blob: 371d1f744dd25755b0872f713f0b450d5eedac81 [file] [log] [blame]
use crate::base::*;
use crate::config::StripUnconfigured;
use crate::hygiene::{ExpnData, ExpnId, ExpnKind, SyntaxContext};
use crate::mbe::macro_rules::annotate_err_with_kind;
use crate::placeholders::{placeholder, PlaceholderExpander};
use crate::proc_macro::collect_derives;
use rustc_ast_pretty::pprust;
use rustc_attr::{self as attr, is_builtin_attr, HasAttrs};
use rustc_data_structures::sync::Lrc;
use rustc_errors::{Applicability, FatalError, PResult};
use rustc_feature::Features;
use rustc_parse::configure;
use rustc_parse::parser::Parser;
use rustc_parse::validate_attr;
use rustc_parse::DirectoryOwnership;
use rustc_session::parse::{feature_err, ParseSess};
use rustc_span::source_map::respan;
use rustc_span::symbol::{sym, Symbol};
use rustc_span::{FileName, Span, DUMMY_SP};
use syntax::ast::{self, AttrItem, Block, Ident, LitKind, NodeId, PatKind, Path};
use syntax::ast::{ItemKind, MacArgs, MacStmtStyle, StmtKind};
use syntax::mut_visit::*;
use syntax::ptr::P;
use syntax::token;
use syntax::tokenstream::{TokenStream, TokenTree};
use syntax::util::map_in_place::MapInPlace;
use syntax::visit::{self, AssocCtxt, Visitor};
use smallvec::{smallvec, SmallVec};
use std::io::ErrorKind;
use std::ops::DerefMut;
use std::path::PathBuf;
use std::rc::Rc;
use std::{iter, mem, slice};
macro_rules! ast_fragments {
(
$($Kind:ident($AstTy:ty) {
$kind_name:expr;
$(one fn $mut_visit_ast:ident; fn $visit_ast:ident;)?
$(many fn $flat_map_ast_elt:ident; fn $visit_ast_elt:ident($($args:tt)*);)?
fn $make_ast:ident;
})*
) => {
/// A fragment of AST that can be produced by a single macro expansion.
/// Can also serve as an input and intermediate result for macro expansion operations.
pub enum AstFragment {
OptExpr(Option<P<ast::Expr>>),
$($Kind($AstTy),)*
}
/// "Discriminant" of an AST fragment.
#[derive(Copy, Clone, PartialEq, Eq)]
pub enum AstFragmentKind {
OptExpr,
$($Kind,)*
}
impl AstFragmentKind {
pub fn name(self) -> &'static str {
match self {
AstFragmentKind::OptExpr => "expression",
$(AstFragmentKind::$Kind => $kind_name,)*
}
}
fn make_from<'a>(self, result: Box<dyn MacResult + 'a>) -> Option<AstFragment> {
match self {
AstFragmentKind::OptExpr =>
result.make_expr().map(Some).map(AstFragment::OptExpr),
$(AstFragmentKind::$Kind => result.$make_ast().map(AstFragment::$Kind),)*
}
}
}
impl AstFragment {
pub fn add_placeholders(&mut self, placeholders: &[NodeId]) {
if placeholders.is_empty() {
return;
}
match self {
$($(AstFragment::$Kind(ast) => ast.extend(placeholders.iter().flat_map(|id| {
// We are repeating through arguments with `many`, to do that we have to
// mention some macro variable from those arguments even if it's not used.
macro _repeating($flat_map_ast_elt) {}
placeholder(AstFragmentKind::$Kind, *id, None).$make_ast()
})),)?)*
_ => panic!("unexpected AST fragment kind")
}
}
pub fn make_opt_expr(self) -> Option<P<ast::Expr>> {
match self {
AstFragment::OptExpr(expr) => expr,
_ => panic!("AstFragment::make_* called on the wrong kind of fragment"),
}
}
$(pub fn $make_ast(self) -> $AstTy {
match self {
AstFragment::$Kind(ast) => ast,
_ => panic!("AstFragment::make_* called on the wrong kind of fragment"),
}
})*
pub fn mut_visit_with<F: MutVisitor>(&mut self, vis: &mut F) {
match self {
AstFragment::OptExpr(opt_expr) => {
visit_clobber(opt_expr, |opt_expr| {
if let Some(expr) = opt_expr {
vis.filter_map_expr(expr)
} else {
None
}
});
}
$($(AstFragment::$Kind(ast) => vis.$mut_visit_ast(ast),)?)*
$($(AstFragment::$Kind(ast) =>
ast.flat_map_in_place(|ast| vis.$flat_map_ast_elt(ast)),)?)*
}
}
pub fn visit_with<'a, V: Visitor<'a>>(&'a self, visitor: &mut V) {
match *self {
AstFragment::OptExpr(Some(ref expr)) => visitor.visit_expr(expr),
AstFragment::OptExpr(None) => {}
$($(AstFragment::$Kind(ref ast) => visitor.$visit_ast(ast),)?)*
$($(AstFragment::$Kind(ref ast) => for ast_elt in &ast[..] {
visitor.$visit_ast_elt(ast_elt, $($args)*);
})?)*
}
}
}
impl<'a> MacResult for crate::mbe::macro_rules::ParserAnyMacro<'a> {
$(fn $make_ast(self: Box<crate::mbe::macro_rules::ParserAnyMacro<'a>>)
-> Option<$AstTy> {
Some(self.make(AstFragmentKind::$Kind).$make_ast())
})*
}
}
}
ast_fragments! {
Expr(P<ast::Expr>) { "expression"; one fn visit_expr; fn visit_expr; fn make_expr; }
Pat(P<ast::Pat>) { "pattern"; one fn visit_pat; fn visit_pat; fn make_pat; }
Ty(P<ast::Ty>) { "type"; one fn visit_ty; fn visit_ty; fn make_ty; }
Stmts(SmallVec<[ast::Stmt; 1]>) {
"statement"; many fn flat_map_stmt; fn visit_stmt(); fn make_stmts;
}
Items(SmallVec<[P<ast::Item>; 1]>) {
"item"; many fn flat_map_item; fn visit_item(); fn make_items;
}
TraitItems(SmallVec<[P<ast::AssocItem>; 1]>) {
"trait item";
many fn flat_map_trait_item;
fn visit_assoc_item(AssocCtxt::Trait);
fn make_trait_items;
}
ImplItems(SmallVec<[P<ast::AssocItem>; 1]>) {
"impl item";
many fn flat_map_impl_item;
fn visit_assoc_item(AssocCtxt::Impl);
fn make_impl_items;
}
ForeignItems(SmallVec<[P<ast::ForeignItem>; 1]>) {
"foreign item";
many fn flat_map_foreign_item;
fn visit_foreign_item();
fn make_foreign_items;
}
Arms(SmallVec<[ast::Arm; 1]>) {
"match arm"; many fn flat_map_arm; fn visit_arm(); fn make_arms;
}
Fields(SmallVec<[ast::Field; 1]>) {
"field expression"; many fn flat_map_field; fn visit_field(); fn make_fields;
}
FieldPats(SmallVec<[ast::FieldPat; 1]>) {
"field pattern";
many fn flat_map_field_pattern;
fn visit_field_pattern();
fn make_field_patterns;
}
GenericParams(SmallVec<[ast::GenericParam; 1]>) {
"generic parameter";
many fn flat_map_generic_param;
fn visit_generic_param();
fn make_generic_params;
}
Params(SmallVec<[ast::Param; 1]>) {
"function parameter"; many fn flat_map_param; fn visit_param(); fn make_params;
}
StructFields(SmallVec<[ast::StructField; 1]>) {
"field";
many fn flat_map_struct_field;
fn visit_struct_field();
fn make_struct_fields;
}
Variants(SmallVec<[ast::Variant; 1]>) {
"variant"; many fn flat_map_variant; fn visit_variant(); fn make_variants;
}
}
impl AstFragmentKind {
fn dummy(self, span: Span) -> AstFragment {
