blob: 0f0be2c4883149d60a4add91d583c6d712cf6f5f [file] [log] [blame]
#![unstable(
feature = "ip",
reason = "extra functionality has not been \
scrutinized to the level that it should \
be to be stable",
issue = "27709"
)]
use crate::cmp::Ordering;
use crate::fmt::{self, Write as FmtWrite};
use crate::hash;
use crate::io::Write as IoWrite;
use crate::sys::net::netc as c;
use crate::sys_common::{AsInner, FromInner};
/// An IP address, either IPv4 or IPv6.
///
/// This enum can contain either an [`Ipv4Addr`] or an [`Ipv6Addr`], see their
/// respective documentation for more details.
///
/// The size of an `IpAddr` instance may vary depending on the target operating
/// system.
///
/// [`Ipv4Addr`]: ../../std/net/struct.Ipv4Addr.html
/// [`Ipv6Addr`]: ../../std/net/struct.Ipv6Addr.html
///
/// # Examples
///
/// ```
/// use std::net::{IpAddr, Ipv4Addr, Ipv6Addr};
///
/// let localhost_v4 = IpAddr::V4(Ipv4Addr::new(127, 0, 0, 1));
/// let localhost_v6 = IpAddr::V6(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 1));
///
/// assert_eq!("127.0.0.1".parse(), Ok(localhost_v4));
/// assert_eq!("::1".parse(), Ok(localhost_v6));
///
/// assert_eq!(localhost_v4.is_ipv6(), false);
/// assert_eq!(localhost_v4.is_ipv4(), true);
/// ```
#[stable(feature = "ip_addr", since = "1.7.0")]
#[derive(Copy, Clone, Eq, PartialEq, Debug, Hash, PartialOrd, Ord)]
pub enum IpAddr {
/// An IPv4 address.
#[stable(feature = "ip_addr", since = "1.7.0")]
V4(#[stable(feature = "ip_addr", since = "1.7.0")] Ipv4Addr),
/// An IPv6 address.
#[stable(feature = "ip_addr", since = "1.7.0")]
V6(#[stable(feature = "ip_addr", since = "1.7.0")] Ipv6Addr),
}
/// An IPv4 address.
///
/// IPv4 addresses are defined as 32-bit integers in [IETF RFC 791].
/// They are usually represented as four octets.
///
/// See [`IpAddr`] for a type encompassing both IPv4 and IPv6 addresses.
///
/// The size of an `Ipv4Addr` struct may vary depending on the target operating
/// system.
///
/// [IETF RFC 791]: https://tools.ietf.org/html/rfc791
/// [`IpAddr`]: ../../std/net/enum.IpAddr.html
///
/// # Textual representation
///
/// `Ipv4Addr` provides a [`FromStr`] implementation. The four octets are in decimal
/// notation, divided by `.` (this is called "dot-decimal notation").
///
/// [`FromStr`]: ../../std/str/trait.FromStr.html
///
/// # Examples
///
/// ```
/// use std::net::Ipv4Addr;
///
/// let localhost = Ipv4Addr::new(127, 0, 0, 1);
/// assert_eq!("127.0.0.1".parse(), Ok(localhost));
/// assert_eq!(localhost.is_loopback(), true);
/// ```
#[derive(Copy)]
#[stable(feature = "rust1", since = "1.0.0")]
pub struct Ipv4Addr {
inner: c::in_addr,
}
/// An IPv6 address.
///
/// IPv6 addresses are defined as 128-bit integers in [IETF RFC 4291].
/// They are usually represented as eight 16-bit segments.
///
/// See [`IpAddr`] for a type encompassing both IPv4 and IPv6 addresses.
///
/// The size of an `Ipv6Addr` struct may vary depending on the target operating
/// system.
///
/// [IETF RFC 4291]: https://tools.ietf.org/html/rfc4291
/// [`IpAddr`]: ../../std/net/enum.IpAddr.html
///
/// # Textual representation
///
/// `Ipv6Addr` provides a [`FromStr`] implementation. There are many ways to represent
/// an IPv6 address in text, but in general, each segments is written in hexadecimal
/// notation, and segments are separated by `:`. For more information, see
/// [IETF RFC 5952].
///
/// [`FromStr`]: ../../std/str/trait.FromStr.html
/// [IETF RFC 5952]: https://tools.ietf.org/html/rfc5952
///
/// # Examples
///
/// ```
/// use std::net::Ipv6Addr;
///
/// let localhost = Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 1);
/// assert_eq!("::1".parse(), Ok(localhost));
/// assert_eq!(localhost.is_loopback(), true);
/// ```
#[derive(Copy)]
#[stable(feature = "rust1", since = "1.0.0")]
pub struct Ipv6Addr {
inner: c::in6_addr,
}
#[allow(missing_docs)]
#[derive(Copy, PartialEq, Eq, Clone, Hash, Debug)]
pub enum Ipv6MulticastScope {
InterfaceLocal,
LinkLocal,
RealmLocal,
AdminLocal,
SiteLocal,
OrganizationLocal,
Global,
}
impl IpAddr {
/// Returns [`true`] for the special 'unspecified' address.
///
/// See the documentation for [`Ipv4Addr::is_unspecified`][IPv4] and
/// [`Ipv6Addr::is_unspecified`][IPv6] for more details.
///
/// [IPv4]: ../../std/net/struct.Ipv4Addr.html#method.is_unspecified
/// [IPv6]: ../../std/net/struct.Ipv6Addr.html#method.is_unspecified
/// [`true`]: ../../std/primitive.bool.html
///
/// # Examples
///
/// ```
/// use std::net::{IpAddr, Ipv4Addr, Ipv6Addr};
///
/// assert_eq!(IpAddr::V4(Ipv4Addr::new(0, 0, 0, 0)).is_unspecified(), true);
/// assert_eq!(IpAddr::V6(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 0)).is_unspecified(), true);
/// ```
#[stable(feature = "ip_shared", since = "1.12.0")]
pub fn is_unspecified(&self) -> bool {
match self {
IpAddr::V4(ip) => ip.is_unspecified(),
IpAddr::V6(ip) => ip.is_unspecified(),
}
}
/// Returns [`true`] if this is a loopback address.
///
/// See the documentation for [`Ipv4Addr::is_loopback`][IPv4] and
/// [`Ipv6Addr::is_loopback`][IPv6] for more details.
///
/// [IPv4]: ../../std/net/struct.Ipv4Addr.html#method.is_loopback
/// [IPv6]: ../../std/net/struct.Ipv6Addr.html#method.is_loopback
/// [`true`]: ../../std/primitive.bool.html
///
/// # Examples
///
/// ```
/// use std::net::{IpAddr, Ipv4Addr, Ipv6Addr};
///
/// assert_eq!(IpAddr::V4(Ipv4Addr::new(127, 0, 0, 1)).is_loopback(), true);
/// assert_eq!(IpAddr::V6(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 0x1)).is_loopback(), true);
/// ```
#[stable(feature = "ip_shared", since = "1.12.0")]
pub fn is_loopback(&self) -> bool {
match self {
IpAddr::V4(ip) => ip.is_loopback(),
IpAddr::V6(ip) => ip.is_loopback(),
}
}
/// Returns [`true`] if the address appears to be globally routable.
///
/// See the documentation for [`Ipv4Addr::is_global`][IPv4] and
/// [`Ipv6Addr::is_global`][IPv6] for more details.
///
/// [IPv4]: ../../std/net/struct.Ipv4Addr.html#method.is_global
/// [IPv6]: ../../std/net/struct.Ipv6Addr.html#method.is_global
/// [`true`]: ../../std/primitive.bool.html
///
/// # Examples
///
/// ```
/// #![feature(ip)]
///
/// use std::net::{IpAddr, Ipv4Addr, Ipv6Addr};
///
/// assert_eq!(IpAddr::V4(Ipv4Addr::new(80, 9, 12, 3)).is_global(), true);
/// assert_eq!(IpAddr::V6(Ipv6Addr::new(0, 0, 0x1c9, 0, 0, 0xafc8, 0, 0x1)).is_global(), true);
/// ```
pub fn is_global(&self) -> bool {
match self {
IpAddr::V4(ip) => ip.is_global(),
IpAddr::V6(ip) => ip.is_global(),
}
}
/// Returns [`true`] if this is a multicast address.
///
/// See the documentation for [`Ipv4Addr::is_multicast`][IPv4] and
/// [`Ipv6Addr::is_multicast`][IPv6] for more details.
///
/// [IPv4]: ../../std/net/struct.Ipv4Addr.html#method.is_multicast
/// [IPv6]: ../../std/net/struct.Ipv6Addr.html#method.is_multicast
/// [`true`]: ../../std/primitive.bool.html
///
/// # Examples
///
/// ```
/// use std::net::{IpAddr, Ipv4Addr, Ipv6Addr};
///
/// assert_eq!(IpAddr::V4(Ipv4Addr::new(224, 254, 0, 0)).is_multicast(), true);
/// assert_eq!(IpAddr::V6(Ipv6Addr::new(0xff00, 0, 0, 0, 0, 0, 0, 0)).is_multicast(), true);
/// ```
#[stable(feature = "ip_shared", since = "1.12.0")]
pub fn is_multicast(&self) -> bool {
match self {
IpAddr::V4(ip) => ip.is_multicast(),
IpAddr::V6(ip) => ip.is_multicast(),
}
}
/// Returns [`true`] if this address is in a range designated for documentation.
///
/// See the documentation for [`Ipv4Addr::is_documentation`][IPv4] and
/// [`Ipv6Addr::is_documentation`][IPv6] for more details.
///
/// [IPv4]: ../../std/net/struct.Ipv4Addr.html#method.is_documentation
/// [IPv6]: ../../std/net/struct.Ipv6Addr.html#method.is_documentation
/// [`true`]: ../../std/primitive.bool.html
///
/// # Examples
///
/// ```
/// #![feature(ip)]
///
/// use std::net::{IpAddr, Ipv4Addr, Ipv6Addr};
///
/// assert_eq!(IpAddr::V4(Ipv4Addr::new(203, 0, 113, 6)).is_documentation(), true);
/// assert_eq!(
/// IpAddr::V6(Ipv6Addr::new(0x2001, 0xdb8, 0, 0, 0, 0, 0, 0)).is_documentation(),
/// true
/// );
/// ```
pub fn is_documentation(&self) -> bool {
match self {
IpAddr::V4(ip) => ip.is_documentation(),
IpAddr::V6(ip) => ip.is_documentation(),
}
}
/// Returns [`true`] if this address is an [IPv4 address], and [`false`] otherwise.
///
/// [`true`]: ../../std/primitive.bool.html
/// [`false`]: ../../std/primitive.bool.html
/// [IPv4 address]: #variant.V4
///
/// # Examples
///
/// ```
/// use std::net::{IpAddr, Ipv4Addr, Ipv6Addr};
///
/// assert_eq!(IpAddr::V4(Ipv4Addr::new(203, 0, 113, 6)).is_ipv4(), true);
/// assert_eq!(IpAddr::V6(Ipv6Addr::new(0x2001, 0xdb8, 0, 0, 0, 0, 0, 0)).is_ipv4(), false);
/// ```
#[stable(feature = "ipaddr_checker", since = "1.16.0")]
pub fn is_ipv4(&self) -> bool {
matches!(self, IpAddr::V4(_))
}
/// Returns [`true`] if this address is an [IPv6 address], and [`false`] otherwise.
