpan, Span};
use rustc_data_structures::fx::{FxHashMap, FxHashSet};
use std::borrow::Cow;
use std::collections::hash_map::Entry;
#[derive(PartialEq)]
enum ArgumentType {
Placeholder(&'static str),
Count,
}
enum Position {
Exact(usize),
Named(Symbol),
}
struct Context<'a, 'b> {
ecx: &'a mut ExtCtxt<'b>,
/// The macro's call site. References to unstable formatting internals must
/// use this span to pass the stability checker.
macsp: Span,
/// The span of the format string literal.
fmtsp: Span,
/// List of parsed argument expressions.
/// Named expressions are resolved early, and are appended to the end of
/// argument expressions.
///
/// Example showing the various data structures in motion:
///
/// * Original: `"{foo:o} {:o} {foo:x} {0:x} {1:o} {:x} {1:x} {0:o}"`
/// * Implicit argument resolution: `"{foo:o} {0:o} {foo:x} {0:x} {1:o} {1:x} {1:x} {0:o}"`
/// * Name resolution: `"{2:o} {0:o} {2:x} {0:x} {1:o} {1:x} {1:x} {0:o}"`
/// * `arg_types` (in JSON): `[[0, 1, 0], [0, 1, 1], [0, 1]]`
/// * `arg_unique_types` (in simplified JSON): `[["o", "x"], ["o", "x"], ["o", "x"]]`
/// * `names` (in JSON): `{"foo": 2}`
args: Vec<P<ast::Expr>>,
/// Placeholder slot numbers indexed by argument.
arg_types: Vec<Vec<usize>>,
/// Unique format specs seen for each argument.
arg_unique_types: Vec<Vec<ArgumentType>>,
/// Map from named arguments to their resolved indices.
names: FxHashMap<Symbol, usize>,
/// The latest consecutive literal strings, or empty if there weren't any.
literal: String,
/// Collection of the compiled `rt::Argument` structures
pieces: Vec<P<ast::Expr>>,
/// Collection of string literals
str_pieces: Vec<P<ast::Expr>>,
/// Stays `true` if all formatting parameters are default (as in "{}{}").
all_pieces_simple: bool,
/// Mapping between positional argument references and indices into the
/// final generated static argument array. We record the starting indices
/// corresponding to each positional argument, and number of references
/// consumed so far for each argument, to facilitate correct `Position`
/// mapping in `build_piece`. In effect this can be seen as a "flattened"
/// version of `arg_unique_types`.
///
/// Again with the example described above in docstring for `args`:
///
/// * `arg_index_map` (in JSON): `[[0, 1, 0], [2, 3, 3], [4, 5]]`
arg_index_map: Vec<Vec<usize>>,
/// Starting offset of count argument slots.
count_args_index_offset: usize,
/// Count argument slots and tracking data structures.
/// Count arguments are separately tracked for de-duplication in case
/// multiple references are made to one argument. For example, in this
/// format string:
///
/// * Original: `"{:.*} {:.foo$} {1:.*} {:.0$}"`
/// * Implicit argument resolution: `"{1:.0$} {2:.foo$} {1:.3$} {4:.0$}"`
/// * Name resolution: `"{1:.0$} {2:.5$} {1:.3$} {4:.0$}"`
/// * `count_positions` (in JSON): `{0: 0, 5: 1, 3: 2}`
/// * `count_args`: `vec![Exact(0), Exact(5), Exact(3)]`
count_args: Vec<Position>,
/// Relative slot numbers for count arguments.
count_positions: FxHashMap<usize, usize>,
/// Number of count slots assigned.
count_positions_count: usize,
/// Current position of the implicit positional arg pointer, as if it
/// still existed in this phase of processing.
/// Used only for `all_pieces_simple` tracking in `build_piece`.
curarg: usize,
/// Current piece being evaluated, used for error reporting.
curpiece: usize,
/// Keep track of invalid references to positional arguments.
invalid_refs: Vec<(usize, usize)>,
/// Spans of all the formatting arguments, in order.
arg_spans: Vec<Span>,
/// All the formatting arguments that have formatting flags set, in order for diagnostics.
arg_with_formatting: Vec<parse::FormatSpec<'a>>,
/// Whether this formatting string is a literal or it comes from a macro.
is_literal: bool,
}
/// Parses the arguments from the given list of tokens, returning the diagnostic
/// if there's a parse error so we can continue parsing other format!
/// expressions.