self.make_from(DummyResult::any(span)).expect("couldn't create a dummy AST fragment")
}
fn expect_from_annotatables<I: IntoIterator<Item = Annotatable>>(
self,
items: I,
) -> AstFragment {
let mut items = items.into_iter();
match self {
AstFragmentKind::Arms => {
AstFragment::Arms(items.map(Annotatable::expect_arm).collect())
}
AstFragmentKind::Fields => {
AstFragment::Fields(items.map(Annotatable::expect_field).collect())
}
AstFragmentKind::FieldPats => {
AstFragment::FieldPats(items.map(Annotatable::expect_field_pattern).collect())
}
AstFragmentKind::GenericParams => {
AstFragment::GenericParams(items.map(Annotatable::expect_generic_param).collect())
}
AstFragmentKind::Params => {
AstFragment::Params(items.map(Annotatable::expect_param).collect())
}
AstFragmentKind::StructFields => {
AstFragment::StructFields(items.map(Annotatable::expect_struct_field).collect())
}
AstFragmentKind::Variants => {
AstFragment::Variants(items.map(Annotatable::expect_variant).collect())
}
AstFragmentKind::Items => {
AstFragment::Items(items.map(Annotatable::expect_item).collect())
}
AstFragmentKind::ImplItems => {
AstFragment::ImplItems(items.map(Annotatable::expect_impl_item).collect())
}
AstFragmentKind::TraitItems => {
AstFragment::TraitItems(items.map(Annotatable::expect_trait_item).collect())
}
AstFragmentKind::ForeignItems => {
AstFragment::ForeignItems(items.map(Annotatable::expect_foreign_item).collect())
}
AstFragmentKind::Stmts => {
AstFragment::Stmts(items.map(Annotatable::expect_stmt).collect())
}
AstFragmentKind::Expr => AstFragment::Expr(
items.next().expect("expected exactly one expression").expect_expr(),
),
AstFragmentKind::OptExpr => {
AstFragment::OptExpr(items.next().map(Annotatable::expect_expr))
}
AstFragmentKind::Pat | AstFragmentKind::Ty => {
panic!("patterns and types aren't annotatable")
}
}
}
}
pub struct Invocation {
pub kind: InvocationKind,
pub fragment_kind: AstFragmentKind,
pub expansion_data: ExpansionData,
}
pub enum InvocationKind {
Bang {
mac: ast::Mac,
span: Span,
},
Attr {
attr: ast::Attribute,
item: Annotatable,
// Required for resolving derive helper attributes.
derives: Vec<Path>,
// We temporarily report errors for attribute macros placed after derives
after_derive: bool,
},
Derive {
path: Path,
item: Annotatable,
},
/// "Invocation" that contains all derives from an item,
/// broken into multiple `Derive` invocations when expanded.
/// FIXME: Find a way to remove it.
DeriveContainer {
derives: Vec<Path>,
item: Annotatable,
},
}
impl InvocationKind {
fn placeholder_visibility(&self) -> Option<ast::Visibility> {
// HACK: For unnamed fields placeholders should have the same visibility as the actual
// fields because for tuple structs/variants resolve determines visibilities of their
// constructor using these field visibilities before attributes on them are are expanded.
// The assumption is that the attribute expansion cannot change field visibilities,
// and it holds because only inert attributes are supported in this position.
match self {
InvocationKind::Attr { item: Annotatable::StructField(field), .. }
| InvocationKind::Derive { item: Annotatable::StructField(field), .. }
| InvocationKind::DeriveContainer { item: Annotatable::StructField(field), .. }
if field.ident.is_none() =>
{
Some(field.vis.clone())
}
_ => None,
}
}
}
impl Invocation {
pub fn span(&self) -> Span {
match &self.kind {
InvocationKind::Bang { span, .. } => *span,
InvocationKind::Attr { attr, .. } => attr.span,
InvocationKind::Derive { path, .. } => path.span,
InvocationKind::DeriveContainer { item, .. } => item.span(),
}
}
}
pub struct MacroExpander<'a, 'b> {
pub cx: &'a mut ExtCtxt<'b>,
monotonic: bool, // cf. `cx.monotonic_expander()`
}
impl<'a, 'b> MacroExpander<'a, 'b> {
pub fn new(cx: &'a mut ExtCtxt<'b>, monotonic: bool) -> Self {
MacroExpander { cx, monotonic }
}
pub fn expand_crate(&mut self, mut krate: ast::Crate) -> ast::Crate {
let mut module = ModuleData {
mod_path: vec![Ident::from_str(&self.cx.ecfg.crate_name)],
directory: match self.cx.source_map().span_to_unmapped_path(krate.span) {
FileName::Real(path) => path,
other => PathBuf::from(other.to_string()),
},
};
module.directory.pop();
self.cx.root_path = module.directory.clone();
self.cx.current_expansion.module = Rc::new(module);
let orig_mod_span = krate.module.inner;
let krate_item = AstFragment::Items(smallvec![P(ast::Item {
attrs: krate.attrs,
span: krate.span,
kind: ast::ItemKind::Mod(krate.module),
ident: Ident::invalid(),
id: ast::DUMMY_NODE_ID,
vis: respan(krate.span.shrink_to_lo(), ast::VisibilityKind::Public),
tokens: None,
})]);
match self.fully_expand_fragment(krate_item).make_items().pop().map(P::into_inner) {
Some(ast::Item { attrs, kind: ast::ItemKind::Mod(module), .. }) => {
krate.attrs = attrs;
krate.module = module;
}
None => {
// Resolution failed so we return an empty expansion
krate.attrs = vec![];
krate.module = ast::Mod { inner: orig_mod_span, items: vec![], inline: true };
}
Some(ast::Item { span, kind, .. }) => {
krate.attrs = vec![];
krate.module = ast::Mod { inner: orig_mod_span, items: vec![], inline: true };
self.cx.span_err(
span,
&format!(
"expected crate top-level item to be a module after macro expansion, found a {}",
kind.descriptive_variant()
),
);
}
};
self.cx.trace_macros_diag();
krate
}
// Recursively expand all macro invocations in this AST fragment.
pub fn fully_expand_fragment(&mut self, input_fragment: AstFragment) -> AstFragment {
let orig_expansion_data = self.cx.current_expansion.clone();
self.cx.current_expansion.depth = 0;
// Collect all macro invocations and replace them with placeholders.
let (mut fragment_with_placeholders, mut invocations) =
self.collect_invocations(input_fragment, &[]);
// Optimization: if we resolve all imports now,
// we'll be able to immediately resolve most of imported macros.
self.resolve_imports();
// Resolve paths in all invocations and produce output expanded fragments for them, but
// do not insert them into our input AST fragment yet, only store in `expanded_fragments`.