///
/// [`true`]: ../../std/primitive.bool.html
/// [`false`]: ../../std/primitive.bool.html
/// [IPv6 address]: #variant.V6
///
/// # Examples
///
/// ```
/// use std::net::{IpAddr, Ipv4Addr, Ipv6Addr};
///
/// assert_eq!(IpAddr::V4(Ipv4Addr::new(203, 0, 113, 6)).is_ipv6(), false);
/// assert_eq!(IpAddr::V6(Ipv6Addr::new(0x2001, 0xdb8, 0, 0, 0, 0, 0, 0)).is_ipv6(), true);
/// ```
#[stable(feature = "ipaddr_checker", since = "1.16.0")]
pub fn is_ipv6(&self) -> bool {
matches!(self, IpAddr::V6(_))
}
}
impl Ipv4Addr {
/// Creates a new IPv4 address from four eight-bit octets.
///
/// The result will represent the IP address `a`.`b`.`c`.`d`.
///
/// # Examples
///
/// ```
/// use std::net::Ipv4Addr;
///
/// let addr = Ipv4Addr::new(127, 0, 0, 1);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_const_stable(feature = "const_ipv4", since = "1.32.0")]
pub const fn new(a: u8, b: u8, c: u8, d: u8) -> Ipv4Addr {
// FIXME: should just be u32::from_be_bytes([a, b, c, d]),
// once that method is no longer rustc_const_unstable
Ipv4Addr {
inner: c::in_addr {
s_addr: u32::to_be(
((a as u32) << 24) | ((b as u32) << 16) | ((c as u32) << 8) | (d as u32),
),
},
}
}
/// An IPv4 address with the address pointing to localhost: 127.0.0.1.
///
/// # Examples
///
/// ```
/// use std::net::Ipv4Addr;
///
/// let addr = Ipv4Addr::LOCALHOST;
/// assert_eq!(addr, Ipv4Addr::new(127, 0, 0, 1));
/// ```
#[stable(feature = "ip_constructors", since = "1.30.0")]
pub const LOCALHOST: Self = Ipv4Addr::new(127, 0, 0, 1);
/// An IPv4 address representing an unspecified address: 0.0.0.0
///
/// # Examples
///
/// ```
/// use std::net::Ipv4Addr;
///
/// let addr = Ipv4Addr::UNSPECIFIED;
/// assert_eq!(addr, Ipv4Addr::new(0, 0, 0, 0));
/// ```
#[stable(feature = "ip_constructors", since = "1.30.0")]
pub const UNSPECIFIED: Self = Ipv4Addr::new(0, 0, 0, 0);
/// An IPv4 address representing the broadcast address: 255.255.255.255
///
/// # Examples
///
/// ```
/// use std::net::Ipv4Addr;
///
/// let addr = Ipv4Addr::BROADCAST;
/// assert_eq!(addr, Ipv4Addr::new(255, 255, 255, 255));
/// ```
#[stable(feature = "ip_constructors", since = "1.30.0")]
pub const BROADCAST: Self = Ipv4Addr::new(255, 255, 255, 255);
/// Returns the four eight-bit integers that make up this address.
///
/// # Examples
///
/// ```
/// use std::net::Ipv4Addr;
///
/// let addr = Ipv4Addr::new(127, 0, 0, 1);
/// assert_eq!(addr.octets(), [127, 0, 0, 1]);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn octets(&self) -> [u8; 4] {
// This returns the order we want because s_addr is stored in big-endian.
self.inner.s_addr.to_ne_bytes()
}
/// Returns [`true`] for the special 'unspecified' address (0.0.0.0).
///
/// This property is defined in _UNIX Network Programming, Second Edition_,
/// W. Richard Stevens, p. 891; see also [ip7].
///
/// [ip7]: http://man7.org/linux/man-pages/man7/ip.7.html
/// [`true`]: ../../std/primitive.bool.html
///
/// # Examples
///
/// ```
/// use std::net::Ipv4Addr;
///
/// assert_eq!(Ipv4Addr::new(0, 0, 0, 0).is_unspecified(), true);
/// assert_eq!(Ipv4Addr::new(45, 22, 13, 197).is_unspecified(), false);
/// ```
#[stable(feature = "ip_shared", since = "1.12.0")]
#[rustc_const_stable(feature = "const_ipv4", since = "1.32.0")]
pub const fn is_unspecified(&self) -> bool {
self.inner.s_addr == 0
}
/// Returns [`true`] if this is a loopback address (127.0.0.0/8).
///
/// This property is defined by [IETF RFC 1122].
///
/// [IETF RFC 1122]: https://tools.ietf.org/html/rfc1122
/// [`true`]: ../../std/primitive.bool.html
///
/// # Examples
///
/// ```
/// use std::net::Ipv4Addr;
///
/// assert_eq!(Ipv4Addr::new(127, 0, 0, 1).is_loopback(), true);
/// assert_eq!(Ipv4Addr::new(45, 22, 13, 197).is_loopback(), false);
/// ```
#[stable(since = "1.7.0", feature = "ip_17")]
pub fn is_loopback(&self) -> bool {
self.octets()[0] == 127
}
/// Returns [`true`] if this is a private address.
///
/// The private address ranges are defined in [IETF RFC 1918] and include:
///
/// - 10.0.0.0/8
/// - 172.16.0.0/12
/// - 192.168.0.0/16
///
/// [IETF RFC 1918]: https://tools.ietf.org/html/rfc1918
/// [`true`]: ../../std/primitive.bool.html
///
/// # Examples
///
/// ```
/// use std::net::Ipv4Addr;
///
/// assert_eq!(Ipv4Addr::new(10, 0, 0, 1).is_private(), true);
/// assert_eq!(Ipv4Addr::new(10, 10, 10, 10).is_private(), true);
/// assert_eq!(Ipv4Addr::new(172, 16, 10, 10).is_private(), true);
/// assert_eq!(Ipv4Addr::new(172, 29, 45, 14).is_private(), true);
/// assert_eq!(Ipv4Addr::new(172, 32, 0, 2).is_private(), false);
/// assert_eq!(Ipv4Addr::new(192, 168, 0, 2).is_private(), true);
/// assert_eq!(Ipv4Addr::new(192, 169, 0, 2).is_private(), false);
/// ```
#[stable(since = "1.7.0", feature = "ip_17")]
pub fn is_private(&self) -> bool {
match self.octets() {
[10, ..] => true,
[172, b, ..] if b >= 16 && b <= 31 => true,
[192, 168, ..] => true,
_ => false,
}
}
/// Returns [`true`] if the address is link-local (169.254.0.0/16).
///
/// This property is defined by [IETF RFC 3927].
///
/// [IETF RFC 3927]: https://tools.ietf.org/html/rfc3927
/// [`true`]: ../../std/primitive.bool.html
///
/// # Examples
///
/// ```
/// use std::net::Ipv4Addr;
///
/// assert_eq!(Ipv4Addr::new(169, 254, 0, 0).is_link_local(), true);
/// assert_eq!(Ipv4Addr::new(169, 254, 10, 65).is_link_local(), true);
/// assert_eq!(Ipv4Addr::new(16, 89, 10, 65).is_link_local(), false);
/// ```
#[stable(since = "1.7.0", feature = "ip_17")]
pub fn is_link_local(&self) -> bool {
match self.octets() {
[169, 254, ..] => true,
_ => false,
}
}
/// Returns [`true`] if the address appears to be globally routable.
/// See [iana-ipv4-special-registry][ipv4-sr].
///
/// The following return false:
///
/// - private addresses (see [`is_private()`](#method.is_private))
/// - the loopback address (see [`is_loopback()`](#method.is_loopback))
/// - the link-local address (see [`is_link_local()`](#method.is_link_local))
/// - the broadcast address (see [`is_broadcast()`](#method.is_broadcast))
/// - addresses used for documentation (see [`is_documentation()`](#method.is_documentation))
/// - the unspecified address (see [`is_unspecified()`](#method.is_unspecified)), and the whole
/// 0.0.0.0/8 block
/// - addresses reserved for future protocols (see
/// [`is_ietf_protocol_assignment()`](#method.is_ietf_protocol_assignment), except
/// `192.0.0.9/32` and `192.0.0.10/32` which are globally routable
/// - addresses reserved for future use (see [`is_reserved()`](#method.is_reserved)
/// - addresses reserved for networking devices benchmarking (see
/// [`is_benchmarking`](#method.is_benchmarking))
///
/// [ipv4-sr]: https://www.iana.org/assignments/iana-ipv4-special-registry/iana-ipv4-special-registry.xhtml
/// [`true`]: ../../std/primitive.bool.html
///
/// # Examples
///
/// ```
/// #![feature(ip)]
///
/// use std::net::Ipv4Addr;
///
/// // private addresses are not global
/// assert_eq!(Ipv4Addr::new(10, 254, 0, 0).is_global(), false);
/// assert_eq!(Ipv4Addr::new(192, 168, 10, 65).is_global(), false);
/// assert_eq!(Ipv4Addr::new(172, 16, 10, 65).is_global(), false);
///
/// // the 0.0.0.0/8 block is not global
/// assert_eq!(Ipv4Addr::new(0, 1, 2, 3).is_global(), false);
/// // in particular, the unspecified address is not global
/// assert_eq!(Ipv4Addr::new(0, 0, 0, 0).is_global(), false);
///
/// // the loopback address is not global
/// assert_eq!(Ipv4Addr::new(127, 0, 0, 1).is_global(), false);
///
/// // link local addresses are not global
/// assert_eq!(Ipv4Addr::new(169, 254, 45, 1).is_global(), false);
///
/// // the broadcast address is not global
/// assert_eq!(Ipv4Addr::new(255, 255, 255, 255).is_global(), false);
///
/// // the address space designated for documentation is not global
/// assert_eq!(Ipv4Addr::new(192, 0, 2, 255).is_global(), false);
/// assert_eq!(Ipv4Addr::new(198, 51, 100, 65).is_global(), false);
/// assert_eq!(Ipv4Addr::new(203, 0, 113, 6).is_global(), false);
///
/// // shared addresses are not global
/// assert_eq!(Ipv4Addr::new(100, 100, 0, 0).is_global(), false);
///
/// // addresses reserved for protocol assignment are not global
/// assert_eq!(Ipv4Addr::new(192, 0, 0, 0).is_global(), false);
/// assert_eq!(Ipv4Addr::new(192, 0, 0, 255).is_global(), false);
///
/// // addresses reserved for future use are not global
/// assert_eq!(Ipv4Addr::new(250, 10, 20, 30).is_global(), false);
///
/// // addresses reserved for network devices benchmarking are not global
/// assert_eq!(Ipv4Addr::new(198, 18, 0, 0).is_global(), false);
///
/// // All the other addresses are global
/// assert_eq!(Ipv4Addr::new(1, 1, 1, 1).is_global(), true);
/// assert_eq!(Ipv4Addr::new(80, 9, 12, 3).is_global(), true);
/// ```
pub fn is_global(&self) -> bool {
// check if this address is 192.0.0.9 or 192.0.0.10. These addresses are the only two
// globally routable addresses in the 192.0.0.0/24 range.
if u32::from(*self) == 0xc0000009 || u32::from(*self) == 0xc000000a {
return true;
}
!self.is_private()
&& !self.is_loopback()
&& !self.is_link_local()
&& !self.is_broadcast()
&& !self.is_documentation()
&& !self.is_shared()
&& !self.is_ietf_protocol_assignment()
&& !self.is_reserved()
&& !self.is_benchmarking()
// Make sure the address is not in 0.0.0.0/8
&& self.octets()[0] != 0
}
/// Returns [`true`] if this address is part of the Shared Address Space defined in
/// [IETF RFC 6598] (`100.64.0.0/10`).
