blob: 03d7ab2d6337717cdc1be365a6c50f2f6417fe5b [file] [log] [blame]
//! A different sort of visitor for walking fn bodies. Unlike the
//! normal visitor, which just walks the entire body in one shot, the
//! `ExprUseVisitor` determines how expressions are being used.
pub use self::ConsumeMode::*;
use self::OverloadedCallType::*;
// Export these here so that Clippy can use them.
pub use mc::{PlaceBase, Place, Projection};
use rustc::hir::{self, PatKind};
use rustc::hir::def::Res;
use rustc::hir::def_id::DefId;
use rustc::hir::ptr::P;
use rustc::infer::InferCtxt;
use rustc::ty::{self, TyCtxt, adjustment};
use crate::mem_categorization as mc;
use syntax_pos::Span;
///////////////////////////////////////////////////////////////////////////
// The Delegate trait
/// This trait defines the callbacks you can expect to receive when
/// employing the ExprUseVisitor.
pub trait Delegate<'tcx> {
// The value found at `place` is either copied or moved, depending
// on mode.
fn consume(&mut self, place: &mc::Place<'tcx>, mode: ConsumeMode);
// The value found at `place` is being borrowed with kind `bk`.
fn borrow(&mut self, place: &mc::Place<'tcx>, bk: ty::BorrowKind);
// The path at `place` is being assigned to.
fn mutate(&mut self, assignee_place: &mc::Place<'tcx>);
}
#[derive(Copy, Clone, PartialEq, Debug)]
pub enum ConsumeMode {
Copy, // reference to x where x has a type that copies
Move, // reference to x where x has a type that moves
}
#[derive(Copy, Clone, PartialEq, Debug)]
pub enum MutateMode {
Init,
JustWrite, // x = y
WriteAndRead, // x += y
}
#[derive(Copy, Clone)]
enum OverloadedCallType {
FnOverloadedCall,
FnMutOverloadedCall,
FnOnceOverloadedCall,
}
impl OverloadedCallType {
fn from_trait_id(tcx: TyCtxt<'_>, trait_id: DefId) -> OverloadedCallType {
for &(maybe_function_trait, overloaded_call_type) in &[
(tcx.lang_items().fn_once_trait(), FnOnceOverloadedCall),
(tcx.lang_items().fn_mut_trait(), FnMutOverloadedCall),
(tcx.lang_items().fn_trait(), FnOverloadedCall)
] {
match maybe_function_trait {
Some(function_trait) if function_trait == trait_id => {
return overloaded_call_type
}
_ => continue,
}
}
bug!("overloaded call didn't map to known function trait")
}
fn from_method_id(tcx: TyCtxt<'_>, method_id: DefId) -> OverloadedCallType {
let method = tcx.associated_item(method_id);
OverloadedCallType::from_trait_id(tcx, method.container.id())
}
}
///////////////////////////////////////////////////////////////////////////
// The ExprUseVisitor type
//
// This is the code that actually walks the tree.
pub struct ExprUseVisitor<'a, 'tcx> {
mc: mc::MemCategorizationContext<'a, 'tcx>,
delegate: &'a mut dyn Delegate<'tcx>,
}
// If the MC results in an error, it's because the type check
// failed (or will fail, when the error is uncovered and reported
// during writeback). In this case, we just ignore this part of the
// code.
//
// Note that this macro appears similar to try!(), but, unlike try!(),
// it does not propagate the error.