// The output fragments also go through expansion recursively until no invocations are left.
// Unresolved macros produce dummy outputs as a recovery measure.
invocations.reverse();
let mut expanded_fragments = Vec::new();
let mut undetermined_invocations = Vec::new();
let (mut progress, mut force) = (false, !self.monotonic);
loop {
let invoc = if let Some(invoc) = invocations.pop() {
invoc
} else {
self.resolve_imports();
if undetermined_invocations.is_empty() {
break;
}
invocations = mem::take(&mut undetermined_invocations);
force = !mem::replace(&mut progress, false);
continue;
};
let eager_expansion_root =
if self.monotonic { invoc.expansion_data.id } else { orig_expansion_data.id };
let res = match self.cx.resolver.resolve_macro_invocation(
&invoc,
eager_expansion_root,
force,
) {
Ok(res) => res,
Err(Indeterminate) => {
undetermined_invocations.push(invoc);
continue;
}
};
progress = true;
let ExpansionData { depth, id: expn_id, .. } = invoc.expansion_data;
self.cx.current_expansion = invoc.expansion_data.clone();
// FIXME(jseyfried): Refactor out the following logic
let (expanded_fragment, new_invocations) = match res {
InvocationRes::Single(ext) => {
let fragment = self.expand_invoc(invoc, &ext.kind);
self.collect_invocations(fragment, &[])
}
InvocationRes::DeriveContainer(_exts) => {
// FIXME: Consider using the derive resolutions (`_exts`) immediately,
// instead of enqueuing the derives to be resolved again later.
let (derives, item) = match invoc.kind {
InvocationKind::DeriveContainer { derives, item } => (derives, item),
_ => unreachable!(),
};
if !item.derive_allowed() {
self.error_derive_forbidden_on_non_adt(&derives, &item);
}
let mut item = self.fully_configure(item);
item.visit_attrs(|attrs| attrs.retain(|a| !a.has_name(sym::derive)));
let mut derive_placeholders = Vec::with_capacity(derives.len());
invocations.reserve(derives.len());
for path in derives {
let expn_id = ExpnId::fresh(None);
derive_placeholders.push(NodeId::placeholder_from_expn_id(expn_id));
invocations.push(Invocation {
kind: InvocationKind::Derive { path, item: item.clone() },
fragment_kind: invoc.fragment_kind,
expansion_data: ExpansionData {
id: expn_id,
..invoc.expansion_data.clone()
},
});
}
let fragment =
invoc.fragment_kind.expect_from_annotatables(::std::iter::once(item));
self.collect_invocations(fragment, &derive_placeholders)
}
};
if expanded_fragments.len() < depth {
expanded_fragments.push(Vec::new());
}
expanded_fragments[depth - 1].push((expn_id, expanded_fragment));
if !self.cx.ecfg.single_step {
invocations.extend(new_invocations.into_iter().rev());
}
}
self.cx.current_expansion = orig_expansion_data;
// Finally incorporate all the expanded macros into the input AST fragment.
let mut placeholder_expander = PlaceholderExpander::new(self.cx, self.monotonic);
while let Some(expanded_fragments) = expanded_fragments.pop() {
for (expn_id, expanded_fragment) in expanded_fragments.into_iter().rev() {
placeholder_expander
.add(NodeId::placeholder_from_expn_id(expn_id), expanded_fragment);
}
}
fragment_with_placeholders.mut_visit_with(&mut placeholder_expander);
fragment_with_placeholders
}
fn error_derive_forbidden_on_non_adt(&self, derives: &[Path], item: &Annotatable) {
let attr =
attr::find_by_name(item.attrs(), sym::derive).expect("`derive` attribute should exist");
let span = attr.span;
let mut err = self
.cx
.struct_span_err(span, "`derive` may only be applied to structs, enums and unions");
if let ast::AttrStyle::Inner = attr.style {
let trait_list = derives.iter().map(|t| pprust::path_to_string(t)).collect::<Vec<_>>();
let suggestion = format!("#[derive({})]", trait_list.join(", "));
err.span_suggestion(
span,
"try an outer attribute",
suggestion,
// We don't 𝑘𝑛𝑜𝑤 that the following item is an ADT
Applicability::MaybeIncorrect,
);
}
err.emit();
}
fn resolve_imports(&mut self) {
if self.monotonic {
self.cx.resolver.resolve_imports();
}
}
/// Collects all macro invocations reachable at this time in this AST fragment, and replace
/// them with "placeholders" - dummy macro invocations with specially crafted `NodeId`s.
/// Then call into resolver that builds a skeleton ("reduced graph") of the fragment and
/// prepares data for resolving paths of macro invocations.
fn collect_invocations(
&mut self,
mut fragment: AstFragment,
extra_placeholders: &[NodeId],
) -> (AstFragment, Vec<Invocation>) {
// Resolve `$crate`s in the fragment for pretty-printing.
self.cx.resolver.resolve_dollar_crates();
let invocations = {
let mut collector = InvocationCollector {
cfg: StripUnconfigured {
sess: self.cx.parse_sess,
features: self.cx.ecfg.features,
},
cx: self.cx,
invocations: Vec::new(),
monotonic: self.monotonic,
};
fragment.mut_visit_with(&mut collector);
fragment.add_placeholders(extra_placeholders);
collector.invocations
};
if self.monotonic {
self.cx
.resolver
.visit_ast_fragment_with_placeholders(self.cx.current_expansion.id, &fragment);
}
(fragment, invocations)
}
fn fully_configure(&mut self, item: Annotatable) -> Annotatable {
let mut cfg =
StripUnconfigured { sess: self.cx.parse_sess, features: self.cx.ecfg.features };
// Since the item itself has already been configured by the InvocationCollector,
// we know that fold result vector will contain exactly one element
match item {
Annotatable::Item(item) => Annotatable::Item(cfg.flat_map_item(item).pop().unwrap()),
Annotatable::TraitItem(item) => {
Annotatable::TraitItem(cfg.flat_map_trait_item(item).pop().unwrap())
}
Annotatable::ImplItem(item) => {
Annotatable::ImplItem(cfg.flat_map_impl_item(item).pop().unwrap())
}
Annotatable::ForeignItem(item) => {
Annotatable::ForeignItem(cfg.flat_map_foreign_item(item).pop().unwrap())
}
Annotatable::Stmt(stmt) => {
Annotatable::Stmt(stmt.map(|stmt| cfg.flat_map_stmt(stmt).pop().unwrap()))
}
Annotatable::Expr(mut expr) => Annotatable::Expr({
cfg.visit_expr(&mut expr);
expr
}),
Annotatable::Arm(arm) => Annotatable::Arm(cfg.flat_map_arm(arm).pop().unwrap()),
Annotatable::Field(field) => {
Annotatable::Field(cfg.flat_map_field(field).pop().unwrap())
}
Annotatable::FieldPat(fp) => {
Annotatable::FieldPat(cfg.flat_map_field_pattern(fp).pop().unwrap())
}
Annotatable::GenericParam(param) => {
Annotatable::GenericParam(cfg.flat_map_generic_param(param).pop().unwrap())
}
Annotatable::Param(param) => {
Annotatable::Param(cfg.flat_map_param(param).pop().unwrap())
}
Annotatable::StructField(sf) => {
Annotatable::StructField(cfg.flat_map_struct_field(sf).pop().unwrap())
}
Annotatable::Variant(v) => Annotatable::Variant(cfg.flat_map_variant(v).pop().unwrap()),
}
}
fn error_recursion_limit_reached(&mut self) {
let expn_data = self.cx.current_expansion.id.expn_data();
let suggested_limit = self.cx.ecfg.recursion_limit * 2;
self.cx
.struct_span_err(
expn_data.call_site,
&format!("recursion limit reached while expanding `{}`", expn_data.kind.descr()),
)
.help(&format!(
"consider adding a `#![recursion_limit=\"{}\"]` attribute to your crate (`{}`)",
suggested_limit, self.cx.ecfg.crate_name,
))
.emit();
self.cx.trace_macros_diag();
FatalError.raise();
}
/// A macro's expansion does not fit in this fragment kind.