///
/// [IETF RFC 6598]: https://tools.ietf.org/html/rfc6598
/// [`true`]: ../../std/primitive.bool.html
///
/// # Examples
///
/// ```
/// #![feature(ip)]
/// use std::net::Ipv4Addr;
///
/// assert_eq!(Ipv4Addr::new(100, 64, 0, 0).is_shared(), true);
/// assert_eq!(Ipv4Addr::new(100, 127, 255, 255).is_shared(), true);
/// assert_eq!(Ipv4Addr::new(100, 128, 0, 0).is_shared(), false);
/// ```
pub fn is_shared(&self) -> bool {
self.octets()[0] == 100 && (self.octets()[1] & 0b1100_0000 == 0b0100_0000)
}
/// Returns [`true`] if this address is part of `192.0.0.0/24`, which is reserved to
/// IANA for IETF protocol assignments, as documented in [IETF RFC 6890].
///
/// Note that parts of this block are in use:
///
/// - `192.0.0.8/32` is the "IPv4 dummy address" (see [IETF RFC 7600])
/// - `192.0.0.9/32` is the "Port Control Protocol Anycast" (see [IETF RFC 7723])
/// - `192.0.0.10/32` is used for NAT traversal (see [IETF RFC 8155])
///
/// [IETF RFC 6890]: https://tools.ietf.org/html/rfc6890
/// [IETF RFC 7600]: https://tools.ietf.org/html/rfc7600
/// [IETF RFC 7723]: https://tools.ietf.org/html/rfc7723
/// [IETF RFC 8155]: https://tools.ietf.org/html/rfc8155
/// [`true`]: ../../std/primitive.bool.html
///
/// # Examples
///
/// ```
/// #![feature(ip)]
/// use std::net::Ipv4Addr;
///
/// assert_eq!(Ipv4Addr::new(192, 0, 0, 0).is_ietf_protocol_assignment(), true);
/// assert_eq!(Ipv4Addr::new(192, 0, 0, 8).is_ietf_protocol_assignment(), true);
/// assert_eq!(Ipv4Addr::new(192, 0, 0, 9).is_ietf_protocol_assignment(), true);
/// assert_eq!(Ipv4Addr::new(192, 0, 0, 255).is_ietf_protocol_assignment(), true);
/// assert_eq!(Ipv4Addr::new(192, 0, 1, 0).is_ietf_protocol_assignment(), false);
/// assert_eq!(Ipv4Addr::new(191, 255, 255, 255).is_ietf_protocol_assignment(), false);
/// ```
pub fn is_ietf_protocol_assignment(&self) -> bool {
self.octets()[0] == 192 && self.octets()[1] == 0 && self.octets()[2] == 0
}
/// Returns [`true`] if this address part of the `198.18.0.0/15` range, which is reserved for
/// network devices benchmarking. This range is defined in [IETF RFC 2544] as `192.18.0.0`
/// through `198.19.255.255` but [errata 423] corrects it to `198.18.0.0/15`.
///
/// [IETF RFC 2544]: https://tools.ietf.org/html/rfc2544
/// [errata 423]: https://www.rfc-editor.org/errata/eid423
/// [`true`]: ../../std/primitive.bool.html
///
/// # Examples
///
/// ```
/// #![feature(ip)]
/// use std::net::Ipv4Addr;
///
/// assert_eq!(Ipv4Addr::new(198, 17, 255, 255).is_benchmarking(), false);
/// assert_eq!(Ipv4Addr::new(198, 18, 0, 0).is_benchmarking(), true);
/// assert_eq!(Ipv4Addr::new(198, 19, 255, 255).is_benchmarking(), true);
/// assert_eq!(Ipv4Addr::new(198, 20, 0, 0).is_benchmarking(), false);
/// ```
pub fn is_benchmarking(&self) -> bool {
self.octets()[0] == 198 && (self.octets()[1] & 0xfe) == 18
}
/// Returns [`true`] if this address is reserved by IANA for future use. [IETF RFC 1112]
/// defines the block of reserved addresses as `240.0.0.0/4`. This range normally includes the
/// broadcast address `255.255.255.255`, but this implementation explicitly excludes it, since
/// it is obviously not reserved for future use.
///
/// [IETF RFC 1112]: https://tools.ietf.org/html/rfc1112
/// [`true`]: ../../std/primitive.bool.html
///
/// # Warning
///
/// As IANA assigns new addresses, this method will be
/// updated. This may result in non-reserved addresses being
/// treated as reserved in code that relies on an outdated version
/// of this method.
///
/// # Examples
///
/// ```
/// #![feature(ip)]
/// use std::net::Ipv4Addr;
///
/// assert_eq!(Ipv4Addr::new(240, 0, 0, 0).is_reserved(), true);
/// assert_eq!(Ipv4Addr::new(255, 255, 255, 254).is_reserved(), true);
///
/// assert_eq!(Ipv4Addr::new(239, 255, 255, 255).is_reserved(), false);
/// // The broadcast address is not considered as reserved for future use by this implementation
/// assert_eq!(Ipv4Addr::new(255, 255, 255, 255).is_reserved(), false);
/// ```
pub fn is_reserved(&self) -> bool {
self.octets()[0] & 240 == 240 && !self.is_broadcast()
}
/// Returns [`true`] if this is a multicast address (224.0.0.0/4).
///
/// Multicast addresses have a most significant octet between 224 and 239,
/// and is defined by [IETF RFC 5771].
///
/// [IETF RFC 5771]: https://tools.ietf.org/html/rfc5771
/// [`true`]: ../../std/primitive.bool.html
///
/// # Examples
///
/// ```
/// use std::net::Ipv4Addr;
///
/// assert_eq!(Ipv4Addr::new(224, 254, 0, 0).is_multicast(), true);
/// assert_eq!(Ipv4Addr::new(236, 168, 10, 65).is_multicast(), true);
/// assert_eq!(Ipv4Addr::new(172, 16, 10, 65).is_multicast(), false);
/// ```
#[stable(since = "1.7.0", feature = "ip_17")]
pub fn is_multicast(&self) -> bool {
self.octets()[0] >= 224 && self.octets()[0] <= 239
}
/// Returns [`true`] if this is a broadcast address (255.255.255.255).
///
/// A broadcast address has all octets set to 255 as defined in [IETF RFC 919].
///
/// [IETF RFC 919]: https://tools.ietf.org/html/rfc919
/// [`true`]: ../../std/primitive.bool.html
///
/// # Examples
///
/// ```
/// use std::net::Ipv4Addr;
///
/// assert_eq!(Ipv4Addr::new(255, 255, 255, 255).is_broadcast(), true);
/// assert_eq!(Ipv4Addr::new(236, 168, 10, 65).is_broadcast(), false);
/// ```
#[stable(since = "1.7.0", feature = "ip_17")]
pub fn is_broadcast(&self) -> bool {
self == &Self::BROADCAST
}
/// Returns [`true`] if this address is in a range designated for documentation.
///
/// This is defined in [IETF RFC 5737]:
///
/// - 192.0.2.0/24 (TEST-NET-1)
/// - 198.51.100.0/24 (TEST-NET-2)
/// - 203.0.113.0/24 (TEST-NET-3)
///
/// [IETF RFC 5737]: https://tools.ietf.org/html/rfc5737
/// [`true`]: ../../std/primitive.bool.html
///
/// # Examples
///
/// ```
/// use std::net::Ipv4Addr;
///
/// assert_eq!(Ipv4Addr::new(192, 0, 2, 255).is_documentation(), true);
/// assert_eq!(Ipv4Addr::new(198, 51, 100, 65).is_documentation(), true);
/// assert_eq!(Ipv4Addr::new(203, 0, 113, 6).is_documentation(), true);
/// assert_eq!(Ipv4Addr::new(193, 34, 17, 19).is_documentation(), false);
/// ```
#[stable(since = "1.7.0", feature = "ip_17")]
pub fn is_documentation(&self) -> bool {
match self.octets() {
[192, 0, 2, _] => true,
[198, 51, 100, _] => true,
[203, 0, 113, _] => true,
_ => false,
}
}
/// Converts this address to an IPv4-compatible [IPv6 address].
///
/// a.b.c.d becomes ::a.b.c.d
///
/// [IPv6 address]: ../../std/net/struct.Ipv6Addr.html
///
/// # Examples
///
/// ```
/// use std::net::{Ipv4Addr, Ipv6Addr};
///
/// assert_eq!(
/// Ipv4Addr::new(192, 0, 2, 255).to_ipv6_compatible(),
/// Ipv6Addr::new(0, 0, 0, 0, 0, 0, 49152, 767)
/// );
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn to_ipv6_compatible(&self) -> Ipv6Addr {
let octets = self.octets();
Ipv6Addr::from([
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, octets[0], octets[1], octets[2], octets[3],
])
}
/// Converts this address to an IPv4-mapped [IPv6 address].
///
/// a.b.c.d becomes ::ffff:a.b.c.d
///
/// [IPv6 address]: ../../std/net/struct.Ipv6Addr.html
///
/// # Examples
///
/// ```
/// use std::net::{Ipv4Addr, Ipv6Addr};
///
/// assert_eq!(Ipv4Addr::new(192, 0, 2, 255).to_ipv6_mapped(),
/// Ipv6Addr::new(0, 0, 0, 0, 0, 65535, 49152, 767));
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn to_ipv6_mapped(&self) -> Ipv6Addr {
let octets = self.octets();
Ipv6Addr::from([
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0xFF, 0xFF, octets[0], octets[1], octets[2], octets[3],
])
}
}
#[stable(feature = "ip_addr", since = "1.7.0")]
impl fmt::Display for IpAddr {
fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
match self {
IpAddr::V4(ip) => ip.fmt(fmt),
IpAddr::V6(ip) => ip.fmt(fmt),
}
}
}
#[stable(feature = "ip_from_ip", since = "1.16.0")]
impl From<Ipv4Addr> for IpAddr {
/// Copies this address to a new `IpAddr::V4`.
///
/// # Examples
///
/// ```
/// use std::net::{IpAddr, Ipv4Addr};
///
/// let addr = Ipv4Addr::new(127, 0, 0, 1);
///
/// assert_eq!(
/// IpAddr::V4(addr),
/// IpAddr::from(addr)
/// )
/// ```
fn from(ipv4: Ipv4Addr) -> IpAddr {
IpAddr::V4(ipv4)
}
}
#[stable(feature = "ip_from_ip", since = "1.16.0")]
impl From<Ipv6Addr> for IpAddr {
/// Copies this address to a new `IpAddr::V6`.
