blob: 12d3baf633362b55369139d1ba86c9cf27ddc2cf [file] [log] [blame]
//! A private parser implementation of IPv4, IPv6, and socket addresses.
//!
//! This module is "publicly exported" through the `FromStr` implementations
//! below.
use crate::error::Error;
use crate::fmt;
use crate::net::{IpAddr, Ipv4Addr, Ipv6Addr, SocketAddr, SocketAddrV4, SocketAddrV6};
use crate::str::FromStr;
struct Parser<'a> {
// parsing as ASCII, so can use byte array
state: &'a [u8],
}
impl<'a> Parser<'a> {
fn new(input: &'a str) -> Parser<'a> {
Parser { state: input.as_bytes() }
}
fn is_eof(&self) -> bool {
self.state.is_empty()
}
/// Run a parser, and restore the pre-parse state if it fails
fn read_atomically<T, F>(&mut self, inner: F) -> Option<T>
where
F: FnOnce(&mut Parser<'_>) -> Option<T>,
{
let state = self.state;
let result = inner(self);
if result.is_none() {
self.state = state;
}
result
}
/// Run a parser, but fail if the entire input wasn't consumed.
/// Doesn't run atomically.
fn read_till_eof<T, F>(&mut self, inner: F) -> Option<T>
where
F: FnOnce(&mut Parser<'_>) -> Option<T>,
{
inner(self).filter(|_| self.is_eof())
}
/// Same as read_till_eof, but returns a Result<AddrParseError> on failure
fn parse_with<T, F>(&mut self, inner: F) -> Result<T, AddrParseError>
where
F: FnOnce(&mut Parser<'_>) -> Option<T>,
{
self.read_till_eof(inner).ok_or(AddrParseError(()))
}
/// Read the next character from the input
fn read_char(&mut self) -> Option<char> {
self.state.split_first().map(|(&b, tail)| {
self.state = tail;
b as char
})
}
/// Read the next character from the input if it matches the target
fn read_given_char(&mut self, target: char) -> Option<char> {
self.read_atomically(|p| p.read_char().filter(|&c| c == target))
}
/// Helper for reading separators in an indexed loop. Reads the separator
/// character iff index > 0, then runs the parser. When used in a loop,
/// the separator character will only be read on index > 0 (see
/// read_ipv4_addr for an example)
fn read_separator<T, F>(&mut self, sep: char, index: usize, inner: F) -> Option<T>
where
F: FnOnce(&mut Parser<'_>) -> Option<T>,
{
self.read_atomically(move |p| {
if index > 0 {
let _ = p.read_given_char(sep)?;
}
inner(p)
})
}
// Read a single digit in the given radix. For instance, 0-9 in radix 10;
// 0-9A-F in radix 16.
fn read_digit(&mut self, radix: u32) -> Option<u32> {
self.read_atomically(move |p| p.read_char()?.to_digit(radix))
}
// Read a number off the front of the input in the given radix, stopping
// at the first non-digit character or eof. Fails if the number has more
// digits than max_digits, or the value is >= upto, or if there is no number.
fn read_number(&mut self, radix: u32, max_digits: u32, upto: u32) -> Option<u32> {
self.read_atomically(move |p| {
let mut result = 0;
let mut digit_count = 0;
while let Some(digit) = p.read_digit(radix) {
result = (result * radix) + digit;
digit_count += 1;
if digit_count > max_digits || result >= upto {
return None;
}
}
if digit_count == 0 { None } else { Some(result) }
})
}
/// Read an IPv4 address
fn read_ipv4_addr(&mut self) -> Option<Ipv4Addr> {
self.read_atomically(|p| {
let mut groups = [0; 4];
for (i, slot) in groups.iter_mut().enumerate() {
*slot = p.read_separator('.', i, |p| p.read_number(10, 3, 0x100))? as u8;
}
Some(groups.into())
})
}
/// Read an IPV6 Address
fn read_ipv6_addr(&mut self) -> Option<Ipv6Addr> {
/// Read a chunk of an ipv6 address into `groups`. Returns the number
/// of groups read, along with a bool indicating if an embedded
/// trailing ipv4 address was read. Specifically, read a series of
/// colon-separated ipv6 groups (0x0000 - 0xFFFF), with an optional
/// trailing embedded ipv4 address.
fn read_groups(p: &mut Parser<'_>, groups: &mut [u16]) -> (usize, bool) {
let limit = groups.len();
for (i, slot) in groups.iter_mut().enumerate() {
// Try to read a trailing embedded ipv4 address. There must be
// at least two groups left.