/// For example, a non-type macro in a type position.
fn error_wrong_fragment_kind(&mut self, kind: AstFragmentKind, mac: &ast::Mac, span: Span) {
let msg = format!(
"non-{kind} macro in {kind} position: {path}",
kind = kind.name(),
path = pprust::path_to_string(&mac.path),
);
self.cx.span_err(span, &msg);
self.cx.trace_macros_diag();
}
fn expand_invoc(&mut self, invoc: Invocation, ext: &SyntaxExtensionKind) -> AstFragment {
if self.cx.current_expansion.depth > self.cx.ecfg.recursion_limit {
self.error_recursion_limit_reached();
}
let (fragment_kind, span) = (invoc.fragment_kind, invoc.span());
match invoc.kind {
InvocationKind::Bang { mac, .. } => match ext {
SyntaxExtensionKind::Bang(expander) => {
self.gate_proc_macro_expansion_kind(span, fragment_kind);
let tok_result = expander.expand(self.cx, span, mac.args.inner_tokens());
self.parse_ast_fragment(tok_result, fragment_kind, &mac.path, span)
}
SyntaxExtensionKind::LegacyBang(expander) => {
let prev = self.cx.current_expansion.prior_type_ascription;
self.cx.current_expansion.prior_type_ascription = mac.prior_type_ascription;
let tok_result = expander.expand(self.cx, span, mac.args.inner_tokens());
let result = if let Some(result) = fragment_kind.make_from(tok_result) {
result
} else {
self.error_wrong_fragment_kind(fragment_kind, &mac, span);
fragment_kind.dummy(span)
};
self.cx.current_expansion.prior_type_ascription = prev;
result
}
_ => unreachable!(),
},
InvocationKind::Attr { attr, mut item, .. } => match ext {
SyntaxExtensionKind::Attr(expander) => {
self.gate_proc_macro_input(&item);
self.gate_proc_macro_attr_item(span, &item);
let item_tok = TokenTree::token(
token::Interpolated(Lrc::new(match item {
Annotatable::Item(item) => token::NtItem(item),
Annotatable::TraitItem(item) => token::NtTraitItem(item),
Annotatable::ImplItem(item) => token::NtImplItem(item),
Annotatable::ForeignItem(item) => token::NtForeignItem(item),
Annotatable::Stmt(stmt) => token::NtStmt(stmt.into_inner()),
Annotatable::Expr(expr) => token::NtExpr(expr),
Annotatable::Arm(..)
| Annotatable::Field(..)
| Annotatable::FieldPat(..)
| Annotatable::GenericParam(..)
| Annotatable::Param(..)
| Annotatable::StructField(..)
| Annotatable::Variant(..) => panic!("unexpected annotatable"),
})),
DUMMY_SP,
)
.into();
let item = attr.unwrap_normal_item();
if let MacArgs::Eq(..) = item.args {
self.cx.span_err(span, "key-value macro attributes are not supported");
}
let tok_result =
expander.expand(self.cx, span, item.args.inner_tokens(), item_tok);
self.parse_ast_fragment(tok_result, fragment_kind, &item.path, span)
}
SyntaxExtensionKind::LegacyAttr(expander) => {
match validate_attr::parse_meta(self.cx.parse_sess, &attr) {
Ok(meta) => {
let item = expander.expand(self.cx, span, &meta, item);
fragment_kind.expect_from_annotatables(item)
}
Err(mut err) => {
err.emit();
fragment_kind.dummy(span)
}
}
}
SyntaxExtensionKind::NonMacroAttr { mark_used } => {
attr::mark_known(&attr);
if *mark_used {
attr::mark_used(&attr);
}
item.visit_attrs(|attrs| attrs.push(attr));
fragment_kind.expect_from_annotatables(iter::once(item))
}
_ => unreachable!(),
},
InvocationKind::Derive { path, item } => match ext {
SyntaxExtensionKind::Derive(expander)
| SyntaxExtensionKind::LegacyDerive(expander) => {
if !item.derive_allowed() {
return fragment_kind.dummy(span);
}
if let SyntaxExtensionKind::Derive(..) = ext {
self.gate_proc_macro_input(&item);
}
let meta = ast::MetaItem { kind: ast::MetaItemKind::Word, span, path };
let items = expander.expand(self.cx, span, &meta, item);
fragment_kind.expect_from_annotatables(items)
}
_ => unreachable!(),
},
InvocationKind::DeriveContainer { .. } => unreachable!(),
}
}
fn gate_proc_macro_attr_item(&self, span: Span, item: &Annotatable) {
let kind = match item {
Annotatable::Item(_)
| Annotatable::TraitItem(_)
| Annotatable::ImplItem(_)
| Annotatable::ForeignItem(_) => return,
Annotatable::Stmt(_) => "statements",
Annotatable::Expr(_) => "expressions",
Annotatable::Arm(..)
| Annotatable::Field(..)
| Annotatable::FieldPat(..)
| Annotatable::GenericParam(..)
| Annotatable::Param(..)
| Annotatable::StructField(..)
