blob: 58c1498faa9dedbe017a69f05f810dcb2af0a3b0 [file] [log] [blame]
//! Error Reporting Code for the inference engine
//!
//! Because of the way inference, and in particular region inference,
//! works, it often happens that errors are not detected until far after
//! the relevant line of code has been type-checked. Therefore, there is
//! an elaborate system to track why a particular constraint in the
//! inference graph arose so that we can explain to the user what gave
//! rise to a particular error.
//!
//! The basis of the system are the "origin" types. An "origin" is the
//! reason that a constraint or inference variable arose. There are
//! different "origin" enums for different kinds of constraints/variables
//! (e.g., `TypeOrigin`, `RegionVariableOrigin`). An origin always has
//! a span, but also more information so that we can generate a meaningful
//! error message.
//!
//! Having a catalog of all the different reasons an error can arise is
//! also useful for other reasons, like cross-referencing FAQs etc, though
//! we are not really taking advantage of this yet.
//!
//! # Region Inference
//!
//! Region inference is particularly tricky because it always succeeds "in
//! the moment" and simply registers a constraint. Then, at the end, we
//! can compute the full graph and report errors, so we need to be able to
//! store and later report what gave rise to the conflicting constraints.
//!
//! # Subtype Trace
//!
//! Determining whether `T1 <: T2` often involves a number of subtypes and
//! subconstraints along the way. A "TypeTrace" is an extended version
//! of an origin that traces the types and other values that were being
//! compared. It is not necessarily comprehensive (in fact, at the time of
//! this writing it only tracks the root values being compared) but I'd
//! like to extend it to include significant "waypoints". For example, if
//! you are comparing `(T1, T2) <: (T3, T4)`, and the problem is that `T2
//! <: T4` fails, I'd like the trace to include enough information to say
//! "in the 2nd element of the tuple". Similarly, failures when comparing
//! arguments or return types in fn types should be able to cite the
//! specific position, etc.
//!
//! # Reality vs plan
//!
//! Of course, there is still a LOT of code in typeck that has yet to be
//! ported to this system, and which relies on string concatenation at the
//! time of error detection.
use super::lexical_region_resolve::RegionResolutionError;
use super::region_constraints::GenericKind;
use super::{InferCtxt, RegionVariableOrigin, SubregionOrigin, TypeTrace, ValuePairs};
use crate::hir;
use crate::hir::def_id::DefId;
use crate::hir::Node;
use crate::infer::{self, SuppressRegionErrors};
use crate::infer::opaque_types;
use crate::middle::region;
use crate::traits::{
IfExpressionCause, MatchExpressionArmCause, ObligationCause, ObligationCauseCode,
};
use crate::ty::error::TypeError;
use crate::ty::{self, subst::{Subst, SubstsRef}, Region, Ty, TyCtxt, TypeFoldable};
use errors::{Applicability, DiagnosticBuilder, DiagnosticStyledString};
use rustc_error_codes::*;
use rustc_target::spec::abi;
use syntax_pos::{Pos, Span};
use std::{cmp, fmt};
mod note;
mod need_type_info;
pub mod nice_region_error;
impl<'tcx> TyCtxt<'tcx> {
pub fn note_and_explain_region(
self,
region_scope_tree: &region::ScopeTree,
err: &mut DiagnosticBuilder<'_>,
prefix: &str,
region: ty::Region<'tcx>,
suffix: &str,
) {
let (description, span) = match *region {
ty::ReScope(scope) => {
let new_string;
let unknown_scope = || {
format!(
"{}unknown scope: {:?}{}. Please report a bug.",
prefix, scope, suffix
)
};
let span = scope.span(self, region_scope_tree);
let tag = match self.hir().find(scope.hir_id(region_scope_tree)) {
Some(Node::Block(_)) => "block",
Some(Node::Expr(expr)) => match expr.kind {
hir::ExprKind::Call(..) => "call",
hir::ExprKind::MethodCall(..) => "method call",
hir::ExprKind::Match(.., hir::MatchSource::IfLetDesugar { .. }) => "if let",
hir::ExprKind::Match(.., hir::MatchSource::WhileLetDesugar) => "while let",
hir::ExprKind::Match(.., hir::MatchSource::ForLoopDesugar) => "for",
hir::ExprKind::Match(..) => "match",
_ => "expression",
},
Some(Node::Stmt(_)) => "statement",
Some(Node::Item(it)) => Self::item_scope_tag(&it),
Some(Node::TraitItem(it)) => Self::trait_item_scope_tag(&it),
Some(Node::ImplItem(it)) => Self::impl_item_scope_tag(&it),
Some(_) | None => {
err.span_note(span, &unknown_scope());
return;
}
};
let scope_decorated_tag = match scope.data {
region::ScopeData::Node => tag,
region::ScopeData::CallSite => "scope of call-site for function",
region::ScopeData::Arguments => "scope of function body",
region::ScopeData::Destruction => {
new_string = format!("destruction scope surrounding {}", tag);
&new_string[..]
}
region::ScopeData::Remainder(first_statement_index) => {
new_string = format!(
"block suffix following statement {}",
first_statement_index.index()
);
&new_string[..]
}
};
self.explain_span(scope_decorated_tag, span)
}
ty::ReEarlyBound(_) | ty::ReFree(_) | ty::ReStatic => {
self.msg_span_from_free_region(region)
}
ty::ReEmpty => ("the empty lifetime".to_owned(), None),
ty::RePlaceholder(_) => (format!("any other region"), None),
// FIXME(#13998) RePlaceholder should probably print like
// ReFree rather than dumping Debug output on the user.
//
// We shouldn't really be having unification failures with ReVar
// and ReLateBound though.
ty::ReVar(_) | ty::ReLateBound(..) | ty::ReErased => {
(format!("lifetime {:?}", region), None)
}
// We shouldn't encounter an error message with ReClosureBound.
ty::ReClosureBound(..) => {
bug!("encountered unexpected ReClosureBound: {:?}", region,);
}
};
TyCtxt::emit_msg_span(err, prefix, description, span, suffix);
}
pub fn note_and_explain_free_region(
self,
err: &mut DiagnosticBuilder<'_>,
prefix: &str,
region: ty::Region<'tcx>,
suffix: &str,
) {
let (description, span) = self.msg_span_from_free_region(region);
TyCtxt::emit_msg_span(err, prefix, description, span, suffix);
}
fn msg_span_from_free_region(self, region: ty::Region<'tcx>) -> (String, Option<Span>) {
match *region {
ty::ReEarlyBound(_) | ty::ReFree(_) => {
self.msg_span_from_early_bound_and_free_regions(region)
}
ty::ReStatic => ("the static lifetime".to_owned(), None),
ty::ReEmpty => ("an empty lifetime".to_owned(), None),
_ => bug!("{:?}", region),
}
}
fn msg_span_from_early_bound_and_free_regions(
self,
region: ty::Region<'tcx>,
) -> (String, Option<Span>) {
let cm = self.sess.source_map();
let scope = region.free_region_binding_scope(self);
let node = self.hir().as_local_hir_id(scope).unwrap_or(hir::DUMMY_HIR_ID);
let tag = match self.hir().find(node) {
Some(Node::Block(_)) | Some(Node::Expr(_)) => "body",
Some(Node::Item(it)) => Self::item_scope_tag(&it),
Some(Node::TraitItem(it)) => Self::trait_item_scope_tag(&it),
Some(Node::ImplItem(it)) => Self::impl_item_scope_tag(&it),
_ => unreachable!(),
};
let (prefix, span) = match *region {
ty::ReEarlyBound(ref br) => {
let mut sp = cm.def_span(self.hir().span(node));
if let Some(param) = self.hir()
.get_generics(scope)
.and_then(|generics| generics.get_named(br.name))
{
sp = param.span;
}
(format!("the lifetime `{}` as defined on", br.name), sp)
}
ty::ReFree(ty::FreeRegion {
bound_region: ty::BoundRegion::BrNamed(_, name),
..