if i < limit - 1 {
let ipv4 = p.read_separator(':', i, |p| p.read_ipv4_addr());
if let Some(v4_addr) = ipv4 {
let octets = v4_addr.octets();
groups[i + 0] = ((octets[0] as u16) << 8) | (octets[1] as u16);
groups[i + 1] = ((octets[2] as u16) << 8) | (octets[3] as u16);
return (i + 2, true);
}
}
let group = p.read_separator(':', i, |p| p.read_number(16, 4, 0x10000));
match group {
Some(g) => *slot = g as u16,
None => return (i, false),
}
}
(groups.len(), false)
}
self.read_atomically(|p| {
// Read the front part of the address; either the whole thing, or up
// to the first ::
let mut head = [0; 8];
let (head_size, head_ipv4) = read_groups(p, &mut head);
if head_size == 8 {
return Some(head.into());
}
// IPv4 part is not allowed before `::`
if head_ipv4 {
return None;
}
// read `::` if previous code parsed less than 8 groups
// `::` indicates one or more groups of 16 bits of zeros
let _ = p.read_given_char(':')?;
let _ = p.read_given_char(':')?;
// Read the back part of the address. The :: must contain at least one
// set of zeroes, so our max length is 7.
let mut tail = [0; 7];
let limit = 8 - (head_size + 1);
let (tail_size, _) = read_groups(p, &mut tail[..limit]);
// Concat the head and tail of the IP address
head[(8 - tail_size)..8].copy_from_slice(&tail[..tail_size]);
Some(head.into())
})
}
/// Read an IP Address, either IPV4 or IPV6.
fn read_ip_addr(&mut self) -> Option<IpAddr> {
self.read_ipv4_addr().map(IpAddr::V4).or_else(move || self.read_ipv6_addr().map(IpAddr::V6))
}
/// Read a : followed by a port in base 10
fn read_port(&mut self) -> Option<u16> {
self.read_atomically(|p| {
let _ = p.read_given_char(':')?;
let port = p.read_number(10, 5, 0x10000)?;
Some(port as u16)
})
}
/// Read an IPV4 address with a port
fn read_socket_addr_v4(&mut self) -> Option<SocketAddrV4> {
self.read_atomically(|p| {
let ip = p.read_ipv4_addr()?;
let port = p.read_port()?;
Some(SocketAddrV4::new(ip, port))
})
}
/// Read an IPV6 address with a port
fn read_socket_addr_v6(&mut self) -> Option<SocketAddrV6> {
self.read_atomically(|p| {
let _ = p.read_given_char('[')?;
let ip = p.read_ipv6_addr()?;
let _ = p.read_given_char(']')?;
let port = p.read_port()?;
Some(SocketAddrV6::new(ip, port, 0, 0))
})
}
/// Read an IP address with a port
fn read_socket_addr(&mut self) -> Option<SocketAddr> {
self.read_socket_addr_v4()
.map(SocketAddr::V4)
.or_else(|| self.read_socket_addr_v6().map(SocketAddr::V6))
}
}
#[stable(feature = "ip_addr", since = "1.7.0")]
impl FromStr for IpAddr {
type Err = AddrParseError;
fn from_str(s: &str) -> Result<IpAddr, AddrParseError> {
Parser::new(s).parse_with(|p| p.read_ip_addr())
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl FromStr for Ipv4Addr {
type Err = AddrParseError;
fn from_str(s: &str) -> Result<Ipv4Addr, AddrParseError> {
Parser::new(s).parse_with(|p| p.read_ipv4_addr())
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl FromStr for Ipv6Addr {
type Err = AddrParseError;
fn from_str(s: &str) -> Result<Ipv6Addr, AddrParseError> {
Parser::new(s).parse_with(|p| p.read_ipv6_addr())
}
}
#[stable(feature = "socket_addr_from_str", since = "1.5.0")]
impl FromStr for SocketAddrV4 {
type Err = AddrParseError;
fn from_str(s: &str) -> Result<SocketAddrV4, AddrParseError> {
Parser::new(s).parse_with(|p| p.read_socket_addr_v4())
}
}
#[stable(feature = "socket_addr_from_str", since = "1.5.0")]
impl FromStr for SocketAddrV6 {
type Err = AddrParseError;
fn from_str(s: &str) -> Result<SocketAddrV6, AddrParseError> {
Parser::new(s).parse_with(|p| p.read_socket_addr_v6())
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl FromStr for SocketAddr {
type Err = AddrParseError;
fn from_str(s: &str) -> Result<SocketAddr, AddrParseError> {
Parser::new(s).parse_with(|p| p.read_socket_addr())
}
}
/// An error which can be returned when parsing an IP address or a socket address.