| Annotatable::Variant(..) => panic!("unexpected annotatable"),
};
if self.cx.ecfg.proc_macro_hygiene() {
return;
}
feature_err(
self.cx.parse_sess,
sym::proc_macro_hygiene,
span,
&format!("custom attributes cannot be applied to {}", kind),
)
.emit();
}
fn gate_proc_macro_input(&self, annotatable: &Annotatable) {
struct GateProcMacroInput<'a> {
parse_sess: &'a ParseSess,
}
impl<'ast, 'a> Visitor<'ast> for GateProcMacroInput<'a> {
fn visit_item(&mut self, item: &'ast ast::Item) {
match &item.kind {
ast::ItemKind::Mod(module) if !module.inline => {
feature_err(
self.parse_sess,
sym::proc_macro_hygiene,
item.span,
"non-inline modules in proc macro input are unstable",
)
.emit();
}
_ => {}
}
visit::walk_item(self, item);
}
fn visit_mac(&mut self, _: &'ast ast::Mac) {}
}
if !self.cx.ecfg.proc_macro_hygiene() {
annotatable.visit_with(&mut GateProcMacroInput { parse_sess: self.cx.parse_sess });
}
}
fn gate_proc_macro_expansion_kind(&self, span: Span, kind: AstFragmentKind) {
let kind = match kind {
AstFragmentKind::Expr | AstFragmentKind::OptExpr => "expressions",
AstFragmentKind::Pat => "patterns",
AstFragmentKind::Stmts => "statements",
AstFragmentKind::Ty
| AstFragmentKind::Items
| AstFragmentKind::TraitItems
| AstFragmentKind::ImplItems
| AstFragmentKind::ForeignItems => return,
AstFragmentKind::Arms
| AstFragmentKind::Fields
| AstFragmentKind::FieldPats
| AstFragmentKind::GenericParams
| AstFragmentKind::Params
| AstFragmentKind::StructFields
| AstFragmentKind::Variants => panic!("unexpected AST fragment kind"),
};
if self.cx.ecfg.proc_macro_hygiene() {
return;
}
feature_err(
self.cx.parse_sess,
sym::proc_macro_hygiene,
span,
&format!("procedural macros cannot be expanded to {}", kind),
)
.emit();
}
fn parse_ast_fragment(
&mut self,
toks: TokenStream,
kind: AstFragmentKind,
path: &Path,
span: Span,
) -> AstFragment {
let mut parser = self.cx.new_parser_from_tts(toks);
match parse_ast_fragment(&mut parser, kind, false) {
Ok(fragment) => {
ensure_complete_parse(&mut parser, path, kind.name(), span);
fragment
}
Err(mut err) => {
err.set_span(span);
annotate_err_with_kind(&mut err, kind, span);
err.emit();
self.cx.trace_macros_diag();
kind.dummy(span)
}
}
}
}
pub fn parse_ast_fragment<'a>(
this: &mut Parser<'a>,
kind: AstFragmentKind,
macro_legacy_warnings: bool,
) -> PResult<'a, AstFragment> {
Ok(match kind {
AstFragmentKind::Items => {
let mut items = SmallVec::new();
while let Some(item) = this.parse_item()? {
items.push(item);
}
AstFragment::Items(items)
}
AstFragmentKind::TraitItems => {
let mut items = SmallVec::new();
while this.token != token::Eof {
items.push(this.parse_trait_item(&mut false)?);
}
AstFragment::TraitItems(items)
}
AstFragmentKind::ImplItems => {
let mut items = SmallVec::new();
while this.token != token::Eof {
items.push(this.parse_impl_item(&mut false)?);
}
AstFragment::ImplItems(items)
}
AstFragmentKind::ForeignItems => {
let mut items = SmallVec::new();
while this.token != token::Eof {
items.push(this.parse_foreign_item(&mut false)?);
}
AstFragment::ForeignItems(items)
}
AstFragmentKind::Stmts => {
let mut stmts = SmallVec::new();
while this.token != token::Eof &&
// won't make progress on a `}`
this.token != token::CloseDelim(token::Brace)
{
if let Some(stmt) = this.parse_full_stmt(macro_legacy_warnings)? {
stmts.push(stmt);
}
}
AstFragment::Stmts(stmts)
}
AstFragmentKind::Expr => AstFragment::Expr(this.parse_expr()?),
AstFragmentKind::OptExpr => {
if this.token != token::Eof {
AstFragment::OptExpr(Some(this.parse_expr()?))
} else {
AstFragment::OptExpr(None)
}
}
AstFragmentKind::Ty => AstFragment::Ty(this.parse_ty()?),
AstFragmentKind::Pat => AstFragment::Pat(this.parse_pat(None)?),
AstFragmentKind::Arms
| AstFragmentKind::Fields
| AstFragmentKind::FieldPats
| AstFragmentKind::GenericParams
| AstFragmentKind::Params
| AstFragmentKind::StructFields
| AstFragmentKind::Variants => panic!("unexpected AST fragment kind"),
})
}
pub fn ensure_complete_parse<'a>(
this: &mut Parser<'a>,
macro_path: &Path,
kind_name: &str,
span: Span,
) {
if this.token != token::Eof {
let token = pprust::token_to_string(&this.token);
let msg = format!("macro expansion ignores token `{}` and any following", token);
// Avoid emitting backtrace info twice.
let def_site_span = this.token.span.with_ctxt(SyntaxContext::root());
let mut err = this.struct_span_err(def_site_span, &msg);
err.span_label(span, "caused by the macro expansion here");
let msg = format!(
"the usage of `{}!` is likely invalid in {} context",
pprust::path_to_string(macro_path),
kind_name,
);
err.note(&msg);
let semi_span = this.sess.source_map().next_point(span);
let semi_full_span = semi_span.to(this.sess.source_map().next_point(semi_span));
match this.sess.source_map().span_to_snippet(semi_full_span) {
Ok(ref snippet) if &snippet[..] != ";" && kind_name == "expression" => {
err.span_suggestion(
semi_span,
"you might be missing a semicolon here",
";".to_owned(),
Applicability::MaybeIncorrect,
);
}
_ => {}
}
err.emit();
}
}
struct InvocationCollector<'a, 'b> {
cx: &'a mut ExtCtxt<'b>,
cfg: StripUnconfigured<'a>,
invocations: Vec<Invocation>,
monotonic: bool,
}
impl<'a, 'b> InvocationCollector<'a, 'b> {
fn collect(&mut self, fragment_kind: AstFragmentKind, kind: InvocationKind) -> AstFragment {
// Expansion data for all the collected invocations is set upon their resolution,
// with exception of the derive container case which is not resolved and can get
// its expansion data immediately.
let expn_data = match &kind {
InvocationKind::DeriveContainer { item, .. } => Some(ExpnData {
parent: self.cx.current_expansion.id,
..ExpnData::default(
ExpnKind::Macro(MacroKind::Attr, sym::derive),
item.span(),
self.cx.parse_sess.edition,
)
}),
_ => None,
};
let expn_id = ExpnId::fresh(expn_data);
let vis = kind.placeholder_visibility();
self.invocations.push(Invocation {
kind,
fragment_kind,
expansion_data: ExpansionData {
id: expn_id,
depth: self.cx.current_expansion.depth + 1,
..self.cx.current_expansion.clone()
},
});
placeholder(fragment_kind, NodeId::placeholder_from_expn_id(expn_id), vis)
}
fn collect_bang(&mut self, mac: ast::Mac, span: Span, kind: AstFragmentKind) -> AstFragment {
self.collect(kind, InvocationKind::Bang { mac, span })
}
fn collect_attr(
&mut self,
attr: Option<ast::Attribute>,
derives: Vec<Path>,
item: Annotatable,
kind: AstFragmentKind,
after_derive: bool,
) -> AstFragment {
self.collect(
kind,
match attr {
Some(attr) => InvocationKind::Attr { attr, item, derives, after_derive },
None => InvocationKind::DeriveContainer { derives, item },
},
)
}
fn find_attr_invoc(
&self,
attrs: &mut Vec<ast::Attribute>,
after_derive: &mut bool,
) -> Option<ast::Attribute> {
let attr = attrs
.iter()
.position(|a| {
if a.has_name(sym::derive) {
*after_derive = true;
}
!attr::is_known(a) && !is_builtin_attr(a)
})
.map(|i| attrs.remove(i));
if let Some(attr) = &attr {
if !self.cx.ecfg.custom_inner_attributes()
&& attr.style == ast::AttrStyle::Inner
&& !attr.has_name(sym::test)
{
feature_err(
&self.cx.parse_sess,
sym::custom_inner_attributes,
attr.span,
"non-builtin inner attributes are unstable",
)
.emit();
}
}
attr
}
/// If `item` is an attr invocation, remove and return the macro attribute and derive traits.