macro_rules! return_if_err {
($inp: expr) => (
match $inp {
Ok(v) => v,
Err(()) => {
debug!("mc reported err");
return
}
}
)
}
impl<'a, 'tcx> ExprUseVisitor<'a, 'tcx> {
/// Creates the ExprUseVisitor, configuring it with the various options provided:
///
/// - `delegate` -- who receives the callbacks
/// - `param_env` --- parameter environment for trait lookups (esp. pertaining to `Copy`)
/// - `tables` --- typeck results for the code being analyzed
pub fn new(
delegate: &'a mut (dyn Delegate<'tcx> + 'a),
infcx: &'a InferCtxt<'a, 'tcx>,
body_owner: DefId,
param_env: ty::ParamEnv<'tcx>,
tables: &'a ty::TypeckTables<'tcx>,
) -> Self {
ExprUseVisitor {
mc: mc::MemCategorizationContext::new(
infcx,
param_env,
body_owner,
tables,
),
delegate,
}
}
pub fn consume_body(&mut self, body: &hir::Body) {
debug!("consume_body(body={:?})", body);
for param in &body.params {
let param_ty = return_if_err!(self.mc.pat_ty_adjusted(&param.pat));
debug!("consume_body: param_ty = {:?}", param_ty);
let param_place = self.mc.cat_rvalue(param.hir_id, param.pat.span, param_ty);
self.walk_irrefutable_pat(&param_place, &param.pat);
}
self.consume_expr(&body.value);
}
fn tcx(&self) -> TyCtxt<'tcx> {
self.mc.tcx()
}
fn delegate_consume(&mut self, place: &Place<'tcx>) {
debug!("delegate_consume(place={:?})", place);
let mode = copy_or_move(&self.mc, place);
self.delegate.consume(place, mode);
}
fn consume_exprs(&mut self, exprs: &[hir::Expr]) {
for expr in exprs {
self.consume_expr(&expr);
}
}
pub fn consume_expr(&mut self, expr: &hir::Expr) {
debug!("consume_expr(expr={:?})", expr);
let place = return_if_err!(self.mc.cat_expr(expr));
self.delegate_consume(&place);
self.walk_expr(expr);
}
fn mutate_expr(&mut self, expr: &hir::Expr) {
let place = return_if_err!(self.mc.cat_expr(expr));
self.delegate.mutate(&place);
self.walk_expr(expr);
}
fn borrow_expr(&mut self, expr: &hir::Expr, bk: ty::BorrowKind) {
debug!("borrow_expr(expr={:?}, bk={:?})", expr, bk);
let place = return_if_err!(self.mc.cat_expr(expr));
self.delegate.borrow(&place, bk);
self.walk_expr(expr)
}
fn select_from_expr(&mut self, expr: &hir::Expr) {
self.walk_expr(expr)
}
pub fn walk_expr(&mut self, expr: &hir::Expr) {
debug!("walk_expr(expr={:?})", expr);
self.walk_adjustment(expr);
match expr.kind {
hir::ExprKind::Path(_) => { }
hir::ExprKind::Type(ref subexpr, _) => {
self.walk_expr(subexpr)
}
hir::ExprKind::Unary(hir::UnDeref, ref base) => { // *base
self.select_from_expr(base);
}
hir::ExprKind::Field(ref base, _) => { // base.f
self.select_from_expr(base);
}
hir::ExprKind::Index(ref lhs, ref rhs) => { // lhs[rhs]
self.select_from_expr(lhs);
self.consume_expr(rhs);
}
hir::ExprKind::Call(ref callee, ref args) => { // callee(args)
self.walk_callee(expr, callee);
self.consume_exprs(args);
}
hir::ExprKind::MethodCall(.., ref args) => { // callee.m(args)
self.consume_exprs(args);
}
hir::ExprKind::Struct(_, ref fields, ref opt_with) => {
self.walk_struct_expr(fields, opt_with);
}
hir::ExprKind::Tup(ref exprs) => {
self.consume_exprs(exprs);
}
hir::ExprKind::Match(ref discr, ref arms, _) => {
let discr_place = return_if_err!(self.mc.cat_expr(&discr));
self.borrow_expr(&discr, ty::ImmBorrow);
// treatment of the discriminant is handled while walking the arms.