}) => {
let mut sp = cm.def_span(self.hir().span(node));
if let Some(param) = self.hir()
.get_generics(scope)
.and_then(|generics| generics.get_named(name))
{
sp = param.span;
}
(format!("the lifetime `{}` as defined on", name), sp)
}
ty::ReFree(ref fr) => match fr.bound_region {
ty::BrAnon(idx) => (
format!("the anonymous lifetime #{} defined on", idx + 1),
self.hir().span(node),
),
_ => (
format!("the lifetime `{}` as defined on", region),
cm.def_span(self.hir().span(node)),
),
},
_ => bug!(),
};
let (msg, opt_span) = self.explain_span(tag, span);
(format!("{} {}", prefix, msg), opt_span)
}
fn emit_msg_span(
err: &mut DiagnosticBuilder<'_>,
prefix: &str,
description: String,
span: Option<Span>,
suffix: &str,
) {
let message = format!("{}{}{}", prefix, description, suffix);
if let Some(span) = span {
err.span_note(span, &message);
} else {
err.note(&message);
}
}
fn item_scope_tag(item: &hir::Item) -> &'static str {
match item.kind {
hir::ItemKind::Impl(..) => "impl",
hir::ItemKind::Struct(..) => "struct",
hir::ItemKind::Union(..) => "union",
hir::ItemKind::Enum(..) => "enum",
hir::ItemKind::Trait(..) => "trait",
hir::ItemKind::Fn(..) => "function body",
_ => "item",
}
}
fn trait_item_scope_tag(item: &hir::TraitItem) -> &'static str {
match item.kind {
hir::TraitItemKind::Method(..) => "method body",
hir::TraitItemKind::Const(..) | hir::TraitItemKind::Type(..) => "associated item",
}
}
fn impl_item_scope_tag(item: &hir::ImplItem) -> &'static str {
match item.kind {
hir::ImplItemKind::Method(..) => "method body",
hir::ImplItemKind::Const(..)
| hir::ImplItemKind::OpaqueTy(..)
| hir::ImplItemKind::TyAlias(..) => "associated item",
}
}
fn explain_span(self, heading: &str, span: Span) -> (String, Option<Span>) {
let lo = self.sess.source_map().lookup_char_pos(span.lo());
(
format!("the {} at {}:{}", heading, lo.line, lo.col.to_usize() + 1),
Some(span),
)
}
}
impl<'a, 'tcx> InferCtxt<'a, 'tcx> {
pub fn report_region_errors(
&self,
region_scope_tree: &region::ScopeTree,
errors: &Vec<RegionResolutionError<'tcx>>,
suppress: SuppressRegionErrors,
) {
debug!(
"report_region_errors(): {} errors to start, suppress = {:?}",
errors.len(),
suppress
);
if suppress.suppressed() {
return;
}
// try to pre-process the errors, which will group some of them
// together into a `ProcessedErrors` group:
let errors = self.process_errors(errors);
debug!(
"report_region_errors: {} errors after preprocessing",
errors.len()
);
for error in errors {
debug!("report_region_errors: error = {:?}", error);
if !self.try_report_nice_region_error(&error) {
match error.clone() {
// These errors could indicate all manner of different
// problems with many different solutions. Rather
// than generate a "one size fits all" error, what we
// attempt to do is go through a number of specific
// scenarios and try to find the best way to present
// the error. If all of these fails, we fall back to a rather
// general bit of code that displays the error information
RegionResolutionError::ConcreteFailure(origin, sub, sup) => {
if sub.is_placeholder() || sup.is_placeholder() {
self.report_placeholder_failure(region_scope_tree, origin, sub, sup)
.emit();
} else {
self.report_concrete_failure(region_scope_tree, origin, sub, sup)
.emit();
}
}
RegionResolutionError::GenericBoundFailure(origin, param_ty, sub) => {
self.report_generic_bound_failure(
region_scope_tree,
origin.span(),
Some(origin),
param_ty,
sub,
);
}
RegionResolutionError::SubSupConflict(
_,
var_origin,
sub_origin,
sub_r,
sup_origin,
sup_r,
) => {
if sub_r.is_placeholder() {
self.report_placeholder_failure(
region_scope_tree,
sub_origin,
sub_r,
sup_r,
)
.emit();
} else if sup_r.is_placeholder() {
self.report_placeholder_failure(
region_scope_tree,
sup_origin,
sub_r,
sup_r,
)
.emit();
} else {
self.report_sub_sup_conflict(
region_scope_tree,
var_origin,
sub_origin,
sub_r,
sup_origin,
sup_r,
);
}
}
RegionResolutionError::MemberConstraintFailure {
opaque_type_def_id,
hidden_ty,
member_region,
span: _,
choice_regions: _,
} => {
let hidden_ty = self.resolve_vars_if_possible(&hidden_ty);
opaque_types::unexpected_hidden_region_diagnostic(
self.tcx,
Some(region_scope_tree),
opaque_type_def_id,
hidden_ty,
member_region,
).emit();
}
}
}
}
}
// This method goes through all the errors and try to group certain types
// of error together, for the purpose of suggesting explicit lifetime
// parameters to the user. This is done so that we can have a more
// complete view of what lifetimes should be the same.
// If the return value is an empty vector, it means that processing
// failed (so the return value of this method should not be used).
//
// The method also attempts to weed out messages that seem like
// duplicates that will be unhelpful to the end-user. But
// obviously it never weeds out ALL errors.
fn process_errors(
&self,
errors: &Vec<RegionResolutionError<'tcx>>,
) -> Vec<RegionResolutionError<'tcx>> {
debug!("process_errors()");
// We want to avoid reporting generic-bound failures if we can
// avoid it: these have a very high rate of being unhelpful in
// practice. This is because they are basically secondary
// checks that test the state of the region graph after the
// rest of inference is done, and the other kinds of errors
// indicate that the region constraint graph is internally
// inconsistent, so these test results are likely to be
// meaningless.
//
// Therefore, we filter them out of the list unless they are
// the only thing in the list.
let is_bound_failure = |e: &RegionResolutionError<'tcx>| match *e {
RegionResolutionError::GenericBoundFailure(..) => true,
RegionResolutionError::ConcreteFailure(..)
| RegionResolutionError::SubSupConflict(..)
| RegionResolutionError::MemberConstraintFailure { .. } => false,
};
let mut errors = if errors.iter().all(|e| is_bound_failure(e)) {
errors.clone()
} else {
errors
.iter()
.filter(|&e| !is_bound_failure(e))
.cloned()
.collect()
};
// sort the errors by span, for better error message stability.