///
/// If parsing succeeds, the return value is:
///
/// ```text
/// Some((fmtstr, parsed arguments, index map for named arguments))
/// ```
fn parse_args<'a>(
ecx: &mut ExtCtxt<'a>,
sp: Span,
tts: TokenStream,
) -> Result<(P<ast::Expr>, Vec<P<ast::Expr>>, FxHashMap<Symbol, usize>), DiagnosticBuilder<'a>> {
let mut args = Vec::<P<ast::Expr>>::new();
let mut names = FxHashMap::<Symbol, usize>::default();
let mut p = ecx.new_parser_from_tts(tts);
if p.token == token::Eof {
return Err(ecx.struct_span_err(sp, "requires at least a format string argument"));
}
let fmtstr = p.parse_expr()?;
let mut first = true;
let mut named = false;
while p.token != token::Eof {
if !p.eat(&token::Comma) {
if first {
// After `format!(""` we always expect *only* a comma...
let mut err = ecx.struct_span_err(p.token.span, "expected token: `,`");
err.span_label(p.token.span, "expected `,`");
p.maybe_annotate_with_ascription(&mut err, false);
return Err(err);
} else {
// ...after that delegate to `expect` to also include the other expected tokens.
return Err(p.expect(&token::Comma).err().unwrap());
}
}
first = false;
if p.token == token::Eof {
break;
} // accept trailing commas
if p.token.is_ident() && p.look_ahead(1, |t| *t == token::Eq) {
named = true;
let name = if let token::Ident(name, _) = p.token.kind {
p.bump();
name
} else {
unreachable!();
};
p.expect(&token::Eq)?;
let e = p.parse_expr()?;
if let Some(prev) = names.get(&name) {
ecx.struct_span_err(e.span, &format!("duplicate argument named `{}`", name))
.span_label(args[*prev].span, "previously here")
.span_label(e.span, "duplicate argument")
.emit();
continue;
}
// Resolve names into slots early.
// Since all the positional args are already seen at this point
// if the input is valid, we can simply append to the positional
// args. And remember the names.
let slot = args.len();
names.insert(name, slot);
args.push(e);
} else {
let e = p.parse_expr()?;
if named {
let mut err = ecx.struct_span_err(
e.span,
"positional arguments cannot follow named arguments",
);
err.span_label(e.span, "positional arguments must be before named arguments");
for (_, pos) in &names {
err.span_label(args[*pos].span, "named argument");
}
err.emit();
}
args.push(e);
}
}
Ok((fmtstr, args, names))
}
impl<'a, 'b> Context<'a, 'b> {
fn resolve_name_inplace(&self, p: &mut parse::Piece<'_>) {
// NOTE: the `unwrap_or` branch is needed in case of invalid format
// arguments, e.g., `format_args!("{foo}")`.
let lookup = |s: Symbol| *self.names.get(&s).unwrap_or(&0);
match *p {
parse::String(_) => {}
parse::NextArgument(ref mut arg) => {
if let parse::ArgumentNamed(s) = arg.position {
arg.position = parse::ArgumentIs(lookup(s));
}
if let parse::CountIsName(s) = arg.format.width {
arg.format.width = parse::CountIsParam(lookup(s));
}
if let parse::CountIsName(s) = arg.format.precision {
arg.format.precision = parse::CountIsParam(lookup(s));
}
}
}
}
/// Verifies one piece of a parse string, and remembers it if valid.
/// All errors are not emitted as fatal so we can continue giving errors
/// about this and possibly other format strings.
fn verify_piece(&mut self, p: &parse::Piece<'_>) {
match *p {
parse::String(..) => {}
parse::NextArgument(ref arg) => {
// width/precision first, if they have implicit positional
// parameters it makes more sense to consume them first.
self.verify_count(arg.format.width);
self.verify_count(arg.format.precision);
// argument second, if it's an implicit positional parameter
// it's written second, so it should come after width/precision.
let pos = match arg.position {
parse::ArgumentIs(i) | parse::ArgumentImplicitlyIs(i) => Exact(i),
parse::ArgumentNamed(s) => Named(s),
};
let ty = Placeholder(match &arg.format.ty[..] {
"" => "Display",
"?" => "Debug",
"e" => "LowerExp",
"E" => "UpperExp",
"o" => "Octal",
"p" => "Pointer",
"b" => "Binary",
"x" => "LowerHex",
"X" => "UpperHex",
_ => {
let fmtsp = self.fmtsp;
let sp = arg.format.ty_span.map(|sp| fmtsp.from_inner(sp));
let mut err = self.ecx.struct_span_err(
sp.unwrap_or(fmtsp),
&format!("unknown format trait `{}`", arg.format.ty),
);
err.note("the only appropriate formatting traits are:\n\
- ``, which uses the `Display` trait\n\
- `?`, which uses the `Debug` trait\n\
- `e`, which uses the `LowerExp` trait\n\
- `E`, which uses the `UpperExp` trait\n\
- `o`, which uses the `Octal` trait\n\
- `p`, which uses the `Pointer` trait\n\
- `b`, which uses the `Binary` trait\n\
- `x`, which uses the `LowerHex` trait\n\
- `X`, which uses the `UpperHex` trait");
if let Some(sp) = sp {
for (fmt, name) in &[
("", "Display"),
("?", "Debug"),
("e", "LowerExp"),
("E", "UpperExp"),
("o", "Octal"),
("p", "Pointer"),
("b", "Binary"),
("x", "LowerHex"),
("X", "UpperHex"),
] {
err.tool_only_span_suggestion(
sp,
&format!("use the `{}` trait", name),
fmt.to_string(),
Applicability::MaybeIncorrect,
);
}
}
err.emit();
"<invalid>"
}
});
self.verify_arg_type(pos, ty);
self.curpiece += 1;
}
}
}
fn verify_count(&mut self, c: parse::Count) {
match c {
parse::CountImplied |
parse::CountIs(..) => {}
parse::CountIsParam(i) => {
self.verify_arg_type(Exact(i), Count);
}
parse::CountIsName(s) => {
self.verify_arg_type(Named(s), Count);
}
}
}
fn describe_num_args(&self) -> Cow<'_, str> {
match self.args.len() {
0 => "no arguments were given".into(),
1 => "there is 1 argument".into(),
x => format!("there are {} arguments", x).into(),
}
}
/// Handle invalid references to positional arguments. Output different
/// errors for the case where all arguments are positional and for when
/// there are named arguments or numbered positional arguments in the
/// format string.