fn classify_item(
&mut self,
item: &mut impl HasAttrs,
) -> (Option<ast::Attribute>, Vec<Path>, /* after_derive */ bool) {
let (mut attr, mut traits, mut after_derive) = (None, Vec::new(), false);
item.visit_attrs(|mut attrs| {
attr = self.find_attr_invoc(&mut attrs, &mut after_derive);
traits = collect_derives(&mut self.cx, &mut attrs);
});
(attr, traits, after_derive)
}
/// Alternative to `classify_item()` that ignores `#[derive]` so invocations fallthrough
/// to the unused-attributes lint (making it an error on statements and expressions
/// is a breaking change)
fn classify_nonitem(
&mut self,
nonitem: &mut impl HasAttrs,
) -> (Option<ast::Attribute>, /* after_derive */ bool) {
let (mut attr, mut after_derive) = (None, false);
nonitem.visit_attrs(|mut attrs| {
attr = self.find_attr_invoc(&mut attrs, &mut after_derive);
});
(attr, after_derive)
}
fn configure<T: HasAttrs>(&mut self, node: T) -> Option<T> {
self.cfg.configure(node)
}
// Detect use of feature-gated or invalid attributes on macro invocations
// since they will not be detected after macro expansion.
fn check_attributes(&mut self, attrs: &[ast::Attribute]) {
let features = self.cx.ecfg.features.unwrap();
for attr in attrs.iter() {
rustc_ast_passes::feature_gate::check_attribute(attr, self.cx.parse_sess, features);
validate_attr::check_meta(self.cx.parse_sess, attr);
// macros are expanded before any lint passes so this warning has to be hardcoded
if attr.has_name(sym::derive) {
self.cx
.struct_span_warn(attr.span, "`#[derive]` does nothing on macro invocations")
.note("this may become a hard error in a future release")
.emit();
}
}
}
}
impl<'a, 'b> MutVisitor for InvocationCollector<'a, 'b> {
fn visit_expr(&mut self, expr: &mut P<ast::Expr>) {
self.cfg.configure_expr(expr);
visit_clobber(expr.deref_mut(), |mut expr| {
self.cfg.configure_expr_kind(&mut expr.kind);
// ignore derives so they remain unused
let (attr, after_derive) = self.classify_nonitem(&mut expr);
if attr.is_some() {
// Collect the invoc regardless of whether or not attributes are permitted here
// expansion will eat the attribute so it won't error later.
attr.as_ref().map(|a| self.cfg.maybe_emit_expr_attr_err(a));
// AstFragmentKind::Expr requires the macro to emit an expression.
return self
.collect_attr(
attr,
vec![],
Annotatable::Expr(P(expr)),
AstFragmentKind::Expr,
after_derive,
)
.make_expr()
.into_inner();
}
if let ast::ExprKind::Mac(mac) = expr.kind {
self.check_attributes(&expr.attrs);
self.collect_bang(mac, expr.span, AstFragmentKind::Expr).make_expr().into_inner()
} else {
noop_visit_expr(&mut expr, self);
expr
}
});
}
fn flat_map_arm(&mut self, arm: ast::Arm) -> SmallVec<[ast::Arm; 1]> {
let mut arm = configure!(self, arm);
let (attr, traits, after_derive) = self.classify_item(&mut arm);
if attr.is_some() || !traits.is_empty() {
return self
.collect_attr(
attr,
traits,
Annotatable::Arm(arm),
AstFragmentKind::Arms,
after_derive,
)
.make_arms();
}
noop_flat_map_arm(arm, self)
}
fn flat_map_field(&mut self, field: ast::Field) -> SmallVec<[ast::Field; 1]> {
let mut field = configure!(self, field);
let (attr, traits, after_derive) = self.classify_item(&mut field);
if attr.is_some() || !traits.is_empty() {
return self
.collect_attr(
attr,
traits,
Annotatable::Field(field),
AstFragmentKind::Fields,
after_derive,
)
.make_fields();
}
noop_flat_map_field(field, self)
}
fn flat_map_field_pattern(&mut self, fp: ast::FieldPat) -> SmallVec<[ast::FieldPat; 1]> {
let mut fp = configure!(self, fp);
let (attr, traits, after_derive) = self.classify_item(&mut fp);
if attr.is_some() || !traits.is_empty() {
return self
.collect_attr(
attr,
traits,
Annotatable::FieldPat(fp),
AstFragmentKind::FieldPats,
after_derive,
)
.make_field_patterns();
}
noop_flat_map_field_pattern(fp, self)
}
fn flat_map_param(&mut self, p: ast::Param) -> SmallVec<[ast::Param; 1]> {
let mut p = configure!(self, p);
let (attr, traits, after_derive) = self.classify_item(&mut p);
if attr.is_some() || !traits.is_empty() {
return self
.collect_attr(
attr,
traits,
Annotatable::Param(p),
AstFragmentKind::Params,
after_derive,
)
.make_params();
}
noop_flat_map_param(p, self)
}
fn flat_map_struct_field(&mut self, sf: ast::StructField) -> SmallVec<[ast::StructField; 1]> {
let mut sf = configure!(self, sf);
let (attr, traits, after_derive) = self.classify_item(&mut sf);
if attr.is_some() || !traits.is_empty() {
return self
.collect_attr(
attr,
traits,
Annotatable::StructField(sf),
AstFragmentKind::StructFields,
after_derive,
)
.make_struct_fields();
}
noop_flat_map_struct_field(sf, self)
}
fn flat_map_variant(&mut self, variant: ast::Variant) -> SmallVec<[ast::Variant; 1]> {
let mut variant = configure!(self, variant);
let (attr, traits, after_derive) = self.classify_item(&mut variant);
if attr.is_some() || !traits.is_empty() {
return self
.collect_attr(
attr,
traits,
Annotatable::Variant(variant),
AstFragmentKind::Variants,
after_derive,
)
.make_variants();
}
noop_flat_map_variant(variant, self)
}
fn filter_map_expr(&mut self, expr: P<ast::Expr>) -> Option<P<ast::Expr>> {
let expr = configure!(self, expr);
expr.filter_map(|mut expr| {
self.cfg.configure_expr_kind(&mut expr.kind);
// Ignore derives so they remain unused.