///
/// # Examples
///
/// ```
/// use std::net::{IpAddr, Ipv6Addr};
///
/// let addr = Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff);
///
/// assert_eq!(
/// IpAddr::V6(addr),
/// IpAddr::from(addr)
/// );
/// ```
fn from(ipv6: Ipv6Addr) -> IpAddr {
IpAddr::V6(ipv6)
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl fmt::Display for Ipv4Addr {
fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
let octets = self.octets();
// Fast Path: if there's no alignment stuff, write directly to the buffer
if fmt.precision().is_none() && fmt.width().is_none() {
write!(fmt, "{}.{}.{}.{}", octets[0], octets[1], octets[2], octets[3])
} else {
const IPV4_BUF_LEN: usize = 15; // Long enough for the longest possible IPv4 address
let mut buf = [0u8; IPV4_BUF_LEN];
let mut buf_slice = &mut buf[..];
// Note: The call to write should never fail, hence the unwrap
write!(buf_slice, "{}.{}.{}.{}", octets[0], octets[1], octets[2], octets[3]).unwrap();
let len = IPV4_BUF_LEN - buf_slice.len();
// This unsafe is OK because we know what is being written to the buffer
let buf = unsafe { crate::str::from_utf8_unchecked(&buf[..len]) };
fmt.pad(buf)
}
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl fmt::Debug for Ipv4Addr {
fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt::Display::fmt(self, fmt)
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl Clone for Ipv4Addr {
fn clone(&self) -> Ipv4Addr {
*self
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl PartialEq for Ipv4Addr {
fn eq(&self, other: &Ipv4Addr) -> bool {
self.inner.s_addr == other.inner.s_addr
}
}
#[stable(feature = "ip_cmp", since = "1.16.0")]
impl PartialEq<Ipv4Addr> for IpAddr {
fn eq(&self, other: &Ipv4Addr) -> bool {
match self {
IpAddr::V4(v4) => v4 == other,
IpAddr::V6(_) => false,
}
}
}
#[stable(feature = "ip_cmp", since = "1.16.0")]
impl PartialEq<IpAddr> for Ipv4Addr {
fn eq(&self, other: &IpAddr) -> bool {
match other {
IpAddr::V4(v4) => self == v4,
IpAddr::V6(_) => false,
}
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl Eq for Ipv4Addr {}
#[stable(feature = "rust1", since = "1.0.0")]
impl hash::Hash for Ipv4Addr {
fn hash<H: hash::Hasher>(&self, s: &mut H) {
// `inner` is #[repr(packed)], so we need to copy `s_addr`.
{ self.inner.s_addr }.hash(s)
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl PartialOrd for Ipv4Addr {
fn partial_cmp(&self, other: &Ipv4Addr) -> Option<Ordering> {
Some(self.cmp(other))
}
}
#[stable(feature = "ip_cmp", since = "1.16.0")]
impl PartialOrd<Ipv4Addr> for IpAddr {
fn partial_cmp(&self, other: &Ipv4Addr) -> Option<Ordering> {
match self {
IpAddr::V4(v4) => v4.partial_cmp(other),
IpAddr::V6(_) => Some(Ordering::Greater),
}
}
}
#[stable(feature = "ip_cmp", since = "1.16.0")]
impl PartialOrd<IpAddr> for Ipv4Addr {
fn partial_cmp(&self, other: &IpAddr) -> Option<Ordering> {
match other {
IpAddr::V4(v4) => self.partial_cmp(v4),
IpAddr::V6(_) => Some(Ordering::Less),
}
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl Ord for Ipv4Addr {
fn cmp(&self, other: &Ipv4Addr) -> Ordering {
u32::from_be(self.inner.s_addr).cmp(&u32::from_be(other.inner.s_addr))
}
}
impl AsInner<c::in_addr> for Ipv4Addr {
fn as_inner(&self) -> &c::in_addr {
&self.inner
}
}
impl FromInner<c::in_addr> for Ipv4Addr {
fn from_inner(addr: c::in_addr) -> Ipv4Addr {
Ipv4Addr { inner: addr }
}
}
#[stable(feature = "ip_u32", since = "1.1.0")]
impl From<Ipv4Addr> for u32 {
/// Converts an `Ipv4Addr` into a host byte order `u32`.
///
/// # Examples
///
/// ```
/// use std::net::Ipv4Addr;
///
/// let addr = Ipv4Addr::new(13, 12, 11, 10);
/// assert_eq!(0x0d0c0b0au32, u32::from(addr));
/// ```
fn from(ip: Ipv4Addr) -> u32 {
let ip = ip.octets();
u32::from_be_bytes(ip)
}
}
#[stable(feature = "ip_u32", since = "1.1.0")]
impl From<u32> for Ipv4Addr {
/// Converts a host byte order `u32` into an `Ipv4Addr`.
///
/// # Examples
///
/// ```
/// use std::net::Ipv4Addr;
///
/// let addr = Ipv4Addr::from(0x0d0c0b0au32);
/// assert_eq!(Ipv4Addr::new(13, 12, 11, 10), addr);
/// ```
fn from(ip: u32) -> Ipv4Addr {
Ipv4Addr::from(ip.to_be_bytes())
}
}
#[stable(feature = "from_slice_v4", since = "1.9.0")]
impl From<[u8; 4]> for Ipv4Addr {
/// Creates an `Ipv4Addr` from a four element byte array.
///
/// # Examples
///
/// ```
/// use std::net::Ipv4Addr;
///
/// let addr = Ipv4Addr::from([13u8, 12u8, 11u8, 10u8]);
/// assert_eq!(Ipv4Addr::new(13, 12, 11, 10), addr);
/// ```
fn from(octets: [u8; 4]) -> Ipv4Addr {
Ipv4Addr::new(octets[0], octets[1], octets[2], octets[3])
}
}
#[stable(feature = "ip_from_slice", since = "1.17.0")]
impl From<[u8; 4]> for IpAddr {
/// Creates an `IpAddr::V4` from a four element byte array.
///
/// # Examples
///
/// ```
/// use std::net::{IpAddr, Ipv4Addr};
///
/// let addr = IpAddr::from([13u8, 12u8, 11u8, 10u8]);
/// assert_eq!(IpAddr::V4(Ipv4Addr::new(13, 12, 11, 10)), addr);
/// ```
fn from(octets: [u8; 4]) -> IpAddr {
IpAddr::V4(Ipv4Addr::from(octets))
}
}
impl Ipv6Addr {
/// Creates a new IPv6 address from eight 16-bit segments.
///
/// The result will represent the IP address `a:b:c:d:e:f:g:h`.
///
/// # Examples
///
/// ```
/// use std::net::Ipv6Addr;
///
/// let addr = Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_const_stable(feature = "const_ipv6", since = "1.32.0")]
pub const fn new(a: u16, b: u16, c: u16, d: u16, e: u16, f: u16, g: u16, h: u16) -> Ipv6Addr {
Ipv6Addr {
inner: c::in6_addr {
s6_addr: [
(a >> 8) as u8,
a as u8,
(b >> 8) as u8,
b as u8,
(c >> 8) as u8,
c as u8,
(d >> 8) as u8,
d as u8,
(e >> 8) as u8,
e as u8,
(f >> 8) as u8,
f as u8,
(g >> 8) as u8,
g as u8,
(h >> 8) as u8,
h as u8,
],
},
}
}
/// An IPv6 address representing localhost: `::1`.
///
/// # Examples
///
/// ```
/// use std::net::Ipv6Addr;
///
/// let addr = Ipv6Addr::LOCALHOST;
/// assert_eq!(addr, Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 1));
/// ```
#[stable(feature = "ip_constructors", since = "1.30.0")]
pub const LOCALHOST: Self = Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 1);
/// An IPv6 address representing the unspecified address: `::`
///
/// # Examples
///
/// ```
/// use std::net::Ipv6Addr;
///
/// let addr = Ipv6Addr::UNSPECIFIED;
/// assert_eq!(addr, Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 0));
/// ```
#[stable(feature = "ip_constructors", since = "1.30.0")]
pub const UNSPECIFIED: Self = Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 0);
/// Returns the eight 16-bit segments that make up this address.
///
/// # Examples
///
/// ```
/// use std::net::Ipv6Addr;
///
/// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).segments(),
/// [0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff]);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn segments(&self) -> [u16; 8] {
let arr = &self.inner.s6_addr;
[
u16::from_be_bytes([arr[0], arr[1]]),
u16::from_be_bytes([arr[2], arr[3]]),
u16::from_be_bytes([arr[4], arr[5]]),
u16::from_be_bytes([arr[6], arr[7]]),
u16::from_be_bytes([arr[8], arr[9]]),
u16::from_be_bytes([arr[10], arr[11]]),
u16::from_be_bytes([arr[12], arr[13]]),
u16::from_be_bytes([arr[14], arr[15]]),
]
}
/// Returns [`true`] for the special 'unspecified' address (::).
///
/// This property is defined in [IETF RFC 4291].
///
/// [IETF RFC 4291]: https://tools.ietf.org/html/rfc4291
/// [`true`]: ../../std/primitive.bool.html
///
/// # Examples
///
/// ```
/// use std::net::Ipv6Addr;
///
/// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).is_unspecified(), false);
/// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 0).is_unspecified(), true);
/// ```
#[stable(since = "1.7.0", feature = "ip_17")]
pub fn is_unspecified(&self) -> bool {
self.segments() == [0, 0, 0, 0, 0, 0, 0, 0]
}
/// Returns [`true`] if this is a loopback address (::1).
///
/// This property is defined in [IETF RFC 4291].
///
/// [IETF RFC 4291]: https://tools.ietf.org/html/rfc4291
/// [`true`]: ../../std/primitive.bool.html
///
/// # Examples
///
/// ```
/// use std::net::Ipv6Addr;
///
/// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).is_loopback(), false);
/// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 0x1).is_loopback(), true);
/// ```
#[stable(since = "1.7.0", feature = "ip_17")]
pub fn is_loopback(&self) -> bool {
self.segments() == [0, 0, 0, 0, 0, 0, 0, 1]
}
/// Returns [`true`] if the address appears to be globally routable.
///
/// The following return [`false`]:
///
/// - the loopback address
/// - link-local and unique local unicast addresses
/// - interface-, link-, realm-, admin- and site-local multicast addresses
///
/// [`true`]: ../../std/primitive.bool.html
/// [`false`]: ../../std/primitive.bool.html
///
/// # Examples
///
/// ```
/// #![feature(ip)]
///
/// use std::net::Ipv6Addr;
///
/// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).is_global(), true);
/// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 0x1).is_global(), false);
/// assert_eq!(Ipv6Addr::new(0, 0, 0x1c9, 0, 0, 0xafc8, 0, 0x1).is_global(), true);
/// ```
pub fn is_global(&self) -> bool {
match self.multicast_scope() {
Some(Ipv6MulticastScope::Global) => true,
None => self.is_unicast_global(),
_ => false,
}
}
/// Returns [`true`] if this is a unique local address (`fc00::/7`).
///
/// This property is defined in [IETF RFC 4193].