fn report_invalid_references(&self, numbered_position_args: bool) {
let mut e;
let sp = if self.is_literal { // Point at the formatting arguments.
MultiSpan::from_spans(self.arg_spans.clone())
} else {
MultiSpan::from_span(self.fmtsp)
};
let refs = self
.invalid_refs
.iter()
.map(|(r, pos)| (r.to_string(), self.arg_spans.get(*pos)));
let mut zero_based_note = false;
let count = self.pieces.len() + self.arg_with_formatting
.iter()
.filter(|fmt| fmt.precision_span.is_some())
.count();
if self.names.is_empty() && !numbered_position_args && count != self.args.len() {
e = self.ecx.struct_span_err(
sp,
&format!(
"{} positional argument{} in format string, but {}",
count,
pluralize!(count),
self.describe_num_args(),
),
);
for arg in &self.args { // Point at the arguments that will be formatted.
e.span_label(arg.span, "");
}
} else {
let (mut refs, spans): (Vec<_>, Vec<_>) = refs.unzip();
// Avoid `invalid reference to positional arguments 7 and 7 (there is 1 argument)`
// for `println!("{7:7$}", 1);`
refs.sort();
refs.dedup();
let (arg_list, mut sp) = if refs.len() == 1 {
let spans: Vec<_> = spans.into_iter().filter_map(|sp| sp.map(|sp| *sp)).collect();
(
format!("argument {}", refs[0]),
if spans.is_empty() {
MultiSpan::from_span(self.fmtsp)
} else {
MultiSpan::from_spans(spans)
},
)
} else {
let pos = MultiSpan::from_spans(spans.into_iter().map(|s| *s.unwrap()).collect());
let reg = refs.pop().unwrap();
(
format!(
"arguments {head} and {tail}",
head = refs.join(", "),
tail = reg,
),
pos,
)
};
if !self.is_literal {
sp = MultiSpan::from_span(self.fmtsp);
}
e = self.ecx.struct_span_err(sp,
&format!("invalid reference to positional {} ({})",
arg_list,
self.describe_num_args()));
zero_based_note = true;
};
for fmt in &self.arg_with_formatting {
if let Some(span) = fmt.precision_span {
let span = self.fmtsp.from_inner(span);
match fmt.precision {
parse::CountIsParam(pos) if pos > self.args.len() => {
e.span_label(span, &format!(
"this precision flag expects an `usize` argument at position {}, \
but {}",
pos,
self.describe_num_args(),
));
zero_based_note = true;
}
parse::CountIsParam(pos) => {
let count = self.pieces.len() + self.arg_with_formatting
.iter()
.filter(|fmt| fmt.precision_span.is_some())
.count();
e.span_label(span, &format!(
"this precision flag adds an extra required argument at position {}, \
which is why there {} expected",
pos,
if count == 1 {
"is 1 argument".to_string()
} else {
format!("are {} arguments", count)
},
));
if let Some(arg) = self.args.get(pos) {
e.span_label(
arg.span,
"this parameter corresponds to the precision flag",
);
}
zero_based_note = true;
}
_ => {}
}
}
if let Some(span) = fmt.width_span {
let span = self.fmtsp.from_inner(span);
match fmt.width {
parse::CountIsParam(pos) if pos > self.args.len() => {
e.span_label(span, &format!(
"this width flag expects an `usize` argument at position {}, \
but {}",
pos,
self.describe_num_args(),
));
zero_based_note = true;
}
_ => {}
}
}
}
if zero_based_note {
e.note("positional arguments are zero-based");
}
if !self.arg_with_formatting.is_empty() {
e.note("for information about formatting flags, visit \
https://doc.rust-lang.org/std/fmt/index.html");
}
e.emit();
}
/// Actually verifies and tracks a given format placeholder
/// (a.k.a. argument).
