blob: 68004294c5dc9bfdb4fd5858c1a4587b7b35197b [file] [log] [blame]
use rustc::mir;
use rustc::ty::{self, Ty, layout::{TyLayout, LayoutOf}};
use syntax::ast::FloatTy;
use rustc_apfloat::Float;
use rustc::mir::interpret::{InterpResult, Scalar};
use super::{InterpCx, PlaceTy, Immediate, Machine, ImmTy};
impl<'mir, 'tcx, M: Machine<'mir, 'tcx>> InterpCx<'mir, 'tcx, M> {
/// Applies the binary operation `op` to the two operands and writes a tuple of the result
/// and a boolean signifying the potential overflow to the destination.
pub fn binop_with_overflow(
&mut self,
op: mir::BinOp,
left: ImmTy<'tcx, M::PointerTag>,
right: ImmTy<'tcx, M::PointerTag>,
dest: PlaceTy<'tcx, M::PointerTag>,
) -> InterpResult<'tcx> {
let (val, overflowed, ty) = self.overflowing_binary_op(op, left, right)?;
debug_assert_eq!(
self.tcx.intern_tup(&[ty, self.tcx.types.bool]),
dest.layout.ty,
"type mismatch for result of {:?}", op,
);
let val = Immediate::ScalarPair(val.into(), Scalar::from_bool(overflowed).into());
self.write_immediate(val, dest)
}
/// Applies the binary operation `op` to the arguments and writes the result to the
/// destination.
pub fn binop_ignore_overflow(
&mut self,
op: mir::BinOp,
left: ImmTy<'tcx, M::PointerTag>,
right: ImmTy<'tcx, M::PointerTag>,
dest: PlaceTy<'tcx, M::PointerTag>,
) -> InterpResult<'tcx> {
let (val, _overflowed, ty) = self.overflowing_binary_op(op, left, right)?;
assert_eq!(ty, dest.layout.ty, "type mismatch for result of {:?}", op);
self.write_scalar(val, dest)
}
}
impl<'mir, 'tcx, M: Machine<'mir, 'tcx>> InterpCx<'mir, 'tcx, M> {
fn binary_char_op(
&self,
bin_op: mir::BinOp,
l: char,
r: char,
) -> (Scalar<M::PointerTag>, bool, Ty<'tcx>) {
use rustc::mir::BinOp::*;
let res = match bin_op {
Eq => l == r,
Ne => l != r,
Lt => l < r,
Le => l <= r,
Gt => l > r,
Ge => l >= r,
_ => bug!("Invalid operation on char: {:?}", bin_op),
};
return (Scalar::from_bool(res), false, self.tcx.types.bool);
}
fn binary_bool_op(
&self,
bin_op: mir::BinOp,
l: bool,
r: bool,
) -> (Scalar<M::PointerTag>, bool, Ty<'tcx>) {
use rustc::mir::BinOp::*;
let res = match bin_op {
Eq => l == r,
Ne => l != r,
Lt => l < r,
Le => l <= r,
Gt => l > r,
Ge => l >= r,
BitAnd => l & r,
BitOr => l | r,
BitXor => l ^ r,
_ => bug!("Invalid operation on bool: {:?}", bin_op),
};
return (Scalar::from_bool(res), false, self.tcx.types.bool);
}
fn binary_float_op<F: Float + Into<Scalar<M::PointerTag>>>(
&self,
bin_op: mir::BinOp,
ty: Ty<'tcx>,
l: F,
r: F,
) -> (Scalar<M::PointerTag>, bool, Ty<'tcx>) {
use rustc::mir::BinOp::*;
let (val, ty) = match bin_op {
Eq => (Scalar::from_bool(l == r), self.tcx.types.bool),
Ne => (Scalar::from_bool(l != r), self.tcx.types.bool),
Lt => (Scalar::from_bool(l < r), self.tcx.types.bool),
Le => (Scalar::from_bool(l <= r), self.tcx.types.bool),
Gt => (Scalar::from_bool(l > r), self.tcx.types.bool),
Ge => (Scalar::from_bool(l >= r), self.tcx.types.bool),
Add => ((l + r).value.into(), ty),
Sub => ((l - r).value.into(), ty),
Mul => ((l * r).value.into(), ty),
Div => ((l / r).value.into(), ty),
Rem => ((l % r).value.into(), ty),
_ => bug!("invalid float op: `{:?}`", bin_op),
};
return (val, false, ty);
}
fn binary_int_op(
&self,
bin_op: mir::BinOp,
// passing in raw bits
l: u128,
left_layout: TyLayout<'tcx>,
r: u128,
right_layout: TyLayout<'tcx>,
) -> InterpResult<'tcx, (Scalar<M::PointerTag>, bool, Ty<'tcx>)> {
use rustc::mir::BinOp::*;
// Shift ops can have an RHS with a different numeric type.