for arm in arms {
self.walk_arm(&discr_place, arm);
}
}
hir::ExprKind::Array(ref exprs) => {
self.consume_exprs(exprs);
}
hir::ExprKind::AddrOf(_, m, ref base) => { // &base
// make sure that the thing we are pointing out stays valid
// for the lifetime `scope_r` of the resulting ptr:
let bk = ty::BorrowKind::from_mutbl(m);
self.borrow_expr(&base, bk);
}
hir::ExprKind::InlineAsm(ref ia) => {
for (o, output) in ia.inner.outputs.iter().zip(&ia.outputs_exprs) {
if o.is_indirect {
self.consume_expr(output);
} else {
self.mutate_expr(output);
}
}
self.consume_exprs(&ia.inputs_exprs);
}
hir::ExprKind::Continue(..) |
hir::ExprKind::Lit(..) |
hir::ExprKind::Err => {}
hir::ExprKind::Loop(ref blk, _, _) => {
self.walk_block(blk);
}
hir::ExprKind::Unary(_, ref lhs) => {
self.consume_expr(lhs);
}
hir::ExprKind::Binary(_, ref lhs, ref rhs) => {
self.consume_expr(lhs);
self.consume_expr(rhs);
}
hir::ExprKind::Block(ref blk, _) => {
self.walk_block(blk);
}
hir::ExprKind::Break(_, ref opt_expr) | hir::ExprKind::Ret(ref opt_expr) => {
if let Some(ref expr) = *opt_expr {
self.consume_expr(expr);
}
}
hir::ExprKind::Assign(ref lhs, ref rhs) => {
self.mutate_expr(lhs);
self.consume_expr(rhs);
}
hir::ExprKind::Cast(ref base, _) => {
self.consume_expr(base);
}
hir::ExprKind::DropTemps(ref expr) => {
self.consume_expr(expr);
}
hir::ExprKind::AssignOp(_, ref lhs, ref rhs) => {
if self.mc.tables.is_method_call(expr) {
self.consume_expr(lhs);
} else {
self.mutate_expr(lhs);
}
self.consume_expr(rhs);
}
hir::ExprKind::Repeat(ref base, _) => {
self.consume_expr(base);
}
hir::ExprKind::Closure(_, _, _, fn_decl_span, _) => {
self.walk_captures(expr, fn_decl_span);
}
hir::ExprKind::Box(ref base) => {
self.consume_expr(base);
}
hir::ExprKind::Yield(ref value, _) => {
self.consume_expr(value);
}
}
}
fn walk_callee(&mut self, call: &hir::Expr, callee: &hir::Expr) {
let callee_ty = return_if_err!(self.mc.expr_ty_adjusted(callee));
debug!("walk_callee: callee={:?} callee_ty={:?}",
callee, callee_ty);
match callee_ty.kind {
ty::FnDef(..) | ty::FnPtr(_) => {
self.consume_expr(callee);
}
ty::Error => { }
_ => {
if let Some(def_id) = self.mc.tables.type_dependent_def_id(call.hir_id) {
match OverloadedCallType::from_method_id(self.tcx(), def_id) {
FnMutOverloadedCall => {
self.borrow_expr(callee, ty::MutBorrow);
}
FnOverloadedCall => {
self.borrow_expr(callee, ty::ImmBorrow);
}
FnOnceOverloadedCall => self.consume_expr(callee),
}
} else {
self.tcx().sess.delay_span_bug(call.span,
"no type-dependent def for overloaded call");
}
}
}
}
fn walk_stmt(&mut self, stmt: &hir::Stmt) {
match stmt.kind {
hir::StmtKind::Local(ref local) => {
self.walk_local(&local);
}
hir::StmtKind::Item(_) => {
// We don't visit nested items in this visitor,
// only the fn body we were given.
}
hir::StmtKind::Expr(ref expr) |
hir::StmtKind::Semi(ref expr) => {
self.consume_expr(&expr);
}
}
}
fn walk_local(&mut self, local: &hir::Local) {
if let Some(ref expr) = local.init {
// Variable declarations with
// initializers are considered
// "assigns", which is handled by
// `walk_pat`:
self.walk_expr(&expr);
let init_place = return_if_err!(self.mc.cat_expr(&expr));
self.walk_irrefutable_pat(&init_place, &local.pat);
}
}
/// Indicates that the value of `blk` will be consumed, meaning either copied or moved
/// depending on its type.