fn verify_arg_type(&mut self, arg: Position, ty: ArgumentType) {
match arg {
Exact(arg) => {
if self.args.len() <= arg {
self.invalid_refs.push((arg, self.curpiece));
return;
}
match ty {
Placeholder(_) => {
// record every (position, type) combination only once
let ref mut seen_ty = self.arg_unique_types[arg];
let i = seen_ty.iter().position(|x| *x == ty).unwrap_or_else(|| {
let i = seen_ty.len();
seen_ty.push(ty);
i
});
self.arg_types[arg].push(i);
}
Count => {
if let Entry::Vacant(e) = self.count_positions.entry(arg) {
let i = self.count_positions_count;
e.insert(i);
self.count_args.push(Exact(arg));
self.count_positions_count += 1;
}
}
}
}
Named(name) => {
match self.names.get(&name) {
Some(&idx) => {
// Treat as positional arg.
self.verify_arg_type(Exact(idx), ty)
}
None => {
let msg = format!("there is no argument named `{}`", name);
let sp = if self.is_literal {
*self.arg_spans.get(self.curpiece).unwrap_or(&self.fmtsp)
} else {
self.fmtsp
};
let mut err = self.ecx.struct_span_err(sp, &msg[..]);
err.emit();
}
}
}
}
}
/// Builds the mapping between format placeholders and argument objects.
fn build_index_map(&mut self) {
// NOTE: Keep the ordering the same as `into_expr`'s expansion would do!
let args_len = self.args.len();
self.arg_index_map.reserve(args_len);
let mut sofar = 0usize;
// Map the arguments
for i in 0..args_len {
let ref arg_types = self.arg_types[i];
let arg_offsets = arg_types.iter().map(|offset| sofar + *offset).collect::<Vec<_>>();
self.arg_index_map.push(arg_offsets);
sofar += self.arg_unique_types[i].len();
}
// Record starting index for counts, which appear just after arguments
self.count_args_index_offset = sofar;
}
fn rtpath(ecx: &ExtCtxt<'_>, s: &str) -> Vec<ast::Ident> {
ecx.std_path(&[sym::fmt, sym::rt, sym::v1, Symbol::intern(s)])
}
fn build_count(&self, c: parse::Count) -> P<ast::Expr> {
let sp = self.macsp;
let count = |c, arg| {
let mut path = Context::rtpath(self.ecx, "Count");
path.push(self.ecx.ident_of(c, sp));
match arg {
Some(arg) => self.ecx.expr_call_global(sp, path, vec![arg]),
None => self.ecx.expr_path(self.ecx.path_global(sp, path)),
}
};
match c {
parse::CountIs(i) => count("Is", Some(self.ecx.expr_usize(sp, i))),
parse::CountIsParam(i) => {
// This needs mapping too, as `i` is referring to a macro
// argument. If `i` is not found in `count_positions` then
// the error had already been emitted elsewhere.
let i = self.count_positions.get(&i).cloned().unwrap_or(0)
+ self.count_args_index_offset;
count("Param", Some(self.ecx.expr_usize(sp, i)))
}
parse::CountImplied => count("Implied", None),
// should never be the case, names are already resolved
parse::CountIsName(_) => panic!("should never happen"),
}
}
/// Build a literal expression from the accumulated string literals
fn build_literal_string(&mut self) -> P<ast::Expr> {
let sp = self.fmtsp;
let s = Symbol::intern(&self.literal);
self.literal.clear();
self.ecx.expr_str(sp, s)
}
/// Builds a static `rt::Argument` from a `parse::Piece` or append
/// to the `literal` string.
fn build_piece(
&mut self,
piece: &parse::Piece<'a>,
arg_index_consumed: &mut Vec<usize>,
) -> Option<P<ast::Expr>> {
let sp = self.macsp;
match *piece {
parse::String(s) => {
self.literal.push_str(s);
None
}
parse::NextArgument(ref arg) => {
// Build the position
let pos = {
let pos = |c, arg| {
let mut path = Context::rtpath(self.ecx, "Position");
path.push(self.ecx.ident_of(c, sp));
match arg {
Some(i) => {
let arg = self.ecx.expr_usize(sp, i);
self.ecx.expr_call_global(sp, path, vec![arg])
}
None => self.ecx.expr_path(self.ecx.path_global(sp, path)),
}
};
match arg.position {
parse::ArgumentIs(i)
| parse::ArgumentImplicitlyIs(i) => {
// Map to index in final generated argument array
// in case of multiple types specified
let arg_idx = match arg_index_consumed.get_mut(i) {
None => 0, // error already emitted elsewhere
Some(offset) => {
let ref idx_map = self.arg_index_map[i];
// unwrap_or branch: error already emitted elsewhere
let arg_idx = *idx_map.get(*offset).unwrap_or(&0);
*offset += 1;
arg_idx
}
};
pos("At", Some(arg_idx))
}
// should never be the case, because names are already
// resolved.
