blob: a6dec81274915057d93c22c36195494c63899095 [file] [log] [blame]
use super::{FunctionCx, LocalRef};
use super::place::PlaceRef;
use crate::MemFlags;
use crate::base;
use crate::glue;
use crate::traits::*;
use rustc::mir::interpret::{ConstValue, ErrorHandled, Pointer, Scalar};
use rustc::mir;
use rustc::ty;
use rustc::ty::layout::{self, Align, LayoutOf, TyLayout, Size};
use std::fmt;
/// The representation of a Rust value. The enum variant is in fact
/// uniquely determined by the value's type, but is kept as a
/// safety check.
#[derive(Copy, Clone, Debug)]
pub enum OperandValue<V> {
/// A reference to the actual operand. The data is guaranteed
/// to be valid for the operand's lifetime.
/// The second value, if any, is the extra data (vtable or length)
/// which indicates that it refers to an unsized rvalue.
Ref(V, Option<V>, Align),
/// A single LLVM value.
Immediate(V),
/// A pair of immediate LLVM values. Used by fat pointers too.
Pair(V, V)
}
/// An `OperandRef` is an "SSA" reference to a Rust value, along with
/// its type.
///
/// NOTE: unless you know a value's type exactly, you should not
/// generate LLVM opcodes acting on it and instead act via methods,
/// to avoid nasty edge cases. In particular, using `Builder::store`
/// directly is sure to cause problems -- use `OperandRef::store`
/// instead.
#[derive(Copy, Clone)]
pub struct OperandRef<'tcx, V> {
// The value.
pub val: OperandValue<V>,
// The layout of value, based on its Rust type.
pub layout: TyLayout<'tcx>,
}
impl<V: CodegenObject> fmt::Debug for OperandRef<'tcx, V> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "OperandRef({:?} @ {:?})", self.val, self.layout)
}
}
impl<'a, 'tcx, V: CodegenObject> OperandRef<'tcx, V> {
pub fn new_zst<Bx: BuilderMethods<'a, 'tcx, Value = V>>(
bx: &mut Bx,
layout: TyLayout<'tcx>
) -> OperandRef<'tcx, V> {
assert!(layout.is_zst());
OperandRef {
val: OperandValue::Immediate(bx.const_undef(bx.immediate_backend_type(layout))),
layout
}
}
pub fn from_const<Bx: BuilderMethods<'a, 'tcx, Value = V>>(
bx: &mut Bx,
val: &'tcx ty::Const<'tcx>
) -> Self {
let layout = bx.layout_of(val.ty);
if layout.is_zst() {
return OperandRef::new_zst(bx, layout);
}
let val_val = match val.val {
ty::ConstKind::Value(val_val) => val_val,
_ => bug!("encountered bad ConstKind in codegen"),
};
let val = match val_val {
ConstValue::Scalar(x) => {
let scalar = match layout.abi {
layout::Abi::Scalar(ref x) => x,
_ => bug!("from_const: invalid ByVal layout: {:#?}", layout)
};
let llval = bx.scalar_to_backend(
x,
scalar,
bx.immediate_backend_type(layout),
);
OperandValue::Immediate(llval)
},
ConstValue::Slice { data, start, end } => {
let a_scalar = match layout.abi {
layout::Abi::ScalarPair(ref a, _) => a,
_ => bug!("from_const: invalid ScalarPair layout: {:#?}", layout)
};
let a = Scalar::from(Pointer::new(
bx.tcx().alloc_map.lock().create_memory_alloc(data),
Size::from_bytes(start as u64),
)).into();
let a_llval = bx.scalar_to_backend(
a,
a_scalar,
bx.scalar_pair_element_backend_type(layout, 0, true),
);
let b_llval = bx.const_usize((end - start) as u64);
OperandValue::Pair(a_llval, b_llval)
},
ConstValue::ByRef { alloc, offset } => {
return bx.load_operand(bx.from_const_alloc(layout, alloc, offset));
},
};
OperandRef {
val,
layout
}
}
/// Asserts that this operand refers to a scalar and returns
/// a reference to its value.