errors.sort_by_key(|u| match *u {
RegionResolutionError::ConcreteFailure(ref sro, _, _) => sro.span(),
RegionResolutionError::GenericBoundFailure(ref sro, _, _) => sro.span(),
RegionResolutionError::SubSupConflict(_, ref rvo, _, _, _, _) => rvo.span(),
RegionResolutionError::MemberConstraintFailure { span, .. } => span,
});
errors
}
/// Adds a note if the types come from similarly named crates
fn check_and_note_conflicting_crates(
&self,
err: &mut DiagnosticBuilder<'_>,
terr: &TypeError<'tcx>,
) {
use hir::def_id::CrateNum;
use hir::map::DisambiguatedDefPathData;
use ty::print::Printer;
use ty::subst::GenericArg;
struct AbsolutePathPrinter<'tcx> {
tcx: TyCtxt<'tcx>,
}
struct NonTrivialPath;
impl<'tcx> Printer<'tcx> for AbsolutePathPrinter<'tcx> {
type Error = NonTrivialPath;
type Path = Vec<String>;
type Region = !;
type Type = !;
type DynExistential = !;
type Const = !;
fn tcx<'a>(&'a self) -> TyCtxt<'tcx> {
self.tcx
}
fn print_region(
self,
_region: ty::Region<'_>,
) -> Result<Self::Region, Self::Error> {
Err(NonTrivialPath)
}
fn print_type(
self,
_ty: Ty<'tcx>,
) -> Result<Self::Type, Self::Error> {
Err(NonTrivialPath)
}
fn print_dyn_existential(
self,
_predicates: &'tcx ty::List<ty::ExistentialPredicate<'tcx>>,
) -> Result<Self::DynExistential, Self::Error> {
Err(NonTrivialPath)
}
fn print_const(
self,
_ct: &'tcx ty::Const<'tcx>,
) -> Result<Self::Const, Self::Error> {
Err(NonTrivialPath)
}
fn path_crate(
self,
cnum: CrateNum,
) -> Result<Self::Path, Self::Error> {
Ok(vec![self.tcx.original_crate_name(cnum).to_string()])
}
fn path_qualified(
self,
_self_ty: Ty<'tcx>,
_trait_ref: Option<ty::TraitRef<'tcx>>,
) -> Result<Self::Path, Self::Error> {
Err(NonTrivialPath)
}
fn path_append_impl(
self,
_print_prefix: impl FnOnce(Self) -> Result<Self::Path, Self::Error>,
_disambiguated_data: &DisambiguatedDefPathData,
_self_ty: Ty<'tcx>,
_trait_ref: Option<ty::TraitRef<'tcx>>,
) -> Result<Self::Path, Self::Error> {
Err(NonTrivialPath)
}
fn path_append(
self,
print_prefix: impl FnOnce(Self) -> Result<Self::Path, Self::Error>,
disambiguated_data: &DisambiguatedDefPathData,
) -> Result<Self::Path, Self::Error> {
let mut path = print_prefix(self)?;
path.push(disambiguated_data.data.as_symbol().to_string());
Ok(path)
}
fn path_generic_args(
self,
print_prefix: impl FnOnce(Self) -> Result<Self::Path, Self::Error>,
_args: &[GenericArg<'tcx>],
) -> Result<Self::Path, Self::Error> {
print_prefix(self)
}
}
let report_path_match = |err: &mut DiagnosticBuilder<'_>, did1: DefId, did2: DefId| {
// Only external crates, if either is from a local
// module we could have false positives
if !(did1.is_local() || did2.is_local()) && did1.krate != did2.krate {
let abs_path = |def_id| {
AbsolutePathPrinter { tcx: self.tcx }
.print_def_path(def_id, &[])
};
// We compare strings because DefPath can be different
// for imported and non-imported crates
let same_path = || -> Result<_, NonTrivialPath> {
Ok(
self.tcx.def_path_str(did1) == self.tcx.def_path_str(did2) ||
abs_path(did1)? == abs_path(did2)?
)
};
if same_path().unwrap_or(false) {
let crate_name = self.tcx.crate_name(did1.krate);
err.note(&format!(
"perhaps two different versions of crate `{}` are being used?",
crate_name
));
}
}
};
match *terr {
TypeError::Sorts(ref exp_found) => {
// if they are both "path types", there's a chance of ambiguity
// due to different versions of the same crate
if let (&ty::Adt(exp_adt, _), &ty::Adt(found_adt, _))
= (&exp_found.expected.kind, &exp_found.found.kind)
{
report_path_match(err, exp_adt.did, found_adt.did);
}
}
TypeError::Traits(ref exp_found) => {
report_path_match(err, exp_found.expected, exp_found.found);
}
_ => (), // FIXME(#22750) handle traits and stuff
}
}
fn note_error_origin(
&self,
err: &mut DiagnosticBuilder<'tcx>,
cause: &ObligationCause<'tcx>,
exp_found: Option<ty::error::ExpectedFound<Ty<'tcx>>>,
) {
match cause.code {
ObligationCauseCode::MatchExpressionArmPattern { span, ty } => {
if ty.is_suggestable() { // don't show type `_`
err.span_label(span, format!("this match expression has type `{}`", ty));
}
if let Some(ty::error::ExpectedFound { found, .. }) = exp_found {
if ty.is_box() && ty.boxed_ty() == found {
if let Ok(snippet) = self.tcx.sess.source_map().span_to_snippet(span) {
err.span_suggestion(
span,
"consider dereferencing the boxed value",
format!("*{}", snippet),
Applicability::MachineApplicable,
);
}
}
}
}
ObligationCauseCode::MatchExpressionArm(box MatchExpressionArmCause {
source,
ref prior_arms,
last_ty,
discrim_hir_id,
..
}) => match source {
hir::MatchSource::IfLetDesugar { .. } => {
let msg = "`if let` arms have incompatible types";
err.span_label(cause.span, msg);
}
hir::MatchSource::TryDesugar => {
if let Some(ty::error::ExpectedFound { expected, .. }) = exp_found {
let discrim_expr = self.tcx.hir().expect_expr(discrim_hir_id);
let discrim_ty = if let hir::ExprKind::Call(_, args) = &discrim_expr.kind {
let arg_expr = args.first().expect("try desugaring call w/out arg");
self.in_progress_tables.and_then(|tables| {
tables.borrow().expr_ty_opt(arg_expr)
})
} else {
bug!("try desugaring w/out call expr as discriminant");
};
match discrim_ty {
Some(ty) if expected == ty => {
let source_map = self.tcx.sess.source_map();
err.span_suggestion(
source_map.end_point(cause.span),
"try removing this `?`",
"".to_string(),
Applicability::MachineApplicable,
);
},
_ => {},
}
}
}
_ => {
// `last_ty` can be `!`, `expected` will have better info when present.
let t = self.resolve_vars_if_possible(&match exp_found {
Some(ty::error::ExpectedFound { expected, .. }) => expected,
_ => last_ty,
});
let msg = "`match` arms have incompatible types";
err.span_label(cause.span, msg);
if prior_arms.len() <= 4 {
for sp in prior_arms {
err.span_label( *sp, format!("this is found to be of type `{}`", t));
}
} else if let Some(sp) = prior_arms.last() {
err.span_label(
*sp,
format!("this and all prior arms are found to be of type `{}`", t),
);
}
}
},
ObligationCauseCode::IfExpression(box IfExpressionCause { then, outer, semicolon }) => {
err.span_label(then, "expected because of this");
outer.map(|sp| err.span_label(sp, "if and else have incompatible types"));
if let Some(sp) = semicolon {
err.span_suggestion_short(
sp,
"consider removing this semicolon",
String::new(),
Applicability::MachineApplicable,
);
}
}
_ => (),
}
}
/// Given that `other_ty` is the same as a type argument for `name` in `sub`, populate `value`
/// highlighting `name` and every type argument that isn't at `pos` (which is `other_ty`), and
/// populate `other_value` with `other_ty`.
///
/// ```text
/// Foo<Bar<Qux>>
/// ^^^^--------^ this is highlighted
/// | |
/// | this type argument is exactly the same as the other type, not highlighted
/// this is highlighted
/// Bar<Qux>
/// -------- this type is the same as a type argument in the other type, not highlighted
/// ```
fn highlight_outer(
&self,
value: &mut DiagnosticStyledString,
other_value: &mut DiagnosticStyledString,
name: String,
sub: ty::subst::SubstsRef<'tcx>,
pos: usize,
other_ty: Ty<'tcx>,
) {
// `value` and `other_value` hold two incomplete type representation for display.
// `name` is the path of both types being compared. `sub`
value.push_highlighted(name);
let len = sub.len();
if len > 0 {
value.push_highlighted("<");
}
// Output the lifetimes for the first type
let lifetimes = sub.regions()
.map(|lifetime| {
let s = lifetime.to_string();
if s.is_empty() {
"'_".to_string()
} else {
s
}
})
.collect::<Vec<_>>()
.join(", ");
if !lifetimes.is_empty() {
if sub.regions().count() < len {
value.push_normal(lifetimes + &", ");
} else {
value.push_normal(lifetimes);
}
}
// Highlight all the type arguments that aren't at `pos` and compare the type argument at
// `pos` and `other_ty`.
for (i, type_arg) in sub.types().enumerate() {
if i == pos {
let values = self.cmp(type_arg, other_ty);
value.0.extend((values.0).0);
other_value.0.extend((values.1).0);
} else {
value.push_highlighted(type_arg.to_string());
}
if len > 0 && i != len - 1 {
value.push_normal(", ");
}
}
if len > 0 {
value.push_highlighted(">");
}
}
/// If `other_ty` is the same as a type argument present in `sub`, highlight `path` in `t1_out`,
/// as that is the difference to the other type.