parse::ArgumentNamed(_) => panic!("should never happen"),
}
};
let simple_arg = parse::Argument {
position: {
// We don't have ArgumentNext any more, so we have to
// track the current argument ourselves.
let i = self.curarg;
self.curarg += 1;
parse::ArgumentIs(i)
},
format: parse::FormatSpec {
fill: arg.format.fill,
align: parse::AlignUnknown,
flags: 0,
precision: parse::CountImplied,
precision_span: None,
width: parse::CountImplied,
width_span: None,
ty: arg.format.ty,
ty_span: arg.format.ty_span,
},
};
let fill = arg.format.fill.unwrap_or(' ');
let pos_simple =
arg.position.index() == simple_arg.position.index();
if arg.format.precision_span.is_some() || arg.format.width_span.is_some() {
self.arg_with_formatting.push(arg.format);
}
if !pos_simple || arg.format != simple_arg.format || fill != ' ' {
self.all_pieces_simple = false;
}
// Build the format
let fill = self.ecx.expr_lit(sp, ast::LitKind::Char(fill));
let align = |name| {
let mut p = Context::rtpath(self.ecx, "Alignment");
p.push(self.ecx.ident_of(name, sp));
self.ecx.path_global(sp, p)
};
let align = match arg.format.align {
parse::AlignLeft => align("Left"),
parse::AlignRight => align("Right"),
parse::AlignCenter => align("Center"),
parse::AlignUnknown => align("Unknown"),
};
let align = self.ecx.expr_path(align);
let flags = self.ecx.expr_u32(sp, arg.format.flags);
let prec = self.build_count(arg.format.precision);
let width = self.build_count(arg.format.width);
let path = self.ecx.path_global(sp, Context::rtpath(self.ecx, "FormatSpec"));
let fmt = self.ecx.expr_struct(
sp,
path,
vec![
self.ecx.field_imm(sp, self.ecx.ident_of("fill", sp), fill),
self.ecx.field_imm(sp, self.ecx.ident_of("align", sp), align),
self.ecx.field_imm(sp, self.ecx.ident_of("flags", sp), flags),
self.ecx.field_imm(sp, self.ecx.ident_of("precision", sp), prec),
self.ecx.field_imm(sp, self.ecx.ident_of("width", sp), width),
],
);
let path = self.ecx.path_global(sp, Context::rtpath(self.ecx, "Argument"));
Some(self.ecx.expr_struct(
sp,
path,
vec![
self.ecx.field_imm(sp, self.ecx.ident_of("position", sp), pos),
self.ecx.field_imm(sp, self.ecx.ident_of("format", sp), fmt),
],
))
}
}
}
/// Actually builds the expression which the format_args! block will be
/// expanded to.
fn into_expr(self) -> P<ast::Expr> {
let mut locals = Vec::with_capacity(
(0..self.args.len()).map(|i| self.arg_unique_types[i].len()).sum()
);
let mut counts = Vec::with_capacity(self.count_args.len());
let mut pats = Vec::with_capacity(self.args.len());
let mut heads = Vec::with_capacity(self.args.len());
let names_pos: Vec<_> = (0..self.args.len())
.map(|i| self.ecx.ident_of(&format!("arg{}", i), self.macsp))
.collect();
// First, build up the static array which will become our precompiled
// format "string"
let pieces = self.ecx.expr_vec_slice(self.fmtsp, self.str_pieces);
// Before consuming the expressions, we have to remember spans for
// count arguments as they are now generated separate from other
// arguments, hence have no access to the `P<ast::Expr>`'s.
let spans_pos: Vec<_> = self.args.iter().map(|e| e.span.clone()).collect();
// Right now there is a bug such that for the expression:
// foo(bar(&1))
// the lifetime of `1` doesn't outlast the call to `bar`, so it's not
// valid for the call to `foo`. To work around this all arguments to the
// format! string are shoved into locals. Furthermore, we shove the address
// of each variable because we don't want to move out of the arguments
// passed to this function.
for (i, e) in self.args.into_iter().enumerate() {
let name = names_pos[i];
let span = self.ecx.with_def_site_ctxt(e.span);
pats.push(self.ecx.pat_ident(span, name));
for ref arg_ty in self.arg_unique_types[i].iter() {
locals.push(Context::format_arg(self.ecx, self.macsp, e.span, arg_ty, name));
}
heads.push(self.ecx.expr_addr_of(e.span, e));
}
for pos in self.count_args {
let index = match pos {
Exact(i) => i,
_ => panic!("should never happen"),
};
let name = names_pos[index];
let span = spans_pos[index];
counts.push(Context::format_arg(self.ecx, self.macsp, span, &Count, name));
}
// Now create a vector containing all the arguments
let args = locals.into_iter().chain(counts.into_iter());
let args_array = self.ecx.expr_vec(self.macsp, args.collect());
// Constructs an AST equivalent to:
//
// match (&arg0, &arg1) {
// (tmp0, tmp1) => args_array
// }
//
// It was:
//
// let tmp0 = &arg0;
// let tmp1 = &arg1;
// args_array
//
// Because of #11585 the new temporary lifetime rule, the enclosing
// statements for these temporaries become the let's themselves.