pub fn immediate(self) -> V {
match self.val {
OperandValue::Immediate(s) => s,
_ => bug!("not immediate: {:?}", self)
}
}
pub fn deref<Cx: LayoutTypeMethods<'tcx>>(
self,
cx: &Cx
) -> PlaceRef<'tcx, V> {
let projected_ty = self.layout.ty.builtin_deref(true)
.unwrap_or_else(|| bug!("deref of non-pointer {:?}", self)).ty;
let (llptr, llextra) = match self.val {
OperandValue::Immediate(llptr) => (llptr, None),
OperandValue::Pair(llptr, llextra) => (llptr, Some(llextra)),
OperandValue::Ref(..) => bug!("Deref of by-Ref operand {:?}", self)
};
let layout = cx.layout_of(projected_ty);
PlaceRef {
llval: llptr,
llextra,
layout,
align: layout.align.abi,
}
}
/// If this operand is a `Pair`, we return an aggregate with the two values.
/// For other cases, see `immediate`.
pub fn immediate_or_packed_pair<Bx: BuilderMethods<'a, 'tcx, Value = V>>(
self,
bx: &mut Bx
) -> V {
if let OperandValue::Pair(a, b) = self.val {
let llty = bx.cx().backend_type(self.layout);
debug!("Operand::immediate_or_packed_pair: packing {:?} into {:?}",
self, llty);
// Reconstruct the immediate aggregate.
let mut llpair = bx.cx().const_undef(llty);
let imm_a = base::from_immediate(bx, a);
let imm_b = base::from_immediate(bx, b);
llpair = bx.insert_value(llpair, imm_a, 0);
llpair = bx.insert_value(llpair, imm_b, 1);
llpair
} else {
self.immediate()
}
}
/// If the type is a pair, we return a `Pair`, otherwise, an `Immediate`.
pub fn from_immediate_or_packed_pair<Bx: BuilderMethods<'a, 'tcx, Value = V>>(
bx: &mut Bx,
llval: V,
layout: TyLayout<'tcx>
) -> Self {
let val = if let layout::Abi::ScalarPair(ref a, ref b) = layout.abi {
debug!("Operand::from_immediate_or_packed_pair: unpacking {:?} @ {:?}",
llval, layout);
// Deconstruct the immediate aggregate.
let a_llval = bx.extract_value(llval, 0);
let a_llval = base::to_immediate_scalar(bx, a_llval, a);
let b_llval = bx.extract_value(llval, 1);
let b_llval = base::to_immediate_scalar(bx, b_llval, b);
OperandValue::Pair(a_llval, b_llval)
} else {
OperandValue::Immediate(llval)
};
OperandRef { val, layout }
}
pub fn extract_field<Bx: BuilderMethods<'a, 'tcx, Value = V>>(
&self,
bx: &mut Bx,
i: usize
) -> Self {
let field = self.layout.field(bx.cx(), i);
let offset = self.layout.fields.offset(i);
let mut val = match (self.val, &self.layout.abi) {
// If the field is ZST, it has no data.
_ if field.is_zst() => {
return OperandRef::new_zst(bx, field);
}
// Newtype of a scalar, scalar pair or vector.
(OperandValue::Immediate(_), _) |
(OperandValue::Pair(..), _) if field.size == self.layout.size => {
assert_eq!(offset.bytes(), 0);
self.val
}
// Extract a scalar component from a pair.
(OperandValue::Pair(a_llval, b_llval), &layout::Abi::ScalarPair(ref a, ref b)) => {
if offset.bytes() == 0 {
assert_eq!(field.size, a.value.size(bx.cx()));
OperandValue::Immediate(a_llval)
} else {
assert_eq!(offset, a.value.size(bx.cx())
.align_to(b.value.align(bx.cx()).abi));
assert_eq!(field.size, b.value.size(bx.cx()));
OperandValue::Immediate(b_llval)
}
}
// `#[repr(simd)]` types are also immediate.
(OperandValue::Immediate(llval), &layout::Abi::Vector { .. }) => {
OperandValue::Immediate(
bx.extract_element(llval, bx.cx().const_usize(i as u64)))
}
_ => bug!("OperandRef::extract_field({:?}): not applicable", self)
};
// HACK(eddyb) have to bitcast pointers until LLVM removes pointee types.