///
/// For the following code:
///
/// ```norun
/// let x: Foo<Bar<Qux>> = foo::<Bar<Qux>>();
/// ```
///
/// The type error output will behave in the following way:
///
/// ```text
/// Foo<Bar<Qux>>
/// ^^^^--------^ this is highlighted
/// | |
/// | this type argument is exactly the same as the other type, not highlighted
/// this is highlighted
/// Bar<Qux>
/// -------- this type is the same as a type argument in the other type, not highlighted
/// ```
fn cmp_type_arg(
&self,
mut t1_out: &mut DiagnosticStyledString,
mut t2_out: &mut DiagnosticStyledString,
path: String,
sub: ty::subst::SubstsRef<'tcx>,
other_path: String,
other_ty: Ty<'tcx>,
) -> Option<()> {
for (i, ta) in sub.types().enumerate() {
if ta == other_ty {
self.highlight_outer(&mut t1_out, &mut t2_out, path, sub, i, &other_ty);
return Some(());
}
if let &ty::Adt(def, _) = &ta.kind {
let path_ = self.tcx.def_path_str(def.did.clone());
if path_ == other_path {
self.highlight_outer(&mut t1_out, &mut t2_out, path, sub, i, &other_ty);
return Some(());
}
}
}
None
}
/// Adds a `,` to the type representation only if it is appropriate.
fn push_comma(
&self,
value: &mut DiagnosticStyledString,
other_value: &mut DiagnosticStyledString,
len: usize,
pos: usize,
) {
if len > 0 && pos != len - 1 {
value.push_normal(", ");
other_value.push_normal(", ");
}
}
/// For generic types with parameters with defaults, remove the parameters corresponding to
/// the defaults. This repeats a lot of the logic found in `ty::print::pretty`.
fn strip_generic_default_params(
&self,
def_id: DefId,
substs: ty::subst::SubstsRef<'tcx>,
) -> SubstsRef<'tcx> {
let generics = self.tcx.generics_of(def_id);
let mut num_supplied_defaults = 0;
let mut type_params = generics.params.iter().rev().filter_map(|param| match param.kind {
ty::GenericParamDefKind::Lifetime => None,
ty::GenericParamDefKind::Type { has_default, .. } => Some((param.def_id, has_default)),
ty::GenericParamDefKind::Const => None, // FIXME(const_generics:defaults)
}).peekable();
let has_default = {
let has_default = type_params.peek().map(|(_, has_default)| has_default);
*has_default.unwrap_or(&false)
};
if has_default {
let types = substs.types().rev();
for ((def_id, has_default), actual) in type_params.zip(types) {
if !has_default {
break;
}
if self.tcx.type_of(def_id).subst(self.tcx, substs) != actual {
break;
}
num_supplied_defaults += 1;
}
}
let len = generics.params.len();
let mut generics = generics.clone();
generics.params.truncate(len - num_supplied_defaults);
substs.truncate_to(self.tcx, &generics)
}
/// Given two `fn` signatures highlight only sub-parts that are different.
fn cmp_fn_sig(
&self,
sig1: &ty::PolyFnSig<'tcx>,
sig2: &ty::PolyFnSig<'tcx>,
) -> (DiagnosticStyledString, DiagnosticStyledString) {
let get_lifetimes = |sig| {
use crate::hir::def::Namespace;
let mut s = String::new();
let (_, (sig, reg)) = ty::print::FmtPrinter::new(self.tcx, &mut s, Namespace::TypeNS)
.name_all_regions(sig)
.unwrap();
let lts: Vec<String> = reg.into_iter().map(|(_, kind)| kind.to_string()).collect();
(if lts.is_empty() {
String::new()
} else {
format!("for<{}> ", lts.join(", "))
}, sig)
};
let (lt1, sig1) = get_lifetimes(sig1);
let (lt2, sig2) = get_lifetimes(sig2);
// unsafe extern "C" for<'a> fn(&'a T) -> &'a T
let mut values = (
DiagnosticStyledString::normal("".to_string()),
DiagnosticStyledString::normal("".to_string()),
);
// unsafe extern "C" for<'a> fn(&'a T) -> &'a T
// ^^^^^^
values.0.push(sig1.unsafety.prefix_str(), sig1.unsafety != sig2.unsafety);
values.1.push(sig2.unsafety.prefix_str(), sig1.unsafety != sig2.unsafety);
// unsafe extern "C" for<'a> fn(&'a T) -> &'a T
// ^^^^^^^^^^
if sig1.abi != abi::Abi::Rust {
values.0.push(format!("extern {} ", sig1.abi), sig1.abi != sig2.abi);
}
if sig2.abi != abi::Abi::Rust {
values.1.push(format!("extern {} ", sig2.abi), sig1.abi != sig2.abi);
}
// unsafe extern "C" for<'a> fn(&'a T) -> &'a T
// ^^^^^^^^
let lifetime_diff = lt1 != lt2;
values.0.push(lt1, lifetime_diff);
values.1.push(lt2, lifetime_diff);
// unsafe extern "C" for<'a> fn(&'a T) -> &'a T
// ^^^
values.0.push_normal("fn(");
values.1.push_normal("fn(");
// unsafe extern "C" for<'a> fn(&'a T) -> &'a T
// ^^^^^
let len1 = sig1.inputs().len();
let len2 = sig2.inputs().len();
if len1 == len2 {
for (i, (l, r)) in sig1.inputs().iter().zip(sig2.inputs().iter()).enumerate() {
let (x1, x2) = self.cmp(l, r);
(values.0).0.extend(x1.0);
(values.1).0.extend(x2.0);
self.push_comma(&mut values.0, &mut values.1, len1, i);
}
} else {
for (i, l) in sig1.inputs().iter().enumerate() {
values.0.push_highlighted(l.to_string());
if i != len1 - 1 {
values.0.push_highlighted(", ");
}
}
for (i, r) in sig2.inputs().iter().enumerate() {
values.1.push_highlighted(r.to_string());
if i != len2 - 1 {
values.1.push_highlighted(", ");
}
}
}
if sig1.c_variadic {
if len1 > 0 {
values.0.push_normal(", ");
}
values.0.push("...", !sig2.c_variadic);
}
if sig2.c_variadic {
if len2 > 0 {
values.1.push_normal(", ");
}
values.1.push("...", !sig1.c_variadic);
}
// unsafe extern "C" for<'a> fn(&'a T) -> &'a T
// ^
values.0.push_normal(")");
values.1.push_normal(")");
// unsafe extern "C" for<'a> fn(&'a T) -> &'a T
// ^^^^^^^^
let output1 = sig1.output();
let output2 = sig2.output();
let (x1, x2) = self.cmp(output1, output2);
if !output1.is_unit() {
values.0.push_normal(" -> ");
(values.0).0.extend(x1.0);
}
if !output2.is_unit() {
values.1.push_normal(" -> ");
(values.1).0.extend(x2.0);
}
values
}
/// Compares two given types, eliding parts that are the same between them and highlighting
/// relevant differences, and return two representation of those types for highlighted printing.