fn walk_block(&mut self, blk: &hir::Block) {
debug!("walk_block(blk.hir_id={})", blk.hir_id);
for stmt in &blk.stmts {
self.walk_stmt(stmt);
}
if let Some(ref tail_expr) = blk.expr {
self.consume_expr(&tail_expr);
}
}
fn walk_struct_expr(&mut self,
fields: &[hir::Field],
opt_with: &Option<P<hir::Expr>>) {
// Consume the expressions supplying values for each field.
for field in fields {
self.consume_expr(&field.expr);
}
let with_expr = match *opt_with {
Some(ref w) => &**w,
None => { return; }
};
let with_place = return_if_err!(self.mc.cat_expr(&with_expr));
// Select just those fields of the `with`
// expression that will actually be used
match with_place.ty.kind {
ty::Adt(adt, substs) if adt.is_struct() => {
// Consume those fields of the with expression that are needed.
for (f_index, with_field) in adt.non_enum_variant().fields.iter().enumerate() {
let is_mentioned = fields.iter().any(|f| {
self.tcx().field_index(f.hir_id, self.mc.tables) == f_index
});
if !is_mentioned {
let field_place = self.mc.cat_projection(
&*with_expr,
with_place.clone(),
with_field.ty(self.tcx(), substs),
);
self.delegate_consume(&field_place);
}
}
}
_ => {
// the base expression should always evaluate to a
// struct; however, when EUV is run during typeck, it
// may not. This will generate an error earlier in typeck,
// so we can just ignore it.
if !self.tcx().sess.has_errors() {
span_bug!(
with_expr.span,
"with expression doesn't evaluate to a struct");
}
}
}
// walk the with expression so that complex expressions
// are properly handled.
self.walk_expr(with_expr);
}
// Invoke the appropriate delegate calls for anything that gets
// consumed or borrowed as part of the automatic adjustment
// process.
fn walk_adjustment(&mut self, expr: &hir::Expr) {
let adjustments = self.mc.tables.expr_adjustments(expr);
let mut place = return_if_err!(self.mc.cat_expr_unadjusted(expr));
for adjustment in adjustments {
debug!("walk_adjustment expr={:?} adj={:?}", expr, adjustment);
match adjustment.kind {
adjustment::Adjust::NeverToAny |
adjustment::Adjust::Pointer(_) => {
// Creating a closure/fn-pointer or unsizing consumes
// the input and stores it into the resulting rvalue.
self.delegate_consume(&place);
}
adjustment::Adjust::Deref(None) => {}
// Autoderefs for overloaded Deref calls in fact reference
// their receiver. That is, if we have `(*x)` where `x`
// is of type `Rc<T>`, then this in fact is equivalent to
// `x.deref()`. Since `deref()` is declared with `&self`,
// this is an autoref of `x`.
adjustment::Adjust::Deref(Some(ref deref)) => {
let bk = ty::BorrowKind::from_mutbl(deref.mutbl);
self.delegate.borrow(&place, bk);
}
adjustment::Adjust::Borrow(ref autoref) => {
self.walk_autoref(expr, &place, autoref);
}
}
place = return_if_err!(self.mc.cat_expr_adjusted(expr, place, &adjustment));
}
}
/// Walks the autoref `autoref` applied to the autoderef'd
/// `expr`. `base_place` is the mem-categorized form of `expr`
/// after all relevant autoderefs have occurred.
fn walk_autoref(&mut self,
expr: &hir::Expr,
base_place: &mc::Place<'tcx>,
autoref: &adjustment::AutoBorrow<'tcx>) {
debug!("walk_autoref(expr.hir_id={} base_place={:?} autoref={:?})",
expr.hir_id,
base_place,
autoref);
match *autoref {
adjustment::AutoBorrow::Ref(_, m) => {
self.delegate.borrow(base_place, ty::BorrowKind::from_mutbl(m.into()));
}
adjustment::AutoBorrow::RawPtr(m) => {
debug!("walk_autoref: expr.hir_id={} base_place={:?}",
expr.hir_id,
base_place);
self.delegate.borrow(base_place, ty::BorrowKind::from_mutbl(m));
}
}
}
fn walk_arm(&mut self, discr_place: &Place<'tcx>, arm: &hir::Arm) {
self.walk_pat(discr_place, &arm.pat);
if let Some(hir::Guard::If(ref e)) = arm.guard {
self.consume_expr(e)
}
self.consume_expr(&arm.body);
}
/// Walks a pat that occurs in isolation (i.e., top-level of fn argument or
/// let binding, and *not* a match arm or nested pat.)