// Bools in union fields needs to be truncated.
let to_immediate_or_cast = |bx: &mut Bx, val, ty| {
if ty == bx.cx().type_i1() {
bx.trunc(val, ty)
} else {
bx.bitcast(val, ty)
}
};
match val {
OperandValue::Immediate(ref mut llval) => {
*llval = to_immediate_or_cast(bx, *llval, bx.cx().immediate_backend_type(field));
}
OperandValue::Pair(ref mut a, ref mut b) => {
*a = to_immediate_or_cast(bx, *a, bx.cx()
.scalar_pair_element_backend_type(field, 0, true));
*b = to_immediate_or_cast(bx, *b, bx.cx()
.scalar_pair_element_backend_type(field, 1, true));
}
OperandValue::Ref(..) => bug!()
}
OperandRef {
val,
layout: field
}
}
}
impl<'a, 'tcx, V: CodegenObject> OperandValue<V> {
pub fn store<Bx: BuilderMethods<'a, 'tcx, Value = V>>(
self,
bx: &mut Bx,
dest: PlaceRef<'tcx, V>
) {
self.store_with_flags(bx, dest, MemFlags::empty());
}
pub fn volatile_store<Bx: BuilderMethods<'a, 'tcx, Value = V>>(
self,
bx: &mut Bx,
dest: PlaceRef<'tcx, V>
) {
self.store_with_flags(bx, dest, MemFlags::VOLATILE);
}
pub fn unaligned_volatile_store<Bx: BuilderMethods<'a, 'tcx, Value = V>>(
self,
bx: &mut Bx,
dest: PlaceRef<'tcx, V>,
) {
self.store_with_flags(bx, dest, MemFlags::VOLATILE | MemFlags::UNALIGNED);
}
pub fn nontemporal_store<Bx: BuilderMethods<'a, 'tcx, Value = V>>(
self,
bx: &mut Bx,
dest: PlaceRef<'tcx, V>
) {
self.store_with_flags(bx, dest, MemFlags::NONTEMPORAL);
}
fn store_with_flags<Bx: BuilderMethods<'a, 'tcx, Value = V>>(
self,
bx: &mut Bx,
dest: PlaceRef<'tcx, V>,
flags: MemFlags,
) {
debug!("OperandRef::store: operand={:?}, dest={:?}", self, dest);
// Avoid generating stores of zero-sized values, because the only way to have a zero-sized
// value is through `undef`, and store itself is useless.
if dest.layout.is_zst() {
return;
}
match self {
OperandValue::Ref(r, None, source_align) => {
base::memcpy_ty(bx, dest.llval, dest.align, r, source_align,
dest.layout, flags)
}
OperandValue::Ref(_, Some(_), _) => {
bug!("cannot directly store unsized values");
}
OperandValue::Immediate(s) => {
let val = base::from_immediate(bx, s);
bx.store_with_flags(val, dest.llval, dest.align, flags);
}
OperandValue::Pair(a, b) => {
let (a_scalar, b_scalar) = match dest.layout.abi {
layout::Abi::ScalarPair(ref a, ref b) => (a, b),
_ => bug!("store_with_flags: invalid ScalarPair layout: {:#?}", dest.layout)
};
let b_offset = a_scalar.value.size(bx).align_to(b_scalar.value.align(bx).abi);
let llptr = bx.struct_gep(dest.llval, 0);
let val = base::from_immediate(bx, a);
let align = dest.align;
bx.store_with_flags(val, llptr, align, flags);
let llptr = bx.struct_gep(dest.llval, 1);
let val = base::from_immediate(bx, b);
let align = dest.align.restrict_for_offset(b_offset);
bx.store_with_flags(val, llptr, align, flags);
}
}
}
pub fn store_unsized<Bx: BuilderMethods<'a, 'tcx, Value = V>>(
self,
bx: &mut Bx,
indirect_dest: PlaceRef<'tcx, V>
) {
debug!("OperandRef::store_unsized: operand={:?}, indirect_dest={:?}", self, indirect_dest);
let flags = MemFlags::empty();
// `indirect_dest` must have `*mut T` type. We extract `T` out of it.