fn cmp(&self, t1: Ty<'tcx>, t2: Ty<'tcx>) -> (DiagnosticStyledString, DiagnosticStyledString) {
debug!("cmp(t1={}, t1.kind={:?}, t2={}, t2.kind={:?})", t1, t1.kind, t2, t2.kind);
// helper functions
fn equals<'tcx>(a: Ty<'tcx>, b: Ty<'tcx>) -> bool {
match (&a.kind, &b.kind) {
(a, b) if *a == *b => true,
(&ty::Int(_), &ty::Infer(ty::InferTy::IntVar(_)))
| (&ty::Infer(ty::InferTy::IntVar(_)), &ty::Int(_))
| (&ty::Infer(ty::InferTy::IntVar(_)), &ty::Infer(ty::InferTy::IntVar(_)))
| (&ty::Float(_), &ty::Infer(ty::InferTy::FloatVar(_)))
| (&ty::Infer(ty::InferTy::FloatVar(_)), &ty::Float(_))
| (&ty::Infer(ty::InferTy::FloatVar(_)), &ty::Infer(ty::InferTy::FloatVar(_))) => {
true
}
_ => false,
}
}
fn push_ty_ref<'tcx>(
r: &ty::Region<'tcx>,
ty: Ty<'tcx>,
mutbl: hir::Mutability,
s: &mut DiagnosticStyledString,
) {
let mut r = r.to_string();
if r == "'_" {
r.clear();
} else {
r.push(' ');
}
s.push_highlighted(format!("&{}{}", r, mutbl.prefix_str()));
s.push_normal(ty.to_string());
}
// process starts here
match (&t1.kind, &t2.kind) {
(&ty::Adt(def1, sub1), &ty::Adt(def2, sub2)) => {
let sub_no_defaults_1 = self.strip_generic_default_params(def1.did, sub1);
let sub_no_defaults_2 = self.strip_generic_default_params(def2.did, sub2);
let mut values = (DiagnosticStyledString::new(), DiagnosticStyledString::new());
let path1 = self.tcx.def_path_str(def1.did.clone());
let path2 = self.tcx.def_path_str(def2.did.clone());
if def1.did == def2.did {
// Easy case. Replace same types with `_` to shorten the output and highlight
// the differing ones.
// let x: Foo<Bar, Qux> = y::<Foo<Quz, Qux>>();
// Foo<Bar, _>
// Foo<Quz, _>
// --- ^ type argument elided
// |
// highlighted in output
values.0.push_normal(path1);
values.1.push_normal(path2);
// Avoid printing out default generic parameters that are common to both
// types.
let len1 = sub_no_defaults_1.len();
let len2 = sub_no_defaults_2.len();
let common_len = cmp::min(len1, len2);
let remainder1: Vec<_> = sub1.types().skip(common_len).collect();
let remainder2: Vec<_> = sub2.types().skip(common_len).collect();
let common_default_params = remainder1
.iter()
.rev()
.zip(remainder2.iter().rev())
.filter(|(a, b)| a == b)
.count();
let len = sub1.len() - common_default_params;
let consts_offset = len - sub1.consts().count();
// Only draw `<...>` if there're lifetime/type arguments.
if len > 0 {
values.0.push_normal("<");
values.1.push_normal("<");
}
fn lifetime_display(lifetime: Region<'_>) -> String {
let s = lifetime.to_string();
if s.is_empty() {
"'_".to_string()
} else {
s
}
}
// At one point we'd like to elide all lifetimes here, they are irrelevant for
// all diagnostics that use this output
//
// Foo<'x, '_, Bar>
// Foo<'y, '_, Qux>
// ^^ ^^ --- type arguments are not elided
// | |
// | elided as they were the same
// not elided, they were different, but irrelevant
let lifetimes = sub1.regions().zip(sub2.regions());
for (i, lifetimes) in lifetimes.enumerate() {
let l1 = lifetime_display(lifetimes.0);
let l2 = lifetime_display(lifetimes.1);
if lifetimes.0 == lifetimes.1 {
values.0.push_normal("'_");
values.1.push_normal("'_");
} else {
values.0.push_highlighted(l1);
values.1.push_highlighted(l2);
}
self.push_comma(&mut values.0, &mut values.1, len, i);
}
// We're comparing two types with the same path, so we compare the type
// arguments for both. If they are the same, do not highlight and elide from the
// output.
// Foo<_, Bar>
// Foo<_, Qux>
// ^ elided type as this type argument was the same in both sides
let type_arguments = sub1.types().zip(sub2.types());
let regions_len = sub1.regions().count();
let num_display_types = consts_offset - regions_len;
for (i, (ta1, ta2)) in type_arguments.take(num_display_types).enumerate() {
let i = i + regions_len;
if ta1 == ta2 {
values.0.push_normal("_");
values.1.push_normal("_");
} else {
let (x1, x2) = self.cmp(ta1, ta2);
(values.0).0.extend(x1.0);
(values.1).0.extend(x2.0);
}
self.push_comma(&mut values.0, &mut values.1, len, i);
}
// Do the same for const arguments, if they are equal, do not highlight and
// elide them from the output.
let const_arguments = sub1.consts().zip(sub2.consts());
for (i, (ca1, ca2)) in const_arguments.enumerate() {
let i = i + consts_offset;
if ca1 == ca2 {
values.0.push_normal("_");
values.1.push_normal("_");
} else {
values.0.push_highlighted(ca1.to_string());
values.1.push_highlighted(ca2.to_string());
}
self.push_comma(&mut values.0, &mut values.1, len, i);
}
// Close the type argument bracket.
// Only draw `<...>` if there're lifetime/type arguments.
if len > 0 {
values.0.push_normal(">");
values.1.push_normal(">");
}
values
} else {
// Check for case:
// let x: Foo<Bar<Qux> = foo::<Bar<Qux>>();
// Foo<Bar<Qux>
// ------- this type argument is exactly the same as the other type
// Bar<Qux>
if self.cmp_type_arg(
&mut values.0,
&mut values.1,
path1.clone(),
sub_no_defaults_1,
path2.clone(),
&t2,
).is_some()
{
return values;
}
// Check for case:
// let x: Bar<Qux> = y:<Foo<Bar<Qux>>>();
// Bar<Qux>
// Foo<Bar<Qux>>
// ------- this type argument is exactly the same as the other type
if self.cmp_type_arg(
&mut values.1,
&mut values.0,
path2,
sub_no_defaults_2,
path1,
&t1,
).is_some()
{
return values;
}
// We can't find anything in common, highlight relevant part of type path.
// let x: foo::bar::Baz<Qux> = y:<foo::bar::Bar<Zar>>();
// foo::bar::Baz<Qux>
// foo::bar::Bar<Zar>
// -------- this part of the path is different
let t1_str = t1.to_string();
let t2_str = t2.to_string();
let min_len = t1_str.len().min(t2_str.len());
const SEPARATOR: &str = "::";
let separator_len = SEPARATOR.len();
let split_idx: usize =
t1_str.split(SEPARATOR)
.zip(t2_str.split(SEPARATOR))
.take_while(|(mod1_str, mod2_str)| mod1_str == mod2_str)
.map(|(mod_str, _)| mod_str.len() + separator_len)
.sum();
debug!("cmp: separator_len={}, split_idx={}, min_len={}",
separator_len, split_idx, min_len
);
if split_idx >= min_len {
// paths are identical, highlight everything
(
DiagnosticStyledString::highlighted(t1_str),
DiagnosticStyledString::highlighted(t2_str)
)
} else {
let (common, uniq1) = t1_str.split_at(split_idx);
let (_, uniq2) = t2_str.split_at(split_idx);
debug!("cmp: common={}, uniq1={}, uniq2={}", common, uniq1, uniq2);
values.0.push_normal(common);
values.0.push_highlighted(uniq1);
values.1.push_normal(common);
values.1.push_highlighted(uniq2);
values
}
}
}
// When finding T != &T, highlight only the borrow
(&ty::Ref(r1, ref_ty1, mutbl1), _) if equals(&ref_ty1, &t2) => {
let mut values = (DiagnosticStyledString::new(), DiagnosticStyledString::new());
push_ty_ref(&r1, ref_ty1, mutbl1, &mut values.0);
values.1.push_normal(t2.to_string());
values
}
(_, &ty::Ref(r2, ref_ty2, mutbl2)) if equals(&t1, &ref_ty2) => {
let mut values = (DiagnosticStyledString::new(), DiagnosticStyledString::new());
values.0.push_normal(t1.to_string());
push_ty_ref(&r2, ref_ty2, mutbl2, &mut values.1);
values
}
// When encountering &T != &mut T, highlight only the borrow
(&ty::Ref(r1, ref_ty1, mutbl1), &ty::Ref(r2, ref_ty2, mutbl2))
if equals(&ref_ty1, &ref_ty2) =>
{
let mut values = (DiagnosticStyledString::new(), DiagnosticStyledString::new());
push_ty_ref(&r1, ref_ty1, mutbl1, &mut values.0);
push_ty_ref(&r2, ref_ty2, mutbl2, &mut values.1);
values
}
// When encountering tuples of the same size, highlight only the differing types
(&ty::Tuple(substs1), &ty::Tuple(substs2)) if substs1.len() == substs2.len() => {
let mut values = (
DiagnosticStyledString::normal("("),
DiagnosticStyledString::normal("("),
);
let len = substs1.len();
for (i, (left, right)) in substs1.types().zip(substs2.types()).enumerate() {
let (x1, x2) = self.cmp(left, right);
(values.0).0.extend(x1.0);
(values.1).0.extend(x2.0);
self.push_comma(&mut values.0, &mut values.1, len, i);
}
if len == 1 { // Keep the output for single element tuples as `(ty,)`.