///
/// This error is used as the error type for the [`FromStr`] implementation for
/// [`IpAddr`], [`Ipv4Addr`], [`Ipv6Addr`], [`SocketAddr`], [`SocketAddrV4`], and
/// [`SocketAddrV6`].
///
/// # Potential causes
///
/// `AddrParseError` may be thrown because the provided string does not parse as the given type,
/// often because it includes information only handled by a different address type.
///
/// ```should_panic
/// use std::net::IpAddr;
/// let _foo: IpAddr = "127.0.0.1:8080".parse().expect("Cannot handle the socket port");
/// ```
///
/// [`IpAddr`] doesn't handle the port. Use [`SocketAddr`] instead.
///
/// ```
/// use std::net::SocketAddr;
///
/// // No problem, the `panic!` message has disappeared.
/// let _foo: SocketAddr = "127.0.0.1:8080".parse().expect("unreachable panic");
/// ```
///
/// [`FromStr`]: ../../std/str/trait.FromStr.html
/// [`IpAddr`]: ../../std/net/enum.IpAddr.html
/// [`Ipv4Addr`]: ../../std/net/struct.Ipv4Addr.html
/// [`Ipv6Addr`]: ../../std/net/struct.Ipv6Addr.html
/// [`SocketAddr`]: ../../std/net/enum.SocketAddr.html
/// [`SocketAddrV4`]: ../../std/net/struct.SocketAddrV4.html
/// [`SocketAddrV6`]: ../../std/net/struct.SocketAddrV6.html
#[stable(feature = "rust1", since = "1.0.0")]
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct AddrParseError(());
#[stable(feature = "addr_parse_error_error", since = "1.4.0")]
impl fmt::Display for AddrParseError {
#[allow(deprecated, deprecated_in_future)]
fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt.write_str(self.description())
}
}
#[stable(feature = "addr_parse_error_error", since = "1.4.0")]
impl Error for AddrParseError {
#[allow(deprecated)]
fn description(&self) -> &str {
"invalid IP address syntax"
}
}
#[cfg(test)]
mod tests {
// FIXME: These tests are all excellent candidates for AFL fuzz testing
use crate::net::{IpAddr, Ipv4Addr, Ipv6Addr, SocketAddr, SocketAddrV4, SocketAddrV6};
use crate::str::FromStr;
const PORT: u16 = 8080;
const IPV4: Ipv4Addr = Ipv4Addr::new(192, 168, 0, 1);
const IPV4_STR: &str = "192.168.0.1";
const IPV4_STR_PORT: &str = "192.168.0.1:8080";
const IPV6: Ipv6Addr = Ipv6Addr::new(0x2001, 0xdb8, 0, 0, 0, 0, 0xc0a8, 0x1);
const IPV6_STR_FULL: &str = "2001:db8:0:0:0:0:c0a8:1";
const IPV6_STR_COMPRESS: &str = "2001:db8::c0a8:1";
const IPV6_STR_V4: &str = "2001:db8::192.168.0.1";
const IPV6_STR_PORT: &str = "[2001:db8::c0a8:1]:8080";
#[test]
fn parse_ipv4() {
let result: Ipv4Addr = IPV4_STR.parse().unwrap();
assert_eq!(result, IPV4);
assert!(Ipv4Addr::from_str(IPV4_STR_PORT).is_err());
assert!(Ipv4Addr::from_str(IPV6_STR_FULL).is_err());
assert!(Ipv4Addr::from_str(IPV6_STR_COMPRESS).is_err());
assert!(Ipv4Addr::from_str(IPV6_STR_V4).is_err());
assert!(Ipv4Addr::from_str(IPV6_STR_PORT).is_err());
}
#[test]
fn parse_ipv6() {
let result: Ipv6Addr = IPV6_STR_FULL.parse().unwrap();
assert_eq!(result, IPV6);
let result: Ipv6Addr = IPV6_STR_COMPRESS.parse().unwrap();
assert_eq!(result, IPV6);
let result: Ipv6Addr = IPV6_STR_V4.parse().unwrap();
assert_eq!(result, IPV6);
assert!(Ipv6Addr::from_str(IPV4_STR).is_err());
assert!(Ipv6Addr::from_str(IPV4_STR_PORT).is_err());
assert!(Ipv6Addr::from_str(IPV6_STR_PORT).is_err());
}