let unsized_ty = indirect_dest.layout.ty.builtin_deref(true)
.unwrap_or_else(|| bug!("indirect_dest has non-pointer type: {:?}", indirect_dest)).ty;
let (llptr, llextra) =
if let OperandValue::Ref(llptr, Some(llextra), _) = self {
(llptr, llextra)
} else {
bug!("store_unsized called with a sized value")
};
// FIXME: choose an appropriate alignment, or use dynamic align somehow
let max_align = Align::from_bits(128).unwrap();
let min_align = Align::from_bits(8).unwrap();
// Allocate an appropriate region on the stack, and copy the value into it
let (llsize, _) = glue::size_and_align_of_dst(bx, unsized_ty, Some(llextra));
let lldst = bx.array_alloca(bx.cx().type_i8(), llsize, max_align);
bx.memcpy(lldst, max_align, llptr, min_align, llsize, flags);
// Store the allocated region and the extra to the indirect place.
let indirect_operand = OperandValue::Pair(lldst, llextra);
indirect_operand.store(bx, indirect_dest);
}
}
impl<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>> FunctionCx<'a, 'tcx, Bx> {
fn maybe_codegen_consume_direct(
&mut self,
bx: &mut Bx,
place_ref: &mir::PlaceRef<'_, 'tcx>
) -> Option<OperandRef<'tcx, Bx::Value>> {
debug!("maybe_codegen_consume_direct(place_ref={:?})", place_ref);
if let mir::PlaceBase::Local(index) = place_ref.base {
match self.locals[*index] {
LocalRef::Operand(Some(mut o)) => {
// Moves out of scalar and scalar pair fields are trivial.
for elem in place_ref.projection.iter() {
match elem {
mir::ProjectionElem::Field(ref f, _) => {
o = o.extract_field(bx, f.index());
}
mir::ProjectionElem::Index(_) |
mir::ProjectionElem::ConstantIndex { .. } => {
// ZSTs don't require any actual memory access.
// FIXME(eddyb) deduplicate this with the identical
// checks in `codegen_consume` and `extract_field`.
let elem = o.layout.field(bx.cx(), 0);
if elem.is_zst() {
o = OperandRef::new_zst(bx, elem);
} else {
return None;
}
}
_ => return None,
}
}
Some(o)
}
LocalRef::Operand(None) => {
bug!("use of {:?} before def", place_ref);
}
LocalRef::Place(..) | LocalRef::UnsizedPlace(..) => {
// watch out for locals that do not have an
// alloca; they are handled somewhat differently
None
}
}
} else {
None
}
}
pub fn codegen_consume(
&mut self,
bx: &mut Bx,
place_ref: &mir::PlaceRef<'_, 'tcx>
) -> OperandRef<'tcx, Bx::Value> {
debug!("codegen_consume(place_ref={:?})", place_ref);
let ty = self.monomorphized_place_ty(place_ref);
let layout = bx.cx().layout_of(ty);
// ZSTs don't require any actual memory access.
if layout.is_zst() {
return OperandRef::new_zst(bx, layout);
}
if let Some(o) = self.maybe_codegen_consume_direct(bx, place_ref) {
return o;
}
// for most places, to consume them we just load them
// out from their home
let place = self.codegen_place(bx, place_ref);
bx.load_operand(place)
}
pub fn codegen_operand(
&mut self,
bx: &mut Bx,
operand: &mir::Operand<'tcx>
) -> OperandRef<'tcx, Bx::Value> {
debug!("codegen_operand(operand={:?})", operand);
match *operand {
mir::Operand::Copy(ref place) |
mir::Operand::Move(ref place) => {
self.codegen_consume(bx, &place.as_ref())
}
mir::Operand::Constant(ref constant) => {
self.eval_mir_constant_to_operand(bx, constant)
.unwrap_or_else(|err| {
match err {
// errored or at least linted
ErrorHandled::Reported => {},
ErrorHandled::TooGeneric => {
bug!("codgen encountered polymorphic constant")
},
}
// Allow RalfJ to sleep soundly knowing that even refactorings that remove
// the above error (or silence it under some conditions) will not cause UB.
bx.abort();
// We still have to return an operand but it doesn't matter,
// this code is unreachable.
let ty = self.monomorphize(&constant.literal.ty);
let layout = bx.cx().layout_of(ty);
bx.load_operand(PlaceRef::new_sized(
bx.cx().const_undef(bx.cx().type_ptr_to(bx.cx().backend_type(layout))),
layout,
))
})
}
}
}
}