if bin_op == Shl || bin_op == Shr {
let signed = left_layout.abi.is_signed();
let mut oflo = (r as u32 as u128) != r;
let mut r = r as u32;
let size = left_layout.size;
oflo |= r >= size.bits() as u32;
if oflo {
r %= size.bits() as u32;
}
let result = if signed {
let l = self.sign_extend(l, left_layout) as i128;
let result = match bin_op {
Shl => l << r,
Shr => l >> r,
_ => bug!("it has already been checked that this is a shift op"),
};
result as u128
} else {
match bin_op {
Shl => l << r,
Shr => l >> r,
_ => bug!("it has already been checked that this is a shift op"),
}
};
let truncated = self.truncate(result, left_layout);
return Ok((Scalar::from_uint(truncated, size), oflo, left_layout.ty));
}
// For the remaining ops, the types must be the same on both sides
if left_layout.ty != right_layout.ty {
bug!(
"invalid asymmetric binary op {:?}: {:?} ({:?}), {:?} ({:?})",
bin_op,
l, left_layout.ty,
r, right_layout.ty,
)
}
// Operations that need special treatment for signed integers
if left_layout.abi.is_signed() {
let op: Option<fn(&i128, &i128) -> bool> = match bin_op {
Lt => Some(i128::lt),
Le => Some(i128::le),
Gt => Some(i128::gt),
Ge => Some(i128::ge),
_ => None,
};
if let Some(op) = op {
let l = self.sign_extend(l, left_layout) as i128;
let r = self.sign_extend(r, right_layout) as i128;
return Ok((Scalar::from_bool(op(&l, &r)), false, self.tcx.types.bool));
}
let op: Option<fn(i128, i128) -> (i128, bool)> = match bin_op {
Div if r == 0 => throw_ub!(DivisionByZero),
Rem if r == 0 => throw_ub!(RemainderByZero),
Div => Some(i128::overflowing_div),
Rem => Some(i128::overflowing_rem),
Add => Some(i128::overflowing_add),
Sub => Some(i128::overflowing_sub),
Mul => Some(i128::overflowing_mul),
_ => None,
};
if let Some(op) = op {
let l128 = self.sign_extend(l, left_layout) as i128;
let r = self.sign_extend(r, right_layout) as i128;
let size = left_layout.size;
match bin_op {
Rem | Div => {
// int_min / -1
if r == -1 && l == (1 << (size.bits() - 1)) {
return Ok((Scalar::from_uint(l, size), true, left_layout.ty));
}
},
_ => {},
}
trace!("{}, {}, {}", l, l128, r);
let (result, mut oflo) = op(l128, r);
trace!("{}, {}", result, oflo);
if !oflo && size.bits() != 128 {
let max = 1 << (size.bits() - 1);
oflo = result >= max || result < -max;
}
// this may be out-of-bounds for the result type, so we have to truncate ourselves
let result = result as u128;
let truncated = self.truncate(result, left_layout);
return Ok((Scalar::from_uint(truncated, size), oflo, left_layout.ty));
}
}
let size = left_layout.size;
let (val, ty) = match bin_op {
Eq => (Scalar::from_bool(l == r), self.tcx.types.bool),
Ne => (Scalar::from_bool(l != r), self.tcx.types.bool),
Lt => (Scalar::from_bool(l < r), self.tcx.types.bool),
Le => (Scalar::from_bool(l <= r), self.tcx.types.bool),
Gt => (Scalar::from_bool(l > r), self.tcx.types.bool),
Ge => (Scalar::from_bool(l >= r), self.tcx.types.bool),
BitOr => (Scalar::from_uint(l | r, size), left_layout.ty),
BitAnd => (Scalar::from_uint(l & r, size), left_layout.ty),
BitXor => (Scalar::from_uint(l ^ r, size), left_layout.ty),
Add | Sub | Mul | Rem | Div => {
debug_assert!(!left_layout.abi.is_signed());
let op: fn(u128, u128) -> (u128, bool) = match bin_op {
Add => u128::overflowing_add,
Sub => u128::overflowing_sub,
Mul => u128::overflowing_mul,
Div if r == 0 => throw_ub!(DivisionByZero),
Rem if r == 0 => throw_ub!(RemainderByZero),
Div => u128::overflowing_div,
Rem => u128::overflowing_rem,
_ => bug!(),
};
let (result, oflo) = op(l, r);
let truncated = self.truncate(result, left_layout);
return Ok((
Scalar::from_uint(truncated, size),
oflo || truncated != result,
left_layout.ty,
));
}
_ => {
bug!(
"invalid binary op {:?}: {:?}, {:?} (both {:?})",
bin_op,
l,
r,
right_layout.ty,
)
}
};
Ok((val, false, ty))
}
/// Returns the result of the specified operation, whether it overflowed, and
/// the result type.