values.0.push_normal(",");
values.1.push_normal(",");
}
values.0.push_normal(")");
values.1.push_normal(")");
values
}
(ty::FnDef(did1, substs1), ty::FnDef(did2, substs2)) => {
let sig1 = self.tcx.fn_sig(*did1).subst(self.tcx, substs1);
let sig2 = self.tcx.fn_sig(*did2).subst(self.tcx, substs2);
let mut values = self.cmp_fn_sig(&sig1, &sig2);
let path1 = format!(" {{{}}}", self.tcx.def_path_str_with_substs(*did1, substs1));
let path2 = format!(" {{{}}}", self.tcx.def_path_str_with_substs(*did2, substs2));
let same_path = path1 == path2;
values.0.push(path1, !same_path);
values.1.push(path2, !same_path);
values
}
(ty::FnDef(did1, substs1), ty::FnPtr(sig2)) => {
let sig1 = self.tcx.fn_sig(*did1).subst(self.tcx, substs1);
let mut values = self.cmp_fn_sig(&sig1, sig2);
values.0.push_normal(format!(
" {{{}}}",
self.tcx.def_path_str_with_substs(*did1, substs1)),
);
values
}
(ty::FnPtr(sig1), ty::FnDef(did2, substs2)) => {
let sig2 = self.tcx.fn_sig(*did2).subst(self.tcx, substs2);
let mut values = self.cmp_fn_sig(sig1, &sig2);
values.1.push_normal(format!(
" {{{}}}",
self.tcx.def_path_str_with_substs(*did2, substs2)),
);
values
}
(ty::FnPtr(sig1), ty::FnPtr(sig2)) => {
self.cmp_fn_sig(sig1, sig2)
}
_ => {
if t1 == t2 {
// The two types are the same, elide and don't highlight.
(
DiagnosticStyledString::normal("_"),
DiagnosticStyledString::normal("_"),
)
} else {
// We couldn't find anything in common, highlight everything.
(
DiagnosticStyledString::highlighted(t1.to_string()),
DiagnosticStyledString::highlighted(t2.to_string()),
)
}
}
}
}
pub fn note_type_err(
&self,
diag: &mut DiagnosticBuilder<'tcx>,
cause: &ObligationCause<'tcx>,
secondary_span: Option<(Span, String)>,
mut values: Option<ValuePairs<'tcx>>,
terr: &TypeError<'tcx>,
) {
// For some types of errors, expected-found does not make
// sense, so just ignore the values we were given.
match terr {
TypeError::CyclicTy(_) => {
values = None;
}
_ => {}
}
debug!("note_type_err(diag={:?})", diag);
let (expected_found, exp_found, is_simple_error) = match values {
None => (None, None, false),
Some(values) => {
let (is_simple_error, exp_found) = match values {
ValuePairs::Types(exp_found) => {
let is_simple_err = exp_found.expected.is_simple_text()
&& exp_found.found.is_simple_text();
(is_simple_err, Some(exp_found))
}
_ => (false, None),
};
let vals = match self.values_str(&values) {
Some((expected, found)) => Some((expected, found)),
None => {
// Derived error. Cancel the emitter.
diag.cancel();
return;
}
};
(vals, exp_found, is_simple_error)
}
};
let span = cause.span(self.tcx);
// Ignore msg for object safe coercion
// since E0038 message will be printed
match terr {
TypeError::ObjectUnsafeCoercion(_) => {}
_ => {
diag.span_label(span, terr.to_string());
if let Some((sp, msg)) = secondary_span {
diag.span_label(sp, msg);
}
}
};
if let Some((expected, found)) = expected_found {
let expected_label = exp_found.map_or("type".into(), |ef| ef.expected.prefix_string());
let found_label = exp_found.map_or("type".into(), |ef| ef.found.prefix_string());
match (&terr, expected == found) {
(TypeError::Sorts(values), extra) => {
let sort_string = |ty: Ty<'tcx>| match (extra, &ty.kind) {
(true, ty::Opaque(def_id, _)) => format!(
" (opaque type at {})",
self.tcx.sess.source_map()
.mk_substr_filename(self.tcx.def_span(*def_id)),
),
(true, _) => format!(" ({})", ty.sort_string(self.tcx)),
(false, _) => "".to_string(),
};
if !(values.expected.is_simple_text() && values.found.is_simple_text()) || (
exp_found.map_or(false, |ef| {
// This happens when the type error is a subset of the expectation,
// like when you have two references but one is `usize` and the other
// is `f32`. In those cases we still want to show the `note`. If the
// value from `ef` is `Infer(_)`, then we ignore it.
if !ef.expected.is_ty_infer() {
ef.expected != values.expected
} else if !ef.found.is_ty_infer() {
ef.found != values.found
} else {
false
}
})
) {
diag.note_expected_found_extra(
&expected_label,
expected,
&found_label,
found,
&sort_string(values.expected),
&sort_string(values.found),
);
}
}
(TypeError::ObjectUnsafeCoercion(_), _) => {
diag.note_unsuccessfull_coercion(found, expected);
}
(_, _) => {
debug!(
"note_type_err: exp_found={:?}, expected={:?} found={:?}",
exp_found, expected, found
);
if !is_simple_error || terr.must_include_note() {
diag.note_expected_found(&expected_label, expected, &found_label, found);
}
}
}
}
if let Some(exp_found) = exp_found {
self.suggest_as_ref_where_appropriate(span, &exp_found, diag);
}
// In some (most?) cases cause.body_id points to actual body, but in some cases
// it's a actual definition. According to the comments (e.g. in
// librustc_typeck/check/compare_method.rs:compare_predicate_entailment) the latter
// is relied upon by some other code. This might (or might not) need cleanup.
let body_owner_def_id = self.tcx.hir().opt_local_def_id(cause.body_id)
.unwrap_or_else(|| {
self.tcx.hir().body_owner_def_id(hir::BodyId { hir_id: cause.body_id })
});
self.check_and_note_conflicting_crates(diag, terr);
self.tcx.note_and_explain_type_err(diag, terr, span, body_owner_def_id);
// It reads better to have the error origin as the final
// thing.
self.note_error_origin(diag, &cause, exp_found);
}
/// When encountering a case where `.as_ref()` on a `Result` or `Option` would be appropriate,
/// suggests it.
