blob: d987dc855b6156ec8c7ae2fbdd272167a1c47540 [file] [log] [blame]
//! The AST pointer.
//!
//! Provides `P<T>`, a frozen owned smart pointer, as a replacement for `@T` in
//! the AST.
//!
//! # Motivations and benefits
//!
//! * **Identity**: sharing AST nodes is problematic for the various analysis
//! passes (e.g., one may be able to bypass the borrow checker with a shared
//! `ExprKind::AddrOf` node taking a mutable borrow). The only reason `@T` in the
//! AST hasn't caused issues is because of inefficient folding passes which
//! would always deduplicate any such shared nodes. Even if the AST were to
//! switch to an arena, this would still hold, i.e., it couldn't use `&'a T`,
//! but rather a wrapper like `P<'a, T>`.
//!
//! * **Immutability**: `P<T>` disallows mutating its inner `T`, unlike `Box<T>`
//! (unless it contains an `Unsafe` interior, but that may be denied later).
//! This mainly prevents mistakes, but can also enforces a kind of "purity".
//!
//! * **Efficiency**: folding can reuse allocation space for `P<T>` and `Vec<T>`,
//! the latter even when the input and output types differ (as it would be the
//! case with arenas or a GADT AST using type parameters to toggle features).
//!
//! * **Maintainability**: `P<T>` provides a fixed interface - `Deref`,
//! `and_then` and `map` - which can remain fully functional even if the
//! implementation changes (using a special thread-local heap, for example).
//! Moreover, a switch to, e.g., `P<'a, T>` would be easy and mostly automated.
use std::fmt::{self, Display, Debug};
use std::iter::FromIterator;
use std::ops::{Deref, DerefMut};
use std::{slice, vec};
use rustc_serialize::{Encodable, Decodable, Encoder, Decoder};
use rustc_data_structures::stable_hasher::{StableHasher, HashStable};
/// An owned smart pointer.
pub struct P<T: ?Sized> {
ptr: Box<T>
}
/// Construct a `P<T>` from a `T` value.
#[allow(non_snake_case)]
pub fn P<T: 'static>(value: T) -> P<T> {
P {
ptr: box value
}
}
impl<T: 'static> P<T> {
/// Move out of the pointer.
/// Intended for chaining transformations not covered by `map`.
pub fn and_then<U, F>(self, f: F) -> U where
F: FnOnce(T) -> U,
{
f(*self.ptr)
}
/// Equivalent to `and_then(|x| x)`.
pub fn into_inner(self) -> T {
*self.ptr
}
/// Produce a new `P<T>` from `self` without reallocating.
pub fn map<F>(mut self, f: F) -> P<T> where
F: FnOnce(T) -> T,
{
let x = f(*self.ptr);
*self.ptr = x;
self
}
/// Optionally produce a new `P<T>` from `self` without reallocating.
pub fn filter_map<F>(mut self, f: F) -> Option<P<T>> where
F: FnOnce(T) -> Option<T>,
{
*self.ptr = f(*self.ptr)?;
Some(self)
}
}
impl<T: ?Sized> Deref for P<T> {
type Target = T;
fn deref(&self) -> &T {
&self.ptr
}
}
impl<T: ?Sized> DerefMut for P<T> {
fn deref_mut(&mut self) -> &mut T {
&mut self.ptr
}
}
impl<T: 'static + Clone> Clone for P<T> {
fn clone(&self) -> P<T> {
P((**self).clone())
}
}
impl<T: ?Sized + Debug> Debug for P<T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
Debug::fmt(&self.ptr, f)
}
}
impl<T: Display> Display for P<T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
Display::fmt(&**self, f)
}
}
impl<T> fmt::Pointer for P<T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt::Pointer::fmt(&self.ptr, f)
}
}
impl<T: 'static + Decodable> Decodable for P<T> {
fn decode<D: Decoder>(d: &mut D) -> Result<P<T>, D::Error> {
Decodable::decode(d).map(P)
}
}
impl<T: Encodable> Encodable for P<T> {
fn encode<S: Encoder>(&self, s: &mut S) -> Result<(), S::Error> {
(**self).encode(s)
}
}
impl<T> P<[T]> {
pub const fn new() -> P<[T]> {
// HACK(eddyb) bypass the lack of a `const fn` to create an empty `Box<[T]>`
// (as trait methods, `default` in this case, can't be `const fn` yet).
P {
ptr: unsafe {
use std::ptr::NonNull;
std::mem::transmute(NonNull::<[T; 0]>::dangling() as NonNull<[T]>)
},
}
}
#[inline(never)]
pub fn from_vec(v: Vec<T>) -> P<[T]> {
P { ptr: v.into_boxed_slice() }
}
#[inline(never)]
pub fn into_vec(self) -> Vec<T> {
self.ptr.into_vec()
}
}
impl<T> Default for P<[T]> {
/// Creates an empty `P<[T]>`.
fn default() -> P<[T]> {
P::new()
}
}
impl<T: Clone> Clone for P<[T]> {
fn clone(&self) -> P<[T]> {
P::from_vec(self.to_vec())
}
}
impl<T> From<Vec<T>> for P<[T]> {
fn from(v: Vec<T>) -> Self {
P::from_vec(v)
}
}
impl<T> Into<Vec<T>> for P<[T]> {
fn into(self) -> Vec<T> {
self.into_vec()
}
}
impl<T> FromIterator<T> for P<[T]> {
fn from_iter<I: IntoIterator<Item=T>>(iter: I) -> P<[T]> {
P::from_vec(iter.into_iter().collect())
}
}
impl<T> IntoIterator for P<[T]> {
type Item = T;
type IntoIter = vec::IntoIter<T>;
fn into_iter(self) -> Self::IntoIter {
self.into_vec().into_iter()
}
}
impl<'a, T> IntoIterator for &'a P<[T]> {
type Item = &'a T;
type IntoIter = slice::Iter<'a, T>;
fn into_iter(self) -> Self::IntoIter {
self.ptr.into_iter()
}
}
impl<T: Encodable> Encodable for P<[T]> {
fn encode<S: Encoder>(&self, s: &mut S) -> Result<(), S::Error> {
Encodable::encode(&**self, s)
}
}
impl<T: Decodable> Decodable for P<[T]> {
fn decode<D: Decoder>(d: &mut D) -> Result<P<[T]>, D::Error> {
Ok(P::from_vec(Decodable::decode(d)?))
}
}
impl<CTX, T> HashStable<CTX> for P<T>
where T: ?Sized + HashStable<CTX>
{
fn hash_stable(&self, hcx: &mut CTX, hasher: &mut StableHasher) {
(**self).hash_stable(hcx, hasher);
}
}