#[test]
fn parse_ip() {
let result: IpAddr = IPV4_STR.parse().unwrap();
assert_eq!(result, IpAddr::from(IPV4));
let result: IpAddr = IPV6_STR_FULL.parse().unwrap();
assert_eq!(result, IpAddr::from(IPV6));
let result: IpAddr = IPV6_STR_COMPRESS.parse().unwrap();
assert_eq!(result, IpAddr::from(IPV6));
let result: IpAddr = IPV6_STR_V4.parse().unwrap();
assert_eq!(result, IpAddr::from(IPV6));
assert!(IpAddr::from_str(IPV4_STR_PORT).is_err());
assert!(IpAddr::from_str(IPV6_STR_PORT).is_err());
}
#[test]
fn parse_socket_v4() {
let result: SocketAddrV4 = IPV4_STR_PORT.parse().unwrap();
assert_eq!(result, SocketAddrV4::new(IPV4, PORT));
assert!(SocketAddrV4::from_str(IPV4_STR).is_err());
assert!(SocketAddrV4::from_str(IPV6_STR_FULL).is_err());
assert!(SocketAddrV4::from_str(IPV6_STR_COMPRESS).is_err());
assert!(SocketAddrV4::from_str(IPV6_STR_V4).is_err());
assert!(SocketAddrV4::from_str(IPV6_STR_PORT).is_err());
}
#[test]
fn parse_socket_v6() {
let result: SocketAddrV6 = IPV6_STR_PORT.parse().unwrap();
assert_eq!(result, SocketAddrV6::new(IPV6, PORT, 0, 0));
assert!(SocketAddrV6::from_str(IPV4_STR).is_err());
assert!(SocketAddrV6::from_str(IPV4_STR_PORT).is_err());
assert!(SocketAddrV6::from_str(IPV6_STR_FULL).is_err());
assert!(SocketAddrV6::from_str(IPV6_STR_COMPRESS).is_err());
assert!(SocketAddrV6::from_str(IPV6_STR_V4).is_err());
}
#[test]
fn parse_socket() {
let result: SocketAddr = IPV4_STR_PORT.parse().unwrap();
assert_eq!(result, SocketAddr::from((IPV4, PORT)));
let result: SocketAddr = IPV6_STR_PORT.parse().unwrap();
assert_eq!(result, SocketAddr::from((IPV6, PORT)));
assert!(SocketAddr::from_str(IPV4_STR).is_err());
assert!(SocketAddr::from_str(IPV6_STR_FULL).is_err());
assert!(SocketAddr::from_str(IPV6_STR_COMPRESS).is_err());
assert!(SocketAddr::from_str(IPV6_STR_V4).is_err());
}
#[test]
fn ipv6_corner_cases() {
let result: Ipv6Addr = "1::".parse().unwrap();
assert_eq!(result, Ipv6Addr::new(1, 0, 0, 0, 0, 0, 0, 0));
let result: Ipv6Addr = "1:1::".parse().unwrap();
assert_eq!(result, Ipv6Addr::new(1, 1, 0, 0, 0, 0, 0, 0));
let result: Ipv6Addr = "::1".parse().unwrap();
assert_eq!(result, Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 1));
let result: Ipv6Addr = "::1:1".parse().unwrap();
assert_eq!(result, Ipv6Addr::new(0, 0, 0, 0, 0, 0, 1, 1));
let result: Ipv6Addr = "::".parse().unwrap();
assert_eq!(result, Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 0));
let result: Ipv6Addr = "::192.168.0.1".parse().unwrap();
assert_eq!(result, Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0xc0a8, 0x1));
let result: Ipv6Addr = "::1:192.168.0.1".parse().unwrap();
assert_eq!(result, Ipv6Addr::new(0, 0, 0, 0, 0, 1, 0xc0a8, 0x1));
let result: Ipv6Addr = "1:1:1:1:1:1:192.168.0.1".parse().unwrap();
assert_eq!(result, Ipv6Addr::new(1, 1, 1, 1, 1, 1, 0xc0a8, 0x1));
}
// Things that might not seem like failures but are
#[test]
fn ipv6_corner_failures() {
// No IP address before the ::
assert!(Ipv6Addr::from_str("1:192.168.0.1::").is_err());
// :: must have at least 1 set of zeroes
assert!(Ipv6Addr::from_str("1:1:1:1::1:1:1:1").is_err());
// Need brackets for a port
assert!(SocketAddrV6::from_str("1:1:1:1:1:1:1:1:8080").is_err());
}
}