// If one or more of them are RefCell's, RefCell borrow() will also
// end there; they don't last long enough for args_array to use them.
// The match expression solves the scope problem.
//
// Note, it may also very well be transformed to:
//
// match arg0 {
// ref tmp0 => {
// match arg1 => {
// ref tmp1 => args_array } } }
//
// But the nested match expression is proved to perform not as well
// as series of let's; the first approach does.
let pat = self.ecx.pat_tuple(self.macsp, pats);
let arm = self.ecx.arm(self.macsp, pat, args_array);
let head = self.ecx.expr(self.macsp, ast::ExprKind::Tup(heads));
let result = self.ecx.expr_match(self.macsp, head, vec![arm]);
let args_slice = self.ecx.expr_addr_of(self.macsp, result);
// Now create the fmt::Arguments struct with all our locals we created.
let (fn_name, fn_args) = if self.all_pieces_simple {
("new_v1", vec![pieces, args_slice])
} else {
// Build up the static array which will store our precompiled
// nonstandard placeholders, if there are any.
let fmt = self.ecx.expr_vec_slice(self.macsp, self.pieces);
("new_v1_formatted", vec![pieces, args_slice, fmt])
};
let path = self.ecx.std_path(&[sym::fmt, sym::Arguments, Symbol::intern(fn_name)]);
self.ecx.expr_call_global(self.macsp, path, fn_args)
}
fn format_arg(
ecx: &ExtCtxt<'_>,
macsp: Span,
mut sp: Span,
ty: &ArgumentType,
arg: ast::Ident,
) -> P<ast::Expr> {
sp = ecx.with_def_site_ctxt(sp);
let arg = ecx.expr_ident(sp, arg);
let trait_ = match *ty {
Placeholder(trait_) if trait_ == "<invalid>" => return DummyResult::raw_expr(sp, true),
Placeholder(trait_) => trait_,
Count => {
let path = ecx.std_path(&[sym::fmt, sym::ArgumentV1, sym::from_usize]);
return ecx.expr_call_global(macsp, path, vec![arg]);
}
};
let path = ecx.std_path(&[sym::fmt, Symbol::intern(trait_), sym::fmt]);
let format_fn = ecx.path_global(sp, path);
let path = ecx.std_path(&[sym::fmt, sym::ArgumentV1, sym::new]);
ecx.expr_call_global(macsp, path, vec![arg, ecx.expr_path(format_fn)])
}
}
fn expand_format_args_impl<'cx>(
ecx: &'cx mut ExtCtxt<'_>,
mut sp: Span,
tts: TokenStream,
nl: bool,
) -> Box<dyn base::MacResult + 'cx> {
sp = ecx.with_def_site_ctxt(sp);
match parse_args(ecx, sp, tts) {
Ok((efmt, args, names)) => {
MacEager::expr(expand_preparsed_format_args(ecx, sp, efmt, args, names, nl))
}
Err(mut err) => {
err.emit();
DummyResult::any(sp)
}
}
}
pub fn expand_format_args<'cx>(
ecx: &'cx mut ExtCtxt<'_>,
sp: Span,
tts: TokenStream,
) -> Box<dyn base::MacResult + 'cx> {
expand_format_args_impl(ecx, sp, tts, false)
}
pub fn expand_format_args_nl<'cx>(
ecx: &'cx mut ExtCtxt<'_>,
sp: Span,
tts: TokenStream,
) -> Box<dyn base::MacResult + 'cx> {
expand_format_args_impl(ecx, sp, tts, true)
}
/// Take the various parts of `format_args!(efmt, args..., name=names...)`
/// and construct the appropriate formatting expression.
pub fn expand_preparsed_format_args(
ecx: &mut ExtCtxt<'_>,
sp: Span,
efmt: P<ast::Expr>,
args: Vec<P<ast::Expr>>,
names: FxHashMap<Symbol, usize>,
append_newline: bool,
) -> P<ast::Expr> {
// NOTE: this verbose way of initializing `Vec<Vec<ArgumentType>>` is because
// `ArgumentType` does not derive `Clone`.