fn suggest_as_ref_where_appropriate(
&self,
span: Span,
exp_found: &ty::error::ExpectedFound<Ty<'tcx>>,
diag: &mut DiagnosticBuilder<'tcx>,
) {
match (&exp_found.expected.kind, &exp_found.found.kind) {
(ty::Adt(exp_def, exp_substs), ty::Ref(_, found_ty, _)) => {
if let ty::Adt(found_def, found_substs) = found_ty.kind {
let path_str = format!("{:?}", exp_def);
if exp_def == &found_def {
let opt_msg = "you can convert from `&Option<T>` to `Option<&T>` using \
`.as_ref()`";
let result_msg = "you can convert from `&Result<T, E>` to \
`Result<&T, &E>` using `.as_ref()`";
let have_as_ref = &[
("std::option::Option", opt_msg),
("core::option::Option", opt_msg),
("std::result::Result", result_msg),
("core::result::Result", result_msg),
];
if let Some(msg) = have_as_ref.iter()
.filter_map(|(path, msg)| if &path_str == path {
Some(msg)
} else {
None
}).next()
{
let mut show_suggestion = true;
for (exp_ty, found_ty) in exp_substs.types().zip(found_substs.types()) {
match exp_ty.kind {
ty::Ref(_, exp_ty, _) => {
match (&exp_ty.kind, &found_ty.kind) {
(_, ty::Param(_)) |
(_, ty::Infer(_)) |
(ty::Param(_), _) |
(ty::Infer(_), _) => {}
_ if ty::TyS::same_type(exp_ty, found_ty) => {}
_ => show_suggestion = false,
};
}
ty::Param(_) | ty::Infer(_) => {}
_ => show_suggestion = false,
}
}
if let (Ok(snippet), true) = (
self.tcx.sess.source_map().span_to_snippet(span),
show_suggestion,
) {
diag.span_suggestion(
span,
msg,
format!("{}.as_ref()", snippet),
Applicability::MachineApplicable,
);
}
}
}
}
}
_ => {}
}
}
pub fn report_and_explain_type_error(
&self,
trace: TypeTrace<'tcx>,
terr: &TypeError<'tcx>,
) -> DiagnosticBuilder<'tcx> {
debug!(
"report_and_explain_type_error(trace={:?}, terr={:?})",
trace, terr
);
let span = trace.cause.span(self.tcx);
let failure_code = trace.cause.as_failure_code(terr);
let mut diag = match failure_code {
FailureCode::Error0038(did) => {
let violations = self.tcx.object_safety_violations(did);
self.tcx.report_object_safety_error(span, did, violations)
}
FailureCode::Error0317(failure_str) => {
struct_span_err!(self.tcx.sess, span, E0317, "{}", failure_str)
}
FailureCode::Error0580(failure_str) => {
struct_span_err!(self.tcx.sess, span, E0580, "{}", failure_str)
}
FailureCode::Error0308(failure_str) => {
struct_span_err!(self.tcx.sess, span, E0308, "{}", failure_str)
}
FailureCode::Error0644(failure_str) => {
struct_span_err!(self.tcx.sess, span, E0644, "{}", failure_str)
}
};
self.note_type_err(&mut diag, &trace.cause, None, Some(trace.values), terr);
diag
}
fn values_str(
&self,
values: &ValuePairs<'tcx>,
) -> Option<(DiagnosticStyledString, DiagnosticStyledString)> {
match *values {
infer::Types(ref exp_found) => self.expected_found_str_ty(exp_found),
infer::Regions(ref exp_found) => self.expected_found_str(exp_found),
infer::Consts(ref exp_found) => self.expected_found_str(exp_found),
infer::TraitRefs(ref exp_found) => {
let pretty_exp_found = ty::error::ExpectedFound {
expected: exp_found.expected.print_only_trait_path(),
found: exp_found.found.print_only_trait_path()
};
self.expected_found_str(&pretty_exp_found)
},
infer::PolyTraitRefs(ref exp_found) => {
let pretty_exp_found = ty::error::ExpectedFound {
expected: exp_found.expected.print_only_trait_path(),
found: exp_found.found.print_only_trait_path()
};
self.expected_found_str(&pretty_exp_found)
},
}
}
fn expected_found_str_ty(
&self,
exp_found: &ty::error::ExpectedFound<Ty<'tcx>>,
) -> Option<(DiagnosticStyledString, DiagnosticStyledString)> {
let exp_found = self.resolve_vars_if_possible(exp_found);
if exp_found.references_error() {
return None;
}
Some(self.cmp(exp_found.expected, exp_found.found))
}
/// Returns a string of the form "expected `{}`, found `{}`".
fn expected_found_str<T: fmt::Display + TypeFoldable<'tcx>>(
&self,
exp_found: &ty::error::ExpectedFound<T>,
) -> Option<(DiagnosticStyledString, DiagnosticStyledString)> {
let exp_found = self.resolve_vars_if_possible(exp_found);
if exp_found.references_error() {
return None;
}
Some((
DiagnosticStyledString::highlighted(exp_found.expected.to_string()),
DiagnosticStyledString::highlighted(exp_found.found.to_string()),
))
}
pub fn report_generic_bound_failure(
&self,
region_scope_tree: &region::ScopeTree,
span: Span,
origin: Option<SubregionOrigin<'tcx>>,
bound_kind: GenericKind<'tcx>,
sub: Region<'tcx>,
) {
self.construct_generic_bound_failure(region_scope_tree, span, origin, bound_kind, sub)
.emit()
}
pub fn construct_generic_bound_failure(
&self,
region_scope_tree: &region::ScopeTree,
span: Span,
origin: Option<SubregionOrigin<'tcx>>,
bound_kind: GenericKind<'tcx>,
sub: Region<'tcx>,
) -> DiagnosticBuilder<'a> {
// Attempt to obtain the span of the parameter so we can
// suggest adding an explicit lifetime bound to it.
let type_param_span = match (self.in_progress_tables, bound_kind) {
(Some(ref table), GenericKind::Param(ref param)) => {
let table = table.borrow();
table.local_id_root.and_then(|did| {
let generics = self.tcx.generics_of(did);
// Account for the case where `did` corresponds to `Self`, which doesn't have
// the expected type argument.
if !(generics.has_self && param.index == 0) {
let type_param = generics.type_param(param, self.tcx);
let hir = &self.tcx.hir();
hir.as_local_hir_id(type_param.def_id).map(|id| {
// Get the `hir::Param` to verify whether it already has any bounds.
// We do this to avoid suggesting code that ends up as `T: 'a'b`,
// instead we suggest `T: 'a + 'b` in that case.
let mut has_bounds = false;
if let Node::GenericParam(param) = hir.get(id) {
has_bounds = !param.bounds.is_empty();
}
let sp = hir.span(id);
// `sp` only covers `T`, change it so that it covers
// `T:` when appropriate
let is_impl_trait = bound_kind.to_string().starts_with("impl ");
let sp = if has_bounds && !is_impl_trait {
sp.to(self.tcx
.sess
.source_map()
.next_point(self.tcx.sess.source_map().next_point(sp)))
} else {
sp
};
(sp, has_bounds, is_impl_trait)
})
} else {
None
}
})
}
_ => None,
};
let labeled_user_string = match bound_kind {
GenericKind::Param(ref p) => format!("the parameter type `{}`", p),
GenericKind::Projection(ref p) => format!("the associated type `{}`", p),
};
if let Some(SubregionOrigin::CompareImplMethodObligation {
span,
item_name,
impl_item_def_id,
trait_item_def_id,
}) = origin
{
return self.report_extra_impl_obligation(
span,
item_name,
impl_item_def_id,
trait_item_def_id,
&format!("`{}: {}`", bound_kind, sub),
);
}
fn binding_suggestion<'tcx, S: fmt::Display>(
err: &mut DiagnosticBuilder<'tcx>,
type_param_span: Option<(Span, bool, bool)>,
bound_kind: GenericKind<'tcx>,
sub: S,
) {
let consider = format!(
"consider adding an explicit lifetime bound {}",
if type_param_span.map(|(_, _, is_impl_trait)| is_impl_trait).unwrap_or(false) {
format!(" `{}` to `{}`...", sub, bound_kind)
} else {
format!("`{}: {}`...", bound_kind, sub)
},
);
if let Some((sp, has_lifetimes, is_impl_trait)) = type_param_span {
let suggestion = if is_impl_trait {
format!("{} + {}", bound_kind, sub)
} else {
let tail = if has_lifetimes { " + " } else { "" };
format!("{}: {}{}", bound_kind, sub, tail)
};
err.span_suggestion_short(
sp,
&consider,
suggestion,
Applicability::MaybeIncorrect, // Issue #41966
);
} else {
err.help(&consider);
}
}
let mut err = match *sub {
ty::ReEarlyBound(_)
| ty::ReFree(ty::FreeRegion {
bound_region: ty::BrNamed(..),
..