///
/// [IETF RFC 4193]: https://tools.ietf.org/html/rfc4193
/// [`true`]: ../../std/primitive.bool.html
///
/// # Examples
///
/// ```
/// #![feature(ip)]
///
/// use std::net::Ipv6Addr;
///
/// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).is_unique_local(), false);
/// assert_eq!(Ipv6Addr::new(0xfc02, 0, 0, 0, 0, 0, 0, 0).is_unique_local(), true);
/// ```
pub fn is_unique_local(&self) -> bool {
(self.segments()[0] & 0xfe00) == 0xfc00
}
/// Returns [`true`] if the address is a unicast link-local address (`fe80::/64`).
///
/// A common mis-conception is to think that "unicast link-local addresses start with
/// `fe80::`", but the [IETF RFC 4291] actually defines a stricter format for these addresses:
///
/// ```no_rust
/// | 10 |
/// | bits | 54 bits | 64 bits |
/// +----------+-------------------------+----------------------------+
/// |1111111010| 0 | interface ID |
/// +----------+-------------------------+----------------------------+
/// ```
///
/// This method validates the format defined in the RFC and won't recognize the following
/// addresses such as `fe80:0:0:1::` or `fe81::` as unicast link-local addresses for example.
/// If you need a less strict validation use [`is_unicast_link_local()`] instead.
///
/// # Examples
///
/// ```
/// #![feature(ip)]
///
/// use std::net::Ipv6Addr;
///
/// let ip = Ipv6Addr::new(0xfe80, 0, 0, 0, 0, 0, 0, 0);
/// assert!(ip.is_unicast_link_local_strict());
///
/// let ip = Ipv6Addr::new(0xfe80, 0, 0, 0, 0xffff, 0xffff, 0xffff, 0xffff);
/// assert!(ip.is_unicast_link_local_strict());
///
/// let ip = Ipv6Addr::new(0xfe80, 0, 0, 1, 0, 0, 0, 0);
/// assert!(!ip.is_unicast_link_local_strict());
/// assert!(ip.is_unicast_link_local());
///
/// let ip = Ipv6Addr::new(0xfe81, 0, 0, 0, 0, 0, 0, 0);
/// assert!(!ip.is_unicast_link_local_strict());
/// assert!(ip.is_unicast_link_local());
/// ```
///
/// # See also
///
/// - [IETF RFC 4291 section 2.5.6]
/// - [RFC 4291 errata 4406]
/// - [`is_unicast_link_local()`]
///
/// [IETF RFC 4291]: https://tools.ietf.org/html/rfc4291
/// [IETF RFC 4291 section 2.5.6]: https://tools.ietf.org/html/rfc4291#section-2.5.6
/// [`true`]: ../../std/primitive.bool.html
/// [RFC 4291 errata 4406]: https://www.rfc-editor.org/errata/eid4406
/// [`is_unicast_link_local()`]: ../../std/net/struct.Ipv6Addr.html#method.is_unicast_link_local
///
pub fn is_unicast_link_local_strict(&self) -> bool {
(self.segments()[0] & 0xffff) == 0xfe80
&& (self.segments()[1] & 0xffff) == 0
&& (self.segments()[2] & 0xffff) == 0
&& (self.segments()[3] & 0xffff) == 0
}
/// Returns [`true`] if the address is a unicast link-local address (`fe80::/10`).
///
/// This method returns [`true`] for addresses in the range reserved by [RFC 4291 section 2.4],
/// i.e. addresses with the following format:
///
/// ```no_rust
/// | 10 |
/// | bits | 54 bits | 64 bits |
/// +----------+-------------------------+----------------------------+
/// |1111111010| arbitratry value | interface ID |
/// +----------+-------------------------+----------------------------+
/// ```
///
/// As a result, this method consider addresses such as `fe80:0:0:1::` or `fe81::` to be
/// unicast link-local addresses, whereas [`is_unicast_link_local_strict()`] does not. If you
/// need a strict validation fully compliant with the RFC, use
/// [`is_unicast_link_local_strict()`].
///
/// # Examples
///
/// ```
/// #![feature(ip)]
///
/// use std::net::Ipv6Addr;
///
/// let ip = Ipv6Addr::new(0xfe80, 0, 0, 0, 0, 0, 0, 0);
/// assert!(ip.is_unicast_link_local());
///
/// let ip = Ipv6Addr::new(0xfe80, 0, 0, 0, 0xffff, 0xffff, 0xffff, 0xffff);
/// assert!(ip.is_unicast_link_local());
///
/// let ip = Ipv6Addr::new(0xfe80, 0, 0, 1, 0, 0, 0, 0);
/// assert!(ip.is_unicast_link_local());
/// assert!(!ip.is_unicast_link_local_strict());
///
/// let ip = Ipv6Addr::new(0xfe81, 0, 0, 0, 0, 0, 0, 0);
/// assert!(ip.is_unicast_link_local());
/// assert!(!ip.is_unicast_link_local_strict());
/// ```
///
/// # See also
///
/// - [IETF RFC 4291 section 2.4]
/// - [RFC 4291 errata 4406]
///
/// [IETF RFC 4291 section 2.4]: https://tools.ietf.org/html/rfc4291#section-2.4
/// [`true`]: ../../std/primitive.bool.html
/// [RFC 4291 errata 4406]: https://www.rfc-editor.org/errata/eid4406
/// [`is_unicast_link_local_strict()`]: ../../std/net/struct.Ipv6Addr.html#method.is_unicast_link_local_strict
///
pub fn is_unicast_link_local(&self) -> bool {
(self.segments()[0] & 0xffc0) == 0xfe80
}
/// Returns [`true`] if this is a deprecated unicast site-local address (fec0::/10). The
/// unicast site-local address format is defined in [RFC 4291 section 2.5.7] as:
///
/// ```no_rust
/// | 10 |
/// | bits | 54 bits | 64 bits |
/// +----------+-------------------------+----------------------------+
/// |1111111011| subnet ID | interface ID |
/// +----------+-------------------------+----------------------------+
/// ```
///
/// [`true`]: ../../std/primitive.bool.html
/// [RFC 4291 section 2.5.7]: https://tools.ietf.org/html/rfc4291#section-2.5.7
///
/// # Examples
///
/// ```
/// #![feature(ip)]
///
/// use std::net::Ipv6Addr;
///
/// assert_eq!(
/// Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).is_unicast_site_local(),
/// false
/// );
/// assert_eq!(Ipv6Addr::new(0xfec2, 0, 0, 0, 0, 0, 0, 0).is_unicast_site_local(), true);
/// ```
///
/// # Warning
///
/// As per [RFC 3879], the whole `FEC0::/10` prefix is
/// deprecated. New software must not support site-local
/// addresses.
///
/// [RFC 3879]: https://tools.ietf.org/html/rfc3879
pub fn is_unicast_site_local(&self) -> bool {
(self.segments()[0] & 0xffc0) == 0xfec0
}
/// Returns [`true`] if this is an address reserved for documentation
/// (2001:db8::/32).
///
/// This property is defined in [IETF RFC 3849].
///
/// [IETF RFC 3849]: https://tools.ietf.org/html/rfc3849
/// [`true`]: ../../std/primitive.bool.html
///
/// # Examples
///
/// ```
/// #![feature(ip)]
///
/// use std::net::Ipv6Addr;
///
/// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).is_documentation(), false);
/// assert_eq!(Ipv6Addr::new(0x2001, 0xdb8, 0, 0, 0, 0, 0, 0).is_documentation(), true);
/// ```
pub fn is_documentation(&self) -> bool {
(self.segments()[0] == 0x2001) && (self.segments()[1] == 0xdb8)
}
/// Returns [`true`] if the address is a globally routable unicast address.
///
/// The following return false:
///
/// - the loopback address
/// - the link-local addresses
/// - unique local addresses
/// - the unspecified address
/// - the address range reserved for documentation
///
/// This method returns [`true`] for site-local addresses as per [RFC 4291 section 2.5.7]
///
/// ```no_rust
/// The special behavior of [the site-local unicast] prefix defined in [RFC3513] must no longer
/// be supported in new implementations (i.e., new implementations must treat this prefix as
/// Global Unicast).
/// ```
///
/// [`true`]: ../../std/primitive.bool.html
/// [RFC 4291 section 2.5.7]: https://tools.ietf.org/html/rfc4291#section-2.5.7
///
/// # Examples
///
/// ```
/// #![feature(ip)]
///
/// use std::net::Ipv6Addr;
///
/// assert_eq!(Ipv6Addr::new(0x2001, 0xdb8, 0, 0, 0, 0, 0, 0).is_unicast_global(), false);
/// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).is_unicast_global(), true);
/// ```
pub fn is_unicast_global(&self) -> bool {
!self.is_multicast()
&& !self.is_loopback()
&& !self.is_unicast_link_local()
&& !self.is_unique_local()
&& !self.is_unspecified()
&& !self.is_documentation()
}
/// Returns the address's multicast scope if the address is multicast.
///
/// # Examples
///
/// ```
/// #![feature(ip)]
///
/// use std::net::{Ipv6Addr, Ipv6MulticastScope};
///
/// assert_eq!(
/// Ipv6Addr::new(0xff0e, 0, 0, 0, 0, 0, 0, 0).multicast_scope(),
/// Some(Ipv6MulticastScope::Global)
/// );
/// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).multicast_scope(), None);
/// ```
pub fn multicast_scope(&self) -> Option<Ipv6MulticastScope> {
if self.is_multicast() {
match self.segments()[0] & 0x000f {
1 => Some(Ipv6MulticastScope::InterfaceLocal),
2 => Some(Ipv6MulticastScope::LinkLocal),
3 => Some(Ipv6MulticastScope::RealmLocal),
4 => Some(Ipv6MulticastScope::AdminLocal),
5 => Some(Ipv6MulticastScope::SiteLocal),
8 => Some(Ipv6MulticastScope::OrganizationLocal),
14 => Some(Ipv6MulticastScope::Global),
_ => None,
}
} else {
None
}
}
/// Returns [`true`] if this is a multicast address (ff00::/8).
///
/// This property is defined by [IETF RFC 4291].
///
/// [IETF RFC 4291]: https://tools.ietf.org/html/rfc4291
/// [`true`]: ../../std/primitive.bool.html
///
/// # Examples
///
/// ```
/// use std::net::Ipv6Addr;
///
/// assert_eq!(Ipv6Addr::new(0xff00, 0, 0, 0, 0, 0, 0, 0).is_multicast(), true);
/// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).is_multicast(), false);
/// ```
#[stable(since = "1.7.0", feature = "ip_17")]
pub fn is_multicast(&self) -> bool {
(self.segments()[0] & 0xff00) == 0xff00
}
/// Converts this address to an [IPv4 address]. Returns [`None`] if this address is
/// neither IPv4-compatible or IPv4-mapped.