fn walk_irrefutable_pat(&mut self, discr_place: &Place<'tcx>, pat: &hir::Pat) {
self.walk_pat(discr_place, pat);
}
/// The core driver for walking a pattern
fn walk_pat(&mut self, discr_place: &Place<'tcx>, pat: &hir::Pat) {
debug!("walk_pat(discr_place={:?}, pat={:?})", discr_place, pat);
let tcx = self.tcx();
let ExprUseVisitor { ref mc, ref mut delegate } = *self;
return_if_err!(mc.cat_pattern(discr_place.clone(), pat, |place, pat| {
if let PatKind::Binding(_, canonical_id, ..) = pat.kind {
debug!(
"walk_pat: binding place={:?} pat={:?}",
place,
pat,
);
if let Some(&bm) = mc.tables.pat_binding_modes().get(pat.hir_id) {
debug!("walk_pat: pat.hir_id={:?} bm={:?}", pat.hir_id, bm);
// pat_ty: the type of the binding being produced.
let pat_ty = return_if_err!(mc.node_ty(pat.hir_id));
debug!("walk_pat: pat_ty={:?}", pat_ty);
// Each match binding is effectively an assignment to the
// binding being produced.
let def = Res::Local(canonical_id);
if let Ok(ref binding_place) = mc.cat_res(pat.hir_id, pat.span, pat_ty, def) {
delegate.mutate(binding_place);
}
// It is also a borrow or copy/move of the value being matched.
match bm {
ty::BindByReference(m) => {
let bk = ty::BorrowKind::from_mutbl(m);
delegate.borrow(place, bk);
}
ty::BindByValue(..) => {
let mode = copy_or_move(mc, place);
debug!("walk_pat binding consuming pat");
delegate.consume(place, mode);
}
}
} else {
tcx.sess.delay_span_bug(pat.span, "missing binding mode");
}
}
}));
}
fn walk_captures(&mut self, closure_expr: &hir::Expr, fn_decl_span: Span) {
debug!("walk_captures({:?})", closure_expr);
let closure_def_id = self.tcx().hir().local_def_id(closure_expr.hir_id);
if let Some(upvars) = self.tcx().upvars(closure_def_id) {
for &var_id in upvars.keys() {
let upvar_id = ty::UpvarId {
var_path: ty::UpvarPath { hir_id: var_id },
closure_expr_id: closure_def_id.to_local(),
};
let upvar_capture = self.mc.tables.upvar_capture(upvar_id);
let captured_place = return_if_err!(self.cat_captured_var(
closure_expr.hir_id,
fn_decl_span,
var_id,
));
match upvar_capture {
ty::UpvarCapture::ByValue => {
let mode = copy_or_move(&self.mc, &captured_place);
self.delegate.consume(&captured_place, mode);
}
ty::UpvarCapture::ByRef(upvar_borrow) => {
self.delegate.borrow(&captured_place, upvar_borrow.kind);
}
}
}
}
}
fn cat_captured_var(&mut self,
closure_hir_id: hir::HirId,
closure_span: Span,
var_id: hir::HirId)
-> mc::McResult<mc::Place<'tcx>> {
// Create the place for the variable being borrowed, from the
// perspective of the creator (parent) of the closure.
let var_ty = self.mc.node_ty(var_id)?;
self.mc.cat_res(closure_hir_id, closure_span, var_ty, Res::Local(var_id))
}
}
fn copy_or_move<'a, 'tcx>(
mc: &mc::MemCategorizationContext<'a, 'tcx>,
place: &Place<'tcx>,
) -> ConsumeMode {
if !mc.type_is_copy_modulo_regions(place.ty, place.span) {
Move
} else {
Copy
}
}