let (attr, after_derive) = self.classify_nonitem(&mut expr);
if attr.is_some() {
attr.as_ref().map(|a| self.cfg.maybe_emit_expr_attr_err(a));
return self
.collect_attr(
attr,
vec![],
Annotatable::Expr(P(expr)),
AstFragmentKind::OptExpr,
after_derive,
)
.make_opt_expr()
.map(|expr| expr.into_inner());
}
if let ast::ExprKind::Mac(mac) = expr.kind {
self.check_attributes(&expr.attrs);
self.collect_bang(mac, expr.span, AstFragmentKind::OptExpr)
.make_opt_expr()
.map(|expr| expr.into_inner())
} else {
Some({
noop_visit_expr(&mut expr, self);
expr
})
}
})
}
fn visit_pat(&mut self, pat: &mut P<ast::Pat>) {
self.cfg.configure_pat(pat);
match pat.kind {
PatKind::Mac(_) => {}
_ => return noop_visit_pat(pat, self),
}
visit_clobber(pat, |mut pat| match mem::replace(&mut pat.kind, PatKind::Wild) {
PatKind::Mac(mac) => self.collect_bang(mac, pat.span, AstFragmentKind::Pat).make_pat(),
_ => unreachable!(),
});
}
fn flat_map_stmt(&mut self, stmt: ast::Stmt) -> SmallVec<[ast::Stmt; 1]> {
let mut stmt = configure!(self, stmt);
// we'll expand attributes on expressions separately
if !stmt.is_expr() {
let (attr, derives, after_derive) = if stmt.is_item() {
self.classify_item(&mut stmt)
} else {
// ignore derives on non-item statements so it falls through
// to the unused-attributes lint
let (attr, after_derive) = self.classify_nonitem(&mut stmt);
(attr, vec![], after_derive)
};
if attr.is_some() || !derives.is_empty() {
return self
.collect_attr(
attr,
derives,
Annotatable::Stmt(P(stmt)),
AstFragmentKind::Stmts,
after_derive,
)
.make_stmts();
}
}
if let StmtKind::Mac(mac) = stmt.kind {
let (mac, style, attrs) = mac.into_inner();
self.check_attributes(&attrs);
let mut placeholder =
self.collect_bang(mac, stmt.span, AstFragmentKind::Stmts).make_stmts();
// If this is a macro invocation with a semicolon, then apply that
// semicolon to the final statement produced by expansion.
if style == MacStmtStyle::Semicolon {
if let Some(stmt) = placeholder.pop() {
placeholder.push(stmt.add_trailing_semicolon());
}
}
return placeholder;
}
// The placeholder expander gives ids to statements, so we avoid folding the id here.
let ast::Stmt { id, kind, span } = stmt;
noop_flat_map_stmt_kind(kind, self)
.into_iter()
.map(|kind| ast::Stmt { id, kind, span })
.collect()
}
fn visit_block(&mut self, block: &mut P<Block>) {
let old_directory_ownership = self.cx.current_expansion.directory_ownership;
self.cx.current_expansion.directory_ownership = DirectoryOwnership::UnownedViaBlock;
noop_visit_block(block, self);
self.cx.current_expansion.directory_ownership = old_directory_ownership;
}
fn flat_map_item(&mut self, item: P<ast::Item>) -> SmallVec<[P<ast::Item>; 1]> {
let mut item = configure!(self, item);
let (attr, traits, after_derive) = self.classify_item(&mut item);
if attr.is_some() || !traits.is_empty() {
return self
.collect_attr(
attr,
traits,
Annotatable::Item(item),
AstFragmentKind::Items,
after_derive,
)
.make_items();
}
match item.kind {
ast::ItemKind::Mac(..) => {
self.check_attributes(&item.attrs);
item.and_then(|item| match item.kind {
ItemKind::Mac(mac) => self
.collect(
AstFragmentKind::Items,
InvocationKind::Bang { mac, span: item.span },
)
.make_items(),
_ => unreachable!(),
})
}
ast::ItemKind::Mod(ast::Mod { inner, inline, .. })
if item.ident != Ident::invalid() =>
{
let orig_directory_ownership = self.cx.current_expansion.directory_ownership;
let mut module = (*self.cx.current_expansion.module).clone();
module.mod_path.push(item.ident);
if inline {
if let Some(path) = attr::first_attr_value_str_by_name(&item.attrs, sym::path) {
self.cx.current_expansion.directory_ownership =
DirectoryOwnership::Owned { relative: None };
module.directory.push(&*path.as_str());
} else {
module.directory.push(&*item.ident.as_str());
}
} else {
let path = self.cx.parse_sess.source_map().span_to_unmapped_path(inner);
let mut path = match path {
FileName::Real(path) => path,
other => PathBuf::from(other.to_string()),
};
let directory_ownership = match path.file_name().unwrap().to_str() {
Some("mod.rs") => DirectoryOwnership::Owned { relative: None },
Some(_) => DirectoryOwnership::Owned { relative: Some(item.ident) },
None => DirectoryOwnership::UnownedViaMod,
};
path.pop();
module.directory = path;
self.cx.current_expansion.directory_ownership = directory_ownership;
}
let orig_module =
mem::replace(&mut self.cx.current_expansion.module, Rc::new(module));
let result = noop_flat_map_item(item, self);
self.cx.current_expansion.module = orig_module;
self.cx.current_expansion.directory_ownership = orig_directory_ownership;
result
}
_ => noop_flat_map_item(item, self),
}
}
fn flat_map_trait_item(&mut self, item: P<ast::AssocItem>) -> SmallVec<[P<ast::AssocItem>; 1]> {
let mut item = configure!(self, item);
let (attr, traits, after_derive) = self.classify_item(&mut item);
if attr.is_some() || !traits.is_empty() {
return self
.collect_attr(
attr,
traits,
Annotatable::TraitItem(item),
AstFragmentKind::TraitItems,
after_derive,
)
.make_trait_items();
}
match item.kind {
ast::AssocItemKind::Macro(..) => {
self.check_attributes(&item.attrs);
item.and_then(|item| match item.kind {
ast::AssocItemKind::Macro(mac) => self
.collect_bang(mac, item.span, AstFragmentKind::TraitItems)
.make_trait_items(),
_ => unreachable!(),
})
}
_ => noop_flat_map_assoc_item(item, self),
}
}
fn flat_map_impl_item(&mut self, item: P<ast::AssocItem>) -> SmallVec<[P<ast::AssocItem>; 1]> {
let mut item = configure!(self, item);
let (attr, traits, after_derive) = self.classify_item(&mut item);
if attr.is_some() || !traits.is_empty() {
return self
.collect_attr(
attr,
traits,
Annotatable::ImplItem(item),
AstFragmentKind::ImplItems,
after_derive,
)
.make_impl_items();
}
match item.kind {
ast::AssocItemKind::Macro(..) => {
self.check_attributes(&item.attrs);
item.and_then(|item| match item.kind {
ast::AssocItemKind::Macro(mac) => self
.collect_bang(mac, item.span, AstFragmentKind::ImplItems)
.make_impl_items(),
_ => unreachable!(),
})
}