}) => {
// Does the required lifetime have a nice name we can print?
let mut err = struct_span_err!(
self.tcx.sess,
span,
E0309,
"{} may not live long enough",
labeled_user_string
);
binding_suggestion(&mut err, type_param_span, bound_kind, sub);
err
}
ty::ReStatic => {
// Does the required lifetime have a nice name we can print?
let mut err = struct_span_err!(
self.tcx.sess,
span,
E0310,
"{} may not live long enough",
labeled_user_string
);
binding_suggestion(&mut err, type_param_span, bound_kind, "'static");
err
}
_ => {
// If not, be less specific.
let mut err = struct_span_err!(
self.tcx.sess,
span,
E0311,
"{} may not live long enough",
labeled_user_string
);
err.help(&format!(
"consider adding an explicit lifetime bound for `{}`",
bound_kind
));
self.tcx.note_and_explain_region(
region_scope_tree,
&mut err,
&format!("{} must be valid for ", labeled_user_string),
sub,
"...",
);
err
}
};
if let Some(origin) = origin {
self.note_region_origin(&mut err, &origin);
}
err
}
fn report_sub_sup_conflict(
&self,
region_scope_tree: &region::ScopeTree,
var_origin: RegionVariableOrigin,
sub_origin: SubregionOrigin<'tcx>,
sub_region: Region<'tcx>,
sup_origin: SubregionOrigin<'tcx>,
sup_region: Region<'tcx>,
) {
let mut err = self.report_inference_failure(var_origin);
self.tcx.note_and_explain_region(
region_scope_tree,
&mut err,
"first, the lifetime cannot outlive ",
sup_region,
"...",
);
match (&sup_origin, &sub_origin) {
(&infer::Subtype(ref sup_trace), &infer::Subtype(ref sub_trace)) => {
debug!("report_sub_sup_conflict: var_origin={:?}", var_origin);
debug!("report_sub_sup_conflict: sub_region={:?}", sub_region);
debug!("report_sub_sup_conflict: sub_origin={:?}", sub_origin);
debug!("report_sub_sup_conflict: sup_region={:?}", sup_region);
debug!("report_sub_sup_conflict: sup_origin={:?}", sup_origin);
debug!("report_sub_sup_conflict: sup_trace={:?}", sup_trace);
debug!("report_sub_sup_conflict: sub_trace={:?}", sub_trace);
debug!("report_sub_sup_conflict: sup_trace.values={:?}", sup_trace.values);
debug!("report_sub_sup_conflict: sub_trace.values={:?}", sub_trace.values);
if let (Some((sup_expected, sup_found)), Some((sub_expected, sub_found))) = (
self.values_str(&sup_trace.values),
self.values_str(&sub_trace.values),
) {
if sub_expected == sup_expected && sub_found == sup_found {
self.tcx.note_and_explain_region(
region_scope_tree,
&mut err,
"...but the lifetime must also be valid for ",
sub_region,
"...",
);
err.span_note(sup_trace.cause.span, &format!(
"...so that the {}",
sup_trace.cause.as_requirement_str()
));
err.note_expected_found(
&"",
sup_expected,
&"",
sup_found
);
err.emit();
return;
}
}
}
_ => {}
}
self.note_region_origin(&mut err, &sup_origin);
self.tcx.note_and_explain_region(
region_scope_tree,
&mut err,
"but, the lifetime must be valid for ",
sub_region,
"...",
);
self.note_region_origin(&mut err, &sub_origin);
err.emit();
}
}
impl<'a, 'tcx> InferCtxt<'a, 'tcx> {
fn report_inference_failure(
&self,
var_origin: RegionVariableOrigin,
) -> DiagnosticBuilder<'tcx> {
let br_string = |br: ty::BoundRegion| {
let mut s = match br {
ty::BrNamed(_, name) => name.to_string(),
_ => String::new(),
};
if !s.is_empty() {
s.push_str(" ");
}
s
};
let var_description = match var_origin {
infer::MiscVariable(_) => String::new(),
infer::PatternRegion(_) => " for pattern".to_string(),
infer::AddrOfRegion(_) => " for borrow expression".to_string(),
infer::Autoref(_) => " for autoref".to_string(),
infer::Coercion(_) => " for automatic coercion".to_string(),
infer::LateBoundRegion(_, br, infer::FnCall) => {
format!(" for lifetime parameter {}in function call", br_string(br))
}
infer::LateBoundRegion(_, br, infer::HigherRankedType) => {
format!(" for lifetime parameter {}in generic type", br_string(br))
}
infer::LateBoundRegion(_, br, infer::AssocTypeProjection(def_id)) => format!(
" for lifetime parameter {}in trait containing associated type `{}`",
br_string(br),
self.tcx.associated_item(def_id).ident
),
infer::EarlyBoundRegion(_, name) => format!(" for lifetime parameter `{}`", name),
infer::BoundRegionInCoherence(name) => {
format!(" for lifetime parameter `{}` in coherence check", name)
}
infer::UpvarRegion(ref upvar_id, _) => {
let var_name = self.tcx.hir().name(upvar_id.var_path.hir_id);
format!(" for capture of `{}` by closure", var_name)
}
infer::NLL(..) => bug!("NLL variable found in lexical phase"),
};
struct_span_err!(
self.tcx.sess,
var_origin.span(),
E0495,
"cannot infer an appropriate lifetime{} \
due to conflicting requirements",
var_description
)
}
}
enum FailureCode {
Error0038(DefId),
Error0317(&'static str),
Error0580(&'static str),
Error0308(&'static str),
Error0644(&'static str),
}
impl<'tcx> ObligationCause<'tcx> {
fn as_failure_code(&self, terr: &TypeError<'tcx>) -> FailureCode {
use self::FailureCode::*;
use crate::traits::ObligationCauseCode::*;
match self.code {
CompareImplMethodObligation { .. } => Error0308("method not compatible with trait"),
MatchExpressionArm(box MatchExpressionArmCause { source, .. }) =>
Error0308(match source {
hir::MatchSource::IfLetDesugar { .. } =>
"`if let` arms have incompatible types",
hir::MatchSource::TryDesugar => {
"try expression alternatives have incompatible types"
}
_ => "match arms have incompatible types",
}),
IfExpression { .. } => Error0308("if and else have incompatible types"),
IfExpressionWithNoElse => Error0317("if may be missing an else clause"),
MainFunctionType => Error0580("main function has wrong type"),
StartFunctionType => Error0308("start function has wrong type"),
IntrinsicType => Error0308("intrinsic has wrong type"),
MethodReceiver => Error0308("mismatched `self` parameter type"),
// In the case where we have no more specific thing to
// say, also take a look at the error code, maybe we can
// tailor to that.
_ => match terr {
TypeError::CyclicTy(ty) if ty.is_closure() || ty.is_generator() => {
Error0644("closure/generator type that references itself")
}
TypeError::IntrinsicCast => {
Error0308("cannot coerce intrinsics to function pointers")
}
TypeError::ObjectUnsafeCoercion(did) => Error0038(did.clone()),
_ => Error0308("mismatched types"),
},
}
}
fn as_requirement_str(&self) -> &'static str {
use crate::traits::ObligationCauseCode::*;
match self.code {
CompareImplMethodObligation { .. } => "method type is compatible with trait",
ExprAssignable => "expression is assignable",
MatchExpressionArm(box MatchExpressionArmCause { source, .. }) => match source {
hir::MatchSource::IfLetDesugar { .. } => "`if let` arms have compatible types",
_ => "match arms have compatible types",
},
IfExpression { .. } => "if and else have incompatible types",
IfExpressionWithNoElse => "if missing an else returns ()",
MainFunctionType => "`main` function has the correct type",
StartFunctionType => "`start` function has the correct type",
IntrinsicType => "intrinsic has the correct type",
MethodReceiver => "method receiver has the correct type",
_ => "types are compatible",
}
}
}