///
/// ::a.b.c.d and ::ffff:a.b.c.d become a.b.c.d
///
/// [IPv4 address]: ../../std/net/struct.Ipv4Addr.html
/// [`None`]: ../../std/option/enum.Option.html#variant.None
///
/// # Examples
///
/// ```
/// use std::net::{Ipv4Addr, Ipv6Addr};
///
/// assert_eq!(Ipv6Addr::new(0xff00, 0, 0, 0, 0, 0, 0, 0).to_ipv4(), None);
/// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).to_ipv4(),
/// Some(Ipv4Addr::new(192, 10, 2, 255)));
/// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 1).to_ipv4(),
/// Some(Ipv4Addr::new(0, 0, 0, 1)));
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn to_ipv4(&self) -> Option<Ipv4Addr> {
match self.segments() {
[0, 0, 0, 0, 0, f, g, h] if f == 0 || f == 0xffff => {
Some(Ipv4Addr::new((g >> 8) as u8, g as u8, (h >> 8) as u8, h as u8))
}
_ => None,
}
}
/// Returns the sixteen eight-bit integers the IPv6 address consists of.
///
/// ```
/// use std::net::Ipv6Addr;
///
/// assert_eq!(Ipv6Addr::new(0xff00, 0, 0, 0, 0, 0, 0, 0).octets(),
/// [255, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]);
/// ```
#[stable(feature = "ipv6_to_octets", since = "1.12.0")]
#[rustc_const_stable(feature = "const_ipv6", since = "1.32.0")]
pub const fn octets(&self) -> [u8; 16] {
self.inner.s6_addr
}
}
/// Write an Ipv6Addr, conforming to the canonical style described by
/// [RFC 5952](https://tools.ietf.org/html/rfc5952).
#[stable(feature = "rust1", since = "1.0.0")]
impl fmt::Display for Ipv6Addr {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
// If there are no alignment requirements, write out the IP address to
// f. Otherwise, write it to a local buffer, then use f.pad.
if f.precision().is_none() && f.width().is_none() {
let segments = self.segments();
// Special case for :: and ::1; otherwise they get written with the
// IPv4 formatter
if self.is_unspecified() {
f.write_str("::")
} else if self.is_loopback() {
f.write_str("::1")
} else if let Some(ipv4) = self.to_ipv4() {
match segments[5] {
// IPv4 Compatible address
0 => write!(f, "::{}", ipv4),
// IPv4 Mapped address
0xffff => write!(f, "::ffff:{}", ipv4),
_ => unreachable!(),
}
} else {
#[derive(Copy, Clone, Default)]
struct Span {
start: usize,
len: usize,
}
// Find the inner 0 span
let zeroes = {
let mut longest = Span::default();
let mut current = Span::default();
for (i, &segment) in segments.iter().enumerate() {
if segment == 0 {
if current.len == 0 {
current.start = i;
}
current.len += 1;
if current.len > longest.len {
longest = current;
}
} else {
current = Span::default();
}
}
longest
};
/// Write a colon-separated part of the address
#[inline]
fn fmt_subslice(f: &mut fmt::Formatter<'_>, chunk: &[u16]) -> fmt::Result {
if let Some(first) = chunk.first() {
fmt::LowerHex::fmt(first, f)?;
for segment in &chunk[1..] {
f.write_char(':')?;
fmt::LowerHex::fmt(segment, f)?;
}
}
Ok(())
}
if zeroes.len > 1 {
fmt_subslice(f, &segments[..zeroes.start])?;
f.write_str("::")?;
fmt_subslice(f, &segments[zeroes.start + zeroes.len..])
} else {
fmt_subslice(f, &segments)
}
}
} else {
// Slow path: write the address to a local buffer, the use f.pad.
// Defined recursively by using the fast path to write to the
// buffer.
// This is the largest possible size of an IPv6 address
const IPV6_BUF_LEN: usize = (4 * 8) + 7;
let mut buf = [0u8; IPV6_BUF_LEN];
let mut buf_slice = &mut buf[..];
// Note: This call to write should never fail, so unwrap is okay.
write!(buf_slice, "{}", self).unwrap();
let len = IPV6_BUF_LEN - buf_slice.len();
// This is safe because we know exactly what can be in this buffer
let buf = unsafe { crate::str::from_utf8_unchecked(&buf[..len]) };
f.pad(buf)
}
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl fmt::Debug for Ipv6Addr {
fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt::Display::fmt(self, fmt)
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl Clone for Ipv6Addr {
fn clone(&self) -> Ipv6Addr {
*self
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl PartialEq for Ipv6Addr {
fn eq(&self, other: &Ipv6Addr) -> bool {
self.inner.s6_addr == other.inner.s6_addr
}
}
#[stable(feature = "ip_cmp", since = "1.16.0")]
impl PartialEq<IpAddr> for Ipv6Addr {
fn eq(&self, other: &IpAddr) -> bool {
match other {
IpAddr::V4(_) => false,
IpAddr::V6(v6) => self == v6,
}
}
}
#[stable(feature = "ip_cmp", since = "1.16.0")]
impl PartialEq<Ipv6Addr> for IpAddr {
fn eq(&self, other: &Ipv6Addr) -> bool {
match self {
IpAddr::V4(_) => false,
IpAddr::V6(v6) => v6 == other,
}
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl Eq for Ipv6Addr {}
#[stable(feature = "rust1", since = "1.0.0")]
impl hash::Hash for Ipv6Addr {
fn hash<H: hash::Hasher>(&self, s: &mut H) {
self.inner.s6_addr.hash(s)
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl PartialOrd for Ipv6Addr {
fn partial_cmp(&self, other: &Ipv6Addr) -> Option<Ordering> {
Some(self.cmp(other))
}
}
#[stable(feature = "ip_cmp", since = "1.16.0")]
impl PartialOrd<Ipv6Addr> for IpAddr {
fn partial_cmp(&self, other: &Ipv6Addr) -> Option<Ordering> {
match self {
IpAddr::V4(_) => Some(Ordering::Less),
IpAddr::V6(v6) => v6.partial_cmp(other),
}
}
}
#[stable(feature = "ip_cmp", since = "1.16.0")]
impl PartialOrd<IpAddr> for Ipv6Addr {
fn partial_cmp(&self, other: &IpAddr) -> Option<Ordering> {
match other {
IpAddr::V4(_) => Some(Ordering::Greater),
IpAddr::V6(v6) => self.partial_cmp(v6),
}
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl Ord for Ipv6Addr {
fn cmp(&self, other: &Ipv6Addr) -> Ordering {
self.segments().cmp(&other.segments())
}
}
impl AsInner<c::in6_addr> for Ipv6Addr {
fn as_inner(&self) -> &c::in6_addr {
&self.inner
}
}
impl FromInner<c::in6_addr> for Ipv6Addr {
fn from_inner(addr: c::in6_addr) -> Ipv6Addr {
Ipv6Addr { inner: addr }
}
}
#[stable(feature = "i128", since = "1.26.0")]
impl From<Ipv6Addr> for u128 {
/// Convert an `Ipv6Addr` into a host byte order `u128`.
///
/// # Examples
///
/// ```
/// use std::net::Ipv6Addr;
///
/// let addr = Ipv6Addr::new(
/// 0x1020, 0x3040, 0x5060, 0x7080,
/// 0x90A0, 0xB0C0, 0xD0E0, 0xF00D,
/// );
/// assert_eq!(0x102030405060708090A0B0C0D0E0F00D_u128, u128::from(addr));
/// ```
fn from(ip: Ipv6Addr) -> u128 {
let ip = ip.octets();
u128::from_be_bytes(ip)
}
}
#[stable(feature = "i128", since = "1.26.0")]
impl From<u128> for Ipv6Addr {
/// Convert a host byte order `u128` into an `Ipv6Addr`.
///
/// # Examples
///
/// ```
/// use std::net::Ipv6Addr;
///
/// let addr = Ipv6Addr::from(0x102030405060708090A0B0C0D0E0F00D_u128);
/// assert_eq!(
/// Ipv6Addr::new(
/// 0x1020, 0x3040, 0x5060, 0x7080,
/// 0x90A0, 0xB0C0, 0xD0E0, 0xF00D,
/// ),
/// addr);
/// ```
fn from(ip: u128) -> Ipv6Addr {
Ipv6Addr::from(ip.to_be_bytes())
}
}
#[stable(feature = "ipv6_from_octets", since = "1.9.0")]
impl From<[u8; 16]> for Ipv6Addr {
/// Creates an `Ipv6Addr` from a sixteen element byte array.
///
/// # Examples
///
/// ```
/// use std::net::Ipv6Addr;
///
/// let addr = Ipv6Addr::from([
/// 25u8, 24u8, 23u8, 22u8, 21u8, 20u8, 19u8, 18u8,
/// 17u8, 16u8, 15u8, 14u8, 13u8, 12u8, 11u8, 10u8,
/// ]);
/// assert_eq!(
/// Ipv6Addr::new(
/// 0x1918, 0x1716,
/// 0x1514, 0x1312,
/// 0x1110, 0x0f0e,
/// 0x0d0c, 0x0b0a
/// ),
/// addr
/// );
/// ```
fn from(octets: [u8; 16]) -> Ipv6Addr {
let inner = c::in6_addr { s6_addr: octets };
Ipv6Addr::from_inner(inner)
}
}
#[stable(feature = "ipv6_from_segments", since = "1.16.0")]
impl From<[u16; 8]> for Ipv6Addr {
/// Creates an `Ipv6Addr` from an eight element 16-bit array.
///
/// # Examples
///
/// ```
/// use std::net::Ipv6Addr;
///
/// let addr = Ipv6Addr::from([
/// 525u16, 524u16, 523u16, 522u16,
/// 521u16, 520u16, 519u16, 518u16,
/// ]);
/// assert_eq!(
/// Ipv6Addr::new(
/// 0x20d, 0x20c,
/// 0x20b, 0x20a,
/// 0x209, 0x208,
/// 0x207, 0x206
/// ),
/// addr
/// );
/// ```
fn from(segments: [u16; 8]) -> Ipv6Addr {
let [a, b, c, d, e, f, g, h] = segments;
Ipv6Addr::new(a, b, c, d, e, f, g, h)
}
}
#[stable(feature = "ip_from_slice", since = "1.17.0")]
impl From<[u8; 16]> for IpAddr {
/// Creates an `IpAddr::V6` from a sixteen element byte array.
///
/// # Examples
///
/// ```
/// use std::net::{IpAddr, Ipv6Addr};
///
/// let addr = IpAddr::from([
/// 25u8, 24u8, 23u8, 22u8, 21u8, 20u8, 19u8, 18u8,
/// 17u8, 16u8, 15u8, 14u8, 13u8, 12u8, 11u8, 10u8,
/// ]);
/// assert_eq!(
/// IpAddr::V6(Ipv6Addr::new(
/// 0x1918, 0x1716,
/// 0x1514, 0x1312,
/// 0x1110, 0x0f0e,
/// 0x0d0c, 0x0b0a
/// )),
/// addr
/// );
/// ```
fn from(octets: [u8; 16]) -> IpAddr {
IpAddr::V6(Ipv6Addr::from(octets))
}
}
#[stable(feature = "ip_from_slice", since = "1.17.0")]
impl From<[u16; 8]> for IpAddr {
/// Creates an `IpAddr::V6` from an eight element 16-bit array.