_ => noop_flat_map_assoc_item(item, self),
}
}
fn visit_ty(&mut self, ty: &mut P<ast::Ty>) {
match ty.kind {
ast::TyKind::Mac(_) => {}
_ => return noop_visit_ty(ty, self),
};
visit_clobber(ty, |mut ty| match mem::replace(&mut ty.kind, ast::TyKind::Err) {
ast::TyKind::Mac(mac) => self.collect_bang(mac, ty.span, AstFragmentKind::Ty).make_ty(),
_ => unreachable!(),
});
}
fn visit_foreign_mod(&mut self, foreign_mod: &mut ast::ForeignMod) {
self.cfg.configure_foreign_mod(foreign_mod);
noop_visit_foreign_mod(foreign_mod, self);
}
fn flat_map_foreign_item(
&mut self,
mut foreign_item: P<ast::ForeignItem>,
) -> SmallVec<[P<ast::ForeignItem>; 1]> {
let (attr, traits, after_derive) = self.classify_item(&mut foreign_item);
if attr.is_some() || !traits.is_empty() {
return self
.collect_attr(
attr,
traits,
Annotatable::ForeignItem(foreign_item),
AstFragmentKind::ForeignItems,
after_derive,
)
.make_foreign_items();
}
match foreign_item.kind {
ast::ForeignItemKind::Macro(..) => {
self.check_attributes(&foreign_item.attrs);
foreign_item.and_then(|item| match item.kind {
ast::ForeignItemKind::Macro(mac) => self
.collect_bang(mac, item.span, AstFragmentKind::ForeignItems)
.make_foreign_items(),
_ => unreachable!(),
})
}
_ => noop_flat_map_foreign_item(foreign_item, self),
}
}
fn visit_item_kind(&mut self, item: &mut ast::ItemKind) {
match item {
ast::ItemKind::MacroDef(..) => {}
_ => {
self.cfg.configure_item_kind(item);
noop_visit_item_kind(item, self);
}
}
}
fn flat_map_generic_param(
&mut self,
param: ast::GenericParam,
) -> SmallVec<[ast::GenericParam; 1]> {
let mut param = configure!(self, param);
let (attr, traits, after_derive) = self.classify_item(&mut param);
if attr.is_some() || !traits.is_empty() {
return self
.collect_attr(
attr,
traits,
Annotatable::GenericParam(param),
AstFragmentKind::GenericParams,
after_derive,
)
.make_generic_params();
}
noop_flat_map_generic_param(param, self)
}
fn visit_attribute(&mut self, at: &mut ast::Attribute) {
// turn `#[doc(include="filename")]` attributes into `#[doc(include(file="filename",
// contents="file contents")]` attributes
if !at.check_name(sym::doc) {
return noop_visit_attribute(at, self);
}
if let Some(list) = at.meta_item_list() {
if !list.iter().any(|it| it.check_name(sym::include)) {
return noop_visit_attribute(at, self);
}
let mut items = vec![];
for mut it in list {
if !it.check_name(sym::include) {
items.push({
noop_visit_meta_list_item(&mut it, self);
it
});
continue;
}
if let Some(file) = it.value_str() {
let err_count = self.cx.parse_sess.span_diagnostic.err_count();
self.check_attributes(slice::from_ref(at));
if self.cx.parse_sess.span_diagnostic.err_count() > err_count {
// avoid loading the file if they haven't enabled the feature
return noop_visit_attribute(at, self);
}
let filename = match self.cx.resolve_path(&*file.as_str(), it.span()) {
Ok(filename) => filename,
Err(mut err) => {
err.emit();
continue;
}
};
match self.cx.source_map().load_file(&filename) {
Ok(source_file) => {
let src = source_file
.src
.as_ref()
.expect("freshly loaded file should have a source");
let src_interned = Symbol::intern(src.as_str());
let include_info = vec![
ast::NestedMetaItem::MetaItem(attr::mk_name_value_item_str(
Ident::with_dummy_span(sym::file),
file,
DUMMY_SP,
)),
ast::NestedMetaItem::MetaItem(attr::mk_name_value_item_str(
Ident::with_dummy_span(sym::contents),
src_interned,
DUMMY_SP,
)),
];
let include_ident = Ident::with_dummy_span(sym::include);
let item = attr::mk_list_item(include_ident, include_info);
items.push(ast::NestedMetaItem::MetaItem(item));
}
Err(e) => {
let lit =
it.meta_item().and_then(|item| item.name_value_literal()).unwrap();
if e.kind() == ErrorKind::InvalidData {
self.cx
.struct_span_err(
lit.span,
&format!("{} wasn't a utf-8 file", filename.display()),
)
.span_label(lit.span, "contains invalid utf-8")
.emit();
} else {
let mut err = self.cx.struct_span_err(
lit.span,
&format!("couldn't read {}: {}", filename.display(), e),
);
err.span_label(lit.span, "couldn't read file");
err.emit();
}
}
}
} else {
let mut err = self.cx.struct_span_err(
it.span(),
&format!("expected path to external documentation"),
);
// Check if the user erroneously used `doc(include(...))` syntax.
let literal = it.meta_item_list().and_then(|list| {
if list.len() == 1 {
list[0].literal().map(|literal| &literal.kind)
} else {
None
}
});
let (path, applicability) = match &literal {
Some(LitKind::Str(path, ..)) => {
(path.to_string(), Applicability::MachineApplicable)
}
_ => (String::from("<path>"), Applicability::HasPlaceholders),
};
err.span_suggestion(
it.span(),
"provide a file path with `=`",
format!("include = \"{}\"", path),
applicability,
);
err.emit();
}
}
let meta = attr::mk_list_item(Ident::with_dummy_span(sym::doc), items);
*at = ast::Attribute {
kind: ast::AttrKind::Normal(AttrItem {
path: meta.path,
args: meta.kind.mac_args(meta.span),
}),
span: at.span,
id: at.id,
style: at.style,
};
} else {
noop_visit_attribute(at, self)
}
}
fn visit_id(&mut self, id: &mut ast::NodeId) {
if self.monotonic {
debug_assert_eq!(*id, ast::DUMMY_NODE_ID);
*id = self.cx.resolver.next_node_id()
}
}
fn visit_fn_decl(&mut self, mut fn_decl: &mut P<ast::FnDecl>) {
self.cfg.configure_fn_decl(&mut fn_decl);
noop_visit_fn_decl(fn_decl, self);
}
}
pub struct ExpansionConfig<'feat> {
pub crate_name: String,
pub features: Option<&'feat Features>,
pub recursion_limit: usize,
pub trace_mac: bool,
pub should_test: bool, // If false, strip `#[test]` nodes
pub single_step: bool,
pub keep_macs: bool,
}
impl<'feat> ExpansionConfig<'feat> {
pub fn default(crate_name: String) -> ExpansionConfig<'static> {
ExpansionConfig {
crate_name,
features: None,
recursion_limit: 1024,
trace_mac: false,
should_test: false,
single_step: false,
keep_macs: false,
}
}
fn proc_macro_hygiene(&self) -> bool {
self.features.map_or(false, |features| features.proc_macro_hygiene)
}
fn custom_inner_attributes(&self) -> bool {
self.features.map_or(false, |features| features.custom_inner_attributes)
}
}