pub fn overflowing_binary_op(
&self,
bin_op: mir::BinOp,
left: ImmTy<'tcx, M::PointerTag>,
right: ImmTy<'tcx, M::PointerTag>,
) -> InterpResult<'tcx, (Scalar<M::PointerTag>, bool, Ty<'tcx>)> {
trace!("Running binary op {:?}: {:?} ({:?}), {:?} ({:?})",
bin_op, *left, left.layout.ty, *right, right.layout.ty);
match left.layout.ty.kind {
ty::Char => {
assert_eq!(left.layout.ty, right.layout.ty);
let left = left.to_scalar()?;
let right = right.to_scalar()?;
Ok(self.binary_char_op(bin_op, left.to_char()?, right.to_char()?))
}
ty::Bool => {
assert_eq!(left.layout.ty, right.layout.ty);
let left = left.to_scalar()?;
let right = right.to_scalar()?;
Ok(self.binary_bool_op(bin_op, left.to_bool()?, right.to_bool()?))
}
ty::Float(fty) => {
assert_eq!(left.layout.ty, right.layout.ty);
let ty = left.layout.ty;
let left = left.to_scalar()?;
let right = right.to_scalar()?;
Ok(match fty {
FloatTy::F32 =>
self.binary_float_op(bin_op, ty, left.to_f32()?, right.to_f32()?),
FloatTy::F64 =>
self.binary_float_op(bin_op, ty, left.to_f64()?, right.to_f64()?),
})
}
_ if left.layout.ty.is_integral() => {
// the RHS type can be different, e.g. for shifts -- but it has to be integral, too
assert!(
right.layout.ty.is_integral(),
"Unexpected types for BinOp: {:?} {:?} {:?}",
left.layout.ty, bin_op, right.layout.ty
);
let l = self.force_bits(left.to_scalar()?, left.layout.size)?;
let r = self.force_bits(right.to_scalar()?, right.layout.size)?;
self.binary_int_op(bin_op, l, left.layout, r, right.layout)
}
_ if left.layout.ty.is_any_ptr() => {
// The RHS type must be the same *or an integer type* (for `Offset`).
assert!(
right.layout.ty == left.layout.ty || right.layout.ty.is_integral(),
"Unexpected types for BinOp: {:?} {:?} {:?}",
left.layout.ty, bin_op, right.layout.ty
);
M::binary_ptr_op(self, bin_op, left, right)
}
_ => bug!("Invalid MIR: bad LHS type for binop: {:?}", left.layout.ty),
}
}
/// Typed version of `checked_binary_op`, returning an `ImmTy`. Also ignores overflows.
#[inline]
pub fn binary_op(
&self,
bin_op: mir::BinOp,
left: ImmTy<'tcx, M::PointerTag>,
right: ImmTy<'tcx, M::PointerTag>,
) -> InterpResult<'tcx, ImmTy<'tcx, M::PointerTag>> {
let (val, _overflow, ty) = self.overflowing_binary_op(bin_op, left, right)?;
Ok(ImmTy::from_scalar(val, self.layout_of(ty)?))
}
pub fn unary_op(
&self,
un_op: mir::UnOp,
val: ImmTy<'tcx, M::PointerTag>,
) -> InterpResult<'tcx, ImmTy<'tcx, M::PointerTag>> {
use rustc::mir::UnOp::*;
let layout = val.layout;
let val = val.to_scalar()?;
trace!("Running unary op {:?}: {:?} ({:?})", un_op, val, layout.ty);
match layout.ty.kind {
ty::Bool => {
let val = val.to_bool()?;
let res = match un_op {
Not => !val,
_ => bug!("Invalid bool op {:?}", un_op)
};
Ok(ImmTy::from_scalar(Scalar::from_bool(res), self.layout_of(self.tcx.types.bool)?))
}
ty::Float(fty) => {
let res = match (un_op, fty) {
(Neg, FloatTy::F32) => Scalar::from_f32(-val.to_f32()?),
(Neg, FloatTy::F64) => Scalar::from_f64(-val.to_f64()?),
_ => bug!("Invalid float op {:?}", un_op)
};
Ok(ImmTy::from_scalar(res, layout))
}
_ => {
assert!(layout.ty.is_integral());
let val = self.force_bits(val, layout.size)?;
let res = match un_op {
Not => !val,
Neg => {
assert!(layout.abi.is_signed());
(-(val as i128)) as u128
}
};
// res needs tuncating
Ok(ImmTy::from_uint(self.truncate(res, layout), layout))
}
}
}
}