///
/// # Examples
///
/// ```
/// use std::net::{IpAddr, Ipv6Addr};
///
/// let addr = IpAddr::from([
/// 525u16, 524u16, 523u16, 522u16,
/// 521u16, 520u16, 519u16, 518u16,
/// ]);
/// assert_eq!(
/// IpAddr::V6(Ipv6Addr::new(
/// 0x20d, 0x20c,
/// 0x20b, 0x20a,
/// 0x209, 0x208,
/// 0x207, 0x206
/// )),
/// addr
/// );
/// ```
fn from(segments: [u16; 8]) -> IpAddr {
IpAddr::V6(Ipv6Addr::from(segments))
}
}
// Tests for this module
#[cfg(all(test, not(target_os = "emscripten")))]
mod tests {
use crate::net::test::{sa4, sa6, tsa};
use crate::net::*;
use crate::str::FromStr;
#[test]
fn test_from_str_ipv4() {
assert_eq!(Ok(Ipv4Addr::new(127, 0, 0, 1)), "127.0.0.1".parse());
assert_eq!(Ok(Ipv4Addr::new(255, 255, 255, 255)), "255.255.255.255".parse());
assert_eq!(Ok(Ipv4Addr::new(0, 0, 0, 0)), "0.0.0.0".parse());
// out of range
let none: Option<Ipv4Addr> = "256.0.0.1".parse().ok();
assert_eq!(None, none);
// too short
let none: Option<Ipv4Addr> = "255.0.0".parse().ok();
assert_eq!(None, none);
// too long
let none: Option<Ipv4Addr> = "255.0.0.1.2".parse().ok();
assert_eq!(None, none);
// no number between dots
let none: Option<Ipv4Addr> = "255.0..1".parse().ok();
assert_eq!(None, none);
}
#[test]
fn test_from_str_ipv6() {
assert_eq!(Ok(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 0)), "0:0:0:0:0:0:0:0".parse());
assert_eq!(Ok(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 1)), "0:0:0:0:0:0:0:1".parse());
assert_eq!(Ok(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 1)), "::1".parse());
assert_eq!(Ok(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 0)), "::".parse());
assert_eq!(
Ok(Ipv6Addr::new(0x2a02, 0x6b8, 0, 0, 0, 0, 0x11, 0x11)),
"2a02:6b8::11:11".parse()
);
// too long group
let none: Option<Ipv6Addr> = "::00000".parse().ok();
assert_eq!(None, none);
// too short
let none: Option<Ipv6Addr> = "1:2:3:4:5:6:7".parse().ok();
assert_eq!(None, none);
// too long
let none: Option<Ipv6Addr> = "1:2:3:4:5:6:7:8:9".parse().ok();
assert_eq!(None, none);
// triple colon
let none: Option<Ipv6Addr> = "1:2:::6:7:8".parse().ok();
assert_eq!(None, none);
// two double colons
let none: Option<Ipv6Addr> = "1:2::6::8".parse().ok();
assert_eq!(None, none);
// `::` indicating zero groups of zeros
let none: Option<Ipv6Addr> = "1:2:3:4::5:6:7:8".parse().ok();
assert_eq!(None, none);
}
#[test]
fn test_from_str_ipv4_in_ipv6() {
assert_eq!(Ok(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 49152, 545)), "::192.0.2.33".parse());
assert_eq!(
Ok(Ipv6Addr::new(0, 0, 0, 0, 0, 0xFFFF, 49152, 545)),
"::FFFF:192.0.2.33".parse()
);
assert_eq!(
Ok(Ipv6Addr::new(0x64, 0xff9b, 0, 0, 0, 0, 49152, 545)),
"64:ff9b::192.0.2.33".parse()
);
assert_eq!(
Ok(Ipv6Addr::new(0x2001, 0xdb8, 0x122, 0xc000, 0x2, 0x2100, 49152, 545)),
"2001:db8:122:c000:2:2100:192.0.2.33".parse()
);
// colon after v4
let none: Option<Ipv4Addr> = "::127.0.0.1:".parse().ok();
assert_eq!(None, none);
// not enough groups
let none: Option<Ipv6Addr> = "1.2.3.4.5:127.0.0.1".parse().ok();
assert_eq!(None, none);
// too many groups
let none: Option<Ipv6Addr> = "1.2.3.4.5:6:7:127.0.0.1".parse().ok();
assert_eq!(None, none);
}
#[test]
fn test_from_str_socket_addr() {
assert_eq!(Ok(sa4(Ipv4Addr::new(77, 88, 21, 11), 80)), "77.88.21.11:80".parse());
assert_eq!(
Ok(SocketAddrV4::new(Ipv4Addr::new(77, 88, 21, 11), 80)),
"77.88.21.11:80".parse()
);
assert_eq!(
Ok(sa6(Ipv6Addr::new(0x2a02, 0x6b8, 0, 1, 0, 0, 0, 1), 53)),
"[2a02:6b8:0:1::1]:53".parse()
);
assert_eq!(
Ok(SocketAddrV6::new(Ipv6Addr::new(0x2a02, 0x6b8, 0, 1, 0, 0, 0, 1), 53, 0, 0)),
"[2a02:6b8:0:1::1]:53".parse()
);
assert_eq!(
Ok(sa6(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0x7F00, 1), 22)),
"[::127.0.0.1]:22".parse()
);
assert_eq!(
Ok(SocketAddrV6::new(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0x7F00, 1), 22, 0, 0)),
"[::127.0.0.1]:22".parse()
);
// without port
let none: Option<SocketAddr> = "127.0.0.1".parse().ok();
assert_eq!(None, none);
// without port
let none: Option<SocketAddr> = "127.0.0.1:".parse().ok();
assert_eq!(None, none);
// wrong brackets around v4
let none: Option<SocketAddr> = "[127.0.0.1]:22".parse().ok();
assert_eq!(None, none);
// port out of range
let none: Option<SocketAddr> = "127.0.0.1:123456".parse().ok();
assert_eq!(None, none);
}
#[test]
fn ipv4_addr_to_string() {
// Short address
assert_eq!(Ipv4Addr::new(1, 1, 1, 1).to_string(), "1.1.1.1");
// Long address
assert_eq!(Ipv4Addr::new(127, 127, 127, 127).to_string(), "127.127.127.127");
// Test padding
assert_eq!(&format!("{:16}", Ipv4Addr::new(1, 1, 1, 1)), "1.1.1.1 ");
assert_eq!(&format!("{:>16}", Ipv4Addr::new(1, 1, 1, 1)), " 1.1.1.1");
}
#[test]
fn ipv6_addr_to_string() {
// ipv4-mapped address
let a1 = Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc000, 0x280);
assert_eq!(a1.to_string(), "::ffff:192.0.2.128");
// ipv4-compatible address
let a1 = Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0xc000, 0x280);
assert_eq!(a1.to_string(), "::192.0.2.128");
// v6 address with no zero segments
assert_eq!(Ipv6Addr::new(8, 9, 10, 11, 12, 13, 14, 15).to_string(), "8:9:a:b:c:d:e:f");
// longest possible IPv6 length
assert_eq!(
Ipv6Addr::new(0x1111, 0x2222, 0x3333, 0x4444, 0x5555, 0x6666, 0x7777, 0x8888)
.to_string(),
"1111:2222:3333:4444:5555:6666:7777:8888"
);
// padding
assert_eq!(
&format!("{:20}", Ipv6Addr::new(1, 2, 3, 4, 5, 6, 7, 8)),
"1:2:3:4:5:6:7:8 "
);
assert_eq!(
&format!("{:>20}", Ipv6Addr::new(1, 2, 3, 4, 5, 6, 7, 8)),
" 1:2:3:4:5:6:7:8"
);
// reduce a single run of zeros
assert_eq!(
"ae::ffff:102:304",
Ipv6Addr::new(0xae, 0, 0, 0, 0, 0xffff, 0x0102, 0x0304).to_string()
);
// don't reduce just a single zero segment
assert_eq!("1:2:3:4:5:6:0:8", Ipv6Addr::new(1, 2, 3, 4, 5, 6, 0, 8).to_string());
// 'any' address
assert_eq!("::", Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 0).to_string());
// loopback address
assert_eq!("::1", Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 1).to_string());
// ends in zeros
assert_eq!("1::", Ipv6Addr::new(1, 0, 0, 0, 0, 0, 0, 0).to_string());
// two runs of zeros, second one is longer
assert_eq!("1:0:0:4::8", Ipv6Addr::new(1, 0, 0, 4, 0, 0, 0, 8).to_string());
// two runs of zeros, equal length
assert_eq!("1::4:5:0:0:8", Ipv6Addr::new(1, 0, 0, 4, 5, 0, 0, 8).to_string());
}
#[test]
fn ipv4_to_ipv6() {
assert_eq!(
Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0x1234, 0x5678),
Ipv4Addr::new(0x12, 0x34, 0x56, 0x78).to_ipv6_mapped()
);
assert_eq!(
Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0x1234, 0x5678),
Ipv4Addr::new(0x12, 0x34, 0x56, 0x78).to_ipv6_compatible()
);
}
#[test]
fn ipv6_to_ipv4() {
assert_eq!(
Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0x1234, 0x5678).to_ipv4(),
Some(Ipv4Addr::new(0x12, 0x34, 0x56, 0x78))
);
assert_eq!(
Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0x1234, 0x5678).to_ipv4(),
Some(Ipv4Addr::new(0x12, 0x34, 0x56, 0x78))
);
assert_eq!(Ipv6Addr::new(0, 0, 1, 0, 0, 0, 0x1234, 0x5678).to_ipv4(), None);
}
#[test]
fn ip_properties() {
macro_rules! ip {
($s:expr) => {
IpAddr::from_str($s).unwrap()
};
}
macro_rules! check {
($s:expr) => {
check!($s, 0);
};
($s:expr, $mask:expr) => {{
let unspec: u8 = 1 << 0;
let loopback: u8 = 1 << 1;
let global: u8 = 1 << 2;
let multicast: u8 = 1 << 3;
let doc: u8 = 1 << 4;
if ($mask & unspec) == unspec {
assert!(ip!($s).is_unspecified());
} else {
assert!(!ip!($s).is_unspecified());
}
if ($mask & loopback) == loopback {
assert!(ip!($s).is_loopback());
} else {
assert!(!ip!($s).is_loopback());
}
if ($mask & global) == global {
assert!(ip!($s).is_global());
} else {
assert!(!ip!($s).is_global());
}
if ($mask & multicast) == multicast {
assert!(ip!($s).is_multicast());
} else {
assert!(!ip!($s).is_multicast());
}
if ($mask & doc) == doc {
assert!(ip!($s).is_documentation());
} else {
assert!(!ip!($s).is_documentation());
}
}};
}
let unspec: u8 = 1 << 0;
let loopback: u8 = 1 << 1;
let global: u8 = 1 << 2;
let multicast: u8 = 1 << 3;
let doc: u8 = 1 << 4;
check!("0.0.0.0", unspec);
check!("0.0.0.1");
check!("0.1.0.0");
check!("10.9.8.7");
check!("127.1.2.3", loopback);
check!("172.31.254.253");
check!("169.254.253.242");
check!("192.0.2.183", doc);
check!("192.1.2.183", global);
check!("192.168.254.253");
check!("198.51.100.0", doc);
check!("203.0.113.0", doc);
check!("203.2.113.0", global);
check!("224.0.0.0", global | multicast);
check!("239.255.255.255", global | multicast);
check!("255.255.255.255");
// make sure benchmarking addresses are not global
check!("198.18.0.0");
check!("198.18.54.2");
check!("198.19.255.255");
// make sure addresses reserved for protocol assignment are not global
check!("192.0.0.0");
check!("192.0.0.255");
check!("192.0.0.100");
// make sure reserved addresses are not global
check!("240.0.0.0");
check!("251.54.1.76");
check!("254.255.255.255");
// make sure shared addresses are not global
check!("100.64.0.0");
check!("100.127.255.255");