let arg_types: Vec<_> = (0..args.len()).map(|_| Vec::new()).collect();
let arg_unique_types: Vec<_> = (0..args.len()).map(|_| Vec::new()).collect();
let mut macsp = ecx.call_site();
macsp = ecx.with_def_site_ctxt(macsp);
let msg = "format argument must be a string literal";
let fmt_sp = efmt.span;
let (fmt_str, fmt_style, fmt_span) = match expr_to_spanned_string(ecx, efmt, msg) {
Ok(mut fmt) if append_newline => {
fmt.0 = Symbol::intern(&format!("{}\n", fmt.0));
fmt
}
Ok(fmt) => fmt,
Err(err) => {
if let Some(mut err) = err {
let sugg_fmt = match args.len() {
0 => "{}".to_string(),
_ => format!("{}{{}}", "{} ".repeat(args.len())),
};
err.span_suggestion(
fmt_sp.shrink_to_lo(),
"you might be missing a string literal to format with",
format!("\"{}\", ", sugg_fmt),
Applicability::MaybeIncorrect,
);
err.emit();
}
return DummyResult::raw_expr(sp, true);
}
};
let (is_literal, fmt_snippet) = match ecx.source_map().span_to_snippet(fmt_sp) {
Ok(s) => (s.starts_with("\"") || s.starts_with("r#"), Some(s)),
_ => (false, None),
};
let str_style = match fmt_style {
ast::StrStyle::Cooked => None,
ast::StrStyle::Raw(raw) => {
Some(raw as usize)
},
};
/// Finds the indices of all characters that have been processed and differ between the actual
/// written code (code snippet) and the `InternedString` that get's processed in the `Parser`
/// in order to properly synthethise the intra-string `Span`s for error diagnostics.
fn find_skips(snippet: &str, is_raw: bool) -> Vec<usize> {
let mut eat_ws = false;
let mut s = snippet.chars().enumerate().peekable();
let mut skips = vec![];
while let Some((pos, c)) = s.next() {
match (c, s.peek()) {
// skip whitespace and empty lines ending in '\\'
('\\', Some((next_pos, '\n'))) if !is_raw => {
eat_ws = true;
skips.push(pos);
skips.push(*next_pos);
let _ = s.next();
}
('\\', Some((next_pos, '\n'))) |
('\\', Some((next_pos, 'n'))) |
('\\', Some((next_pos, 't'))) if eat_ws => {
skips.push(pos);
skips.push(*next_pos);
let _ = s.next();
}
(' ', _) |
('\n', _) |
('\t', _) if eat_ws => {
skips.push(pos);
}
('\\', Some((next_pos, 'n'))) |
('\\', Some((next_pos, 't'))) |
('\\', Some((next_pos, '0'))) |
('\\', Some((next_pos, '\\'))) |
('\\', Some((next_pos, '\''))) |
('\\', Some((next_pos, '\"'))) => {
skips.push(*next_pos);
let _ = s.next();
}
('\\', Some((_, 'x'))) if !is_raw => {
for _ in 0..3 { // consume `\xAB` literal
if let Some((pos, _)) = s.next() {
skips.push(pos);
} else {
break;
}
}
}
('\\', Some((_, 'u'))) if !is_raw => {
if let Some((pos, _)) = s.next() {
skips.push(pos);
}
if let Some((next_pos, next_c)) = s.next() {
if next_c == '{' {
skips.push(next_pos);
let mut i = 0; // consume up to 6 hexanumeric chars + closing `}`
while let (Some((next_pos, c)), true) = (s.next(), i < 7) {
if c.is_digit(16) {
skips.push(next_pos);
} else if c == '}' {
skips.push(next_pos);
break;
} else {
break;
}
i += 1;
}
} else if next_c.is_digit(16) {
skips.push(next_pos);
// We suggest adding `{` and `}` when appropriate, accept it here as if
// it were correct
let mut i = 0; // consume up to 6 hexanumeric chars
while let (Some((next_pos, c)), _) = (s.next(), i < 6) {
if c.is_digit(16) {
skips.push(next_pos);
} else {
break;
}
i += 1;
}
}
}
}
_ if eat_ws => { // `take_while(|c| c.is_whitespace())`
eat_ws = false;
}
_ => {}
}
}
skips
}
let skips = if let (true, Some(ref snippet)) = (is_literal, fmt_snippet.as_ref()) {
let r_start = str_style.map(|r| r + 1).unwrap_or(0);
let r_end = str_style.map(|r| r).unwrap_or(0);
let s = &snippet[r_start + 1..snippet.len() - r_end - 1];
find_skips(s, str_style.is_some())
} else {
vec![]
};
let fmt_str = &fmt_str.as_str(); // for the suggestions below
let mut parser = parse::Parser::new(fmt_str, str_style, skips, append_newline);
let mut unverified_pieces = Vec::new();
while let Some(piece) = parser.next() {
if !parser.errors.is_empty() {
break;
} else {
unverified_pieces.push(piece);
}
}
if !parser.errors.is_empty() {
let err = parser.errors.remove(0);
let sp = fmt_span.from_inner(err.span);
let mut e = ecx.struct_span_err(sp, &format!("invalid format string: {}",
err.description));
e.span_label(sp, err.label + " in format string");
if let Some(note) = err.note {
e.note(&note);
}
if let Some((label, span)) = err.secondary_label {
let sp = fmt_span.from_inner(span);
e.span_label(sp, label);
}
e.emit();
return DummyResult::raw_expr(sp, true);
}
let arg_spans = parser.arg_places.iter()
.map(|span| fmt_span.from_inner(*span))
.collect();
let named_pos: FxHashSet<usize> = names.values().cloned().collect();
let mut cx = Context {
ecx,
args,
arg_types,
arg_unique_types,
names,
curarg: 0,
curpiece: 0,
arg_index_map: Vec::new(),
count_args: Vec::new(),
count_positions: FxHashMap::default(),
count_positions_count: 0,
count_args_index_offset: 0,
literal: String::new(),
pieces: Vec::with_capacity(unverified_pieces.len()),
str_pieces: Vec::with_capacity(unverified_pieces.len()),
all_pieces_simple: true,
macsp,
fmtsp: fmt_span,
invalid_refs: Vec::new(),
arg_spans,
arg_with_formatting: Vec::new(),
is_literal,
};
// This needs to happen *after* the Parser has consumed all pieces to create all the spans
let pieces = unverified_pieces.into_iter().map(|mut piece| {
cx.verify_piece(&piece);
cx.resolve_name_inplace(&mut piece);
piece
}).collect::<Vec<_>>();
let numbered_position_args = pieces.iter().any(|arg: &parse::Piece<'_>| {
match *arg {
parse::String(_) => false,
parse::NextArgument(arg) => {
match arg.position {
parse::Position::ArgumentIs(_) => true,
_ => false,
}
}
}
});
cx.build_index_map();
let mut arg_index_consumed = vec![0usize; cx.arg_index_map.len()];
for piece in pieces {
if let Some(piece) = cx.build_piece(&piece, &mut arg_index_consumed) {
let s = cx.build_literal_string();
cx.str_pieces.push(s);
cx.pieces.push(piece);
}
}
if !cx.literal.is_empty() {
let s = cx.build_literal_string();
cx.str_pieces.push(s);
}
if cx.invalid_refs.len() >= 1 {
cx.report_invalid_references(numbered_position_args);
}
// Make sure that all arguments were used and all arguments have types.
let errs = cx.arg_types
.iter()
.enumerate()
.filter(|(i, ty)| ty.is_empty() && !cx.count_positions.contains_key(&i))
.map(|(i, _)| {
let msg = if named_pos.contains(&i) {
// named argument
"named argument never used"
} else {
// positional argument
"argument never used"
};
(cx.args[i].span, msg)
})
.collect::<Vec<_>>();
let errs_len = errs.len();
if !errs.is_empty() {
let args_used = cx.arg_types.len() - errs_len;
let args_unused = errs_len;
let mut diag = {
if errs_len == 1 {
let (sp, msg) = errs.into_iter().next().unwrap();
let mut diag = cx.ecx.struct_span_err(sp, msg);
diag.span_label(sp, msg);
diag
} else {
let mut diag = cx.ecx.struct_span_err(
errs.iter().map(|&(sp, _)| sp).collect::<Vec<Span>>(),
"multiple unused formatting arguments",
);
diag.span_label(cx.fmtsp, "multiple missing formatting specifiers");
for (sp, msg) in errs {
diag.span_label(sp, msg);
}
diag
}
};
// Used to ensure we only report translations for *one* kind of foreign format.
let mut found_foreign = false;
// Decide if we want to look for foreign formatting directives.
if args_used < args_unused {
use super::format_foreign as foreign;
// The set of foreign substitutions we've explained. This prevents spamming the user
// with `%d should be written as {}` over and over again.
let mut explained = FxHashSet::default();
macro_rules! check_foreign {
($kind:ident) => {{
let mut show_doc_note = false;
let mut suggestions = vec![];
// account for `"` and account for raw strings `r#`
let padding = str_style.map(|i| i + 2).unwrap_or(1);
for sub in foreign::$kind::iter_subs(fmt_str, padding) {
let trn = match sub.translate() {
Some(trn) => trn,
// If it has no translation, don't call it out specifically.
None => continue,
};
let pos = sub.position();
let sub = String::from(sub.as_str());
if explained.contains(&sub) {
continue;
}
explained.insert(sub.clone());
if !found_foreign {
found_foreign = true;
show_doc_note = true;
}
if let Some(inner_sp) = pos {
let sp = fmt_sp.from_inner(inner_sp);
suggestions.push((sp, trn));
} else {
diag.help(&format!("`{}` should be written as `{}`", sub, trn));
}
}
if show_doc_note {
diag.note(concat!(
stringify!($kind),
" formatting not supported; see the documentation for `std::fmt`",
));
}
if suggestions.len() > 0 {
diag.multipart_suggestion(
"format specifiers use curly braces",
suggestions,
Applicability::MachineApplicable,
);
}
}};
}
check_foreign!(printf);
if !found_foreign {
check_foreign!(shell);
}
}
if !found_foreign && errs_len == 1 {
diag.span_label(cx.fmtsp, "formatting specifier missing");
}
diag.emit();
}
cx.into_expr()
}