check!("100.100.100.0");
check!("::", unspec);
check!("::1", loopback);
check!("::0.0.0.2", global);
check!("1::", global);
check!("fc00::");
check!("fdff:ffff::");
check!("fe80:ffff::");
check!("febf:ffff::");
check!("fec0::", global);
check!("ff01::", multicast);
check!("ff02::", multicast);
check!("ff03::", multicast);
check!("ff04::", multicast);
check!("ff05::", multicast);
check!("ff08::", multicast);
check!("ff0e::", global | multicast);
check!("2001:db8:85a3::8a2e:370:7334", doc);
check!("102:304:506:708:90a:b0c:d0e:f10", global);
}
#[test]
fn ipv4_properties() {
macro_rules! ip {
($s:expr) => {
Ipv4Addr::from_str($s).unwrap()
};
}
macro_rules! check {
($s:expr) => {
check!($s, 0);
};
($s:expr, $mask:expr) => {{
let unspec: u16 = 1 << 0;
let loopback: u16 = 1 << 1;
let private: u16 = 1 << 2;
let link_local: u16 = 1 << 3;
let global: u16 = 1 << 4;
let multicast: u16 = 1 << 5;
let broadcast: u16 = 1 << 6;
let documentation: u16 = 1 << 7;
let benchmarking: u16 = 1 << 8;
let ietf_protocol_assignment: u16 = 1 << 9;
let reserved: u16 = 1 << 10;
let shared: u16 = 1 << 11;
if ($mask & unspec) == unspec {
assert!(ip!($s).is_unspecified());
} else {
assert!(!ip!($s).is_unspecified());
}
if ($mask & loopback) == loopback {
assert!(ip!($s).is_loopback());
} else {
assert!(!ip!($s).is_loopback());
}
if ($mask & private) == private {
assert!(ip!($s).is_private());
} else {
assert!(!ip!($s).is_private());
}
if ($mask & link_local) == link_local {
assert!(ip!($s).is_link_local());
} else {
assert!(!ip!($s).is_link_local());
}
if ($mask & global) == global {
assert!(ip!($s).is_global());
} else {
assert!(!ip!($s).is_global());
}
if ($mask & multicast) == multicast {
assert!(ip!($s).is_multicast());
} else {
assert!(!ip!($s).is_multicast());
}
if ($mask & broadcast) == broadcast {
assert!(ip!($s).is_broadcast());
} else {
assert!(!ip!($s).is_broadcast());
}
if ($mask & documentation) == documentation {
assert!(ip!($s).is_documentation());
} else {
assert!(!ip!($s).is_documentation());
}
if ($mask & benchmarking) == benchmarking {
assert!(ip!($s).is_benchmarking());
} else {
assert!(!ip!($s).is_benchmarking());
}
if ($mask & ietf_protocol_assignment) == ietf_protocol_assignment {
assert!(ip!($s).is_ietf_protocol_assignment());
} else {
assert!(!ip!($s).is_ietf_protocol_assignment());
}
if ($mask & reserved) == reserved {
assert!(ip!($s).is_reserved());
} else {
assert!(!ip!($s).is_reserved());
}
if ($mask & shared) == shared {
assert!(ip!($s).is_shared());
} else {
assert!(!ip!($s).is_shared());
}
}};
}
let unspec: u16 = 1 << 0;
let loopback: u16 = 1 << 1;
let private: u16 = 1 << 2;
let link_local: u16 = 1 << 3;
let global: u16 = 1 << 4;
let multicast: u16 = 1 << 5;
let broadcast: u16 = 1 << 6;
let documentation: u16 = 1 << 7;
let benchmarking: u16 = 1 << 8;
let ietf_protocol_assignment: u16 = 1 << 9;
let reserved: u16 = 1 << 10;
let shared: u16 = 1 << 11;
check!("0.0.0.0", unspec);
check!("0.0.0.1");
check!("0.1.0.0");
check!("10.9.8.7", private);
check!("127.1.2.3", loopback);
check!("172.31.254.253", private);
check!("169.254.253.242", link_local);
check!("192.0.2.183", documentation);
check!("192.1.2.183", global);
check!("192.168.254.253", private);
check!("198.51.100.0", documentation);
check!("203.0.113.0", documentation);
check!("203.2.113.0", global);
check!("224.0.0.0", global | multicast);
check!("239.255.255.255", global | multicast);
check!("255.255.255.255", broadcast);
check!("198.18.0.0", benchmarking);
check!("198.18.54.2", benchmarking);
check!("198.19.255.255", benchmarking);
check!("192.0.0.0", ietf_protocol_assignment);
check!("192.0.0.255", ietf_protocol_assignment);
check!("192.0.0.100", ietf_protocol_assignment);
check!("240.0.0.0", reserved);
check!("251.54.1.76", reserved);
check!("254.255.255.255", reserved);
check!("100.64.0.0", shared);
check!("100.127.255.255", shared);
check!("100.100.100.0", shared);
}
#[test]
fn ipv6_properties() {
macro_rules! ip {
($s:expr) => {
Ipv6Addr::from_str($s).unwrap()
};
}
macro_rules! check {
($s:expr, &[$($octet:expr),*], $mask:expr) => {
assert_eq!($s, ip!($s).to_string());
let octets = &[$($octet),*];
assert_eq!(&ip!($s).octets(), octets);
assert_eq!(Ipv6Addr::from(*octets), ip!($s));
let unspecified: u16 = 1 << 0;
let loopback: u16 = 1 << 1;
let unique_local: u16 = 1 << 2;
let global: u16 = 1 << 3;
let unicast_link_local: u16 = 1 << 4;
let unicast_link_local_strict: u16 = 1 << 5;
let unicast_site_local: u16 = 1 << 6;
let unicast_global: u16 = 1 << 7;
let documentation: u16 = 1 << 8;
let multicast_interface_local: u16 = 1 << 9;
let multicast_link_local: u16 = 1 << 10;
let multicast_realm_local: u16 = 1 << 11;
let multicast_admin_local: u16 = 1 << 12;
let multicast_site_local: u16 = 1 << 13;
let multicast_organization_local: u16 = 1 << 14;
let multicast_global: u16 = 1 << 15;
let multicast: u16 = multicast_interface_local
| multicast_admin_local
| multicast_global
| multicast_link_local
| multicast_realm_local
| multicast_site_local
| multicast_organization_local;
if ($mask & unspecified) == unspecified {
assert!(ip!($s).is_unspecified());
} else {
assert!(!ip!($s).is_unspecified());
}
if ($mask & loopback) == loopback {
assert!(ip!($s).is_loopback());
} else {
assert!(!ip!($s).is_loopback());
}
if ($mask & unique_local) == unique_local {
assert!(ip!($s).is_unique_local());
} else {
assert!(!ip!($s).is_unique_local());
}
if ($mask & global) == global {
assert!(ip!($s).is_global());
} else {
assert!(!ip!($s).is_global());
}
if ($mask & unicast_link_local) == unicast_link_local {
assert!(ip!($s).is_unicast_link_local());
} else {
assert!(!ip!($s).is_unicast_link_local());
}
if ($mask & unicast_link_local_strict) == unicast_link_local_strict {
assert!(ip!($s).is_unicast_link_local_strict());
} else {
assert!(!ip!($s).is_unicast_link_local_strict());
}
if ($mask & unicast_site_local) == unicast_site_local {
assert!(ip!($s).is_unicast_site_local());
} else {
assert!(!ip!($s).is_unicast_site_local());
}
if ($mask & unicast_global) == unicast_global {
assert!(ip!($s).is_unicast_global());
} else {
assert!(!ip!($s).is_unicast_global());
}
if ($mask & documentation) == documentation {
assert!(ip!($s).is_documentation());
} else {
assert!(!ip!($s).is_documentation());
}
if ($mask & multicast) != 0 {
assert!(ip!($s).multicast_scope().is_some());
assert!(ip!($s).is_multicast());
} else {
assert!(ip!($s).multicast_scope().is_none());
assert!(!ip!($s).is_multicast());
}
if ($mask & multicast_interface_local) == multicast_interface_local {
assert_eq!(ip!($s).multicast_scope().unwrap(),
Ipv6MulticastScope::InterfaceLocal);
}
if ($mask & multicast_link_local) == multicast_link_local {
assert_eq!(ip!($s).multicast_scope().unwrap(),
Ipv6MulticastScope::LinkLocal);
}
if ($mask & multicast_realm_local) == multicast_realm_local {
assert_eq!(ip!($s).multicast_scope().unwrap(),
Ipv6MulticastScope::RealmLocal);
}
if ($mask & multicast_admin_local) == multicast_admin_local {
assert_eq!(ip!($s).multicast_scope().unwrap(),
Ipv6MulticastScope::AdminLocal);
}
if ($mask & multicast_site_local) == multicast_site_local {
assert_eq!(ip!($s).multicast_scope().unwrap(),
Ipv6MulticastScope::SiteLocal);
}
if ($mask & multicast_organization_local) == multicast_organization_local {
assert_eq!(ip!($s).multicast_scope().unwrap(),
Ipv6MulticastScope::OrganizationLocal);
}
if ($mask & multicast_global) == multicast_global {
assert_eq!(ip!($s).multicast_scope().unwrap(),
Ipv6MulticastScope::Global);
}
}
}
let unspecified: u16 = 1 << 0;
let loopback: u16 = 1 << 1;
let unique_local: u16 = 1 << 2;
let global: u16 = 1 << 3;
let unicast_link_local: u16 = 1 << 4;
let unicast_link_local_strict: u16 = 1 << 5;
let unicast_site_local: u16 = 1 << 6;
let unicast_global: u16 = 1 << 7;
let documentation: u16 = 1 << 8;
let multicast_interface_local: u16 = 1 << 9;
let multicast_link_local: u16 = 1 << 10;
let multicast_realm_local: u16 = 1 << 11;
let multicast_admin_local: u16 = 1 << 12;
let multicast_site_local: u16 = 1 << 13;
let multicast_organization_local: u16 = 1 << 14;
let multicast_global: u16 = 1 << 15;
check!("::", &[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], unspecified);
check!("::1", &[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1], loopback);
check!(
"::0.0.0.2",
&[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2],
global | unicast_global
);
check!("1::", &[0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], global | unicast_global);
check!("fc00::", &[0xfc, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], unique_local);
check!(
"fdff:ffff::",
&[0xfd, 0xff, 0xff, 0xff, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
unique_local
);
check!(
"fe80:ffff::",
&[0xfe, 0x80, 0xff, 0xff, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
unicast_link_local
);
check!(
"fe80::",
&[0xfe, 0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
unicast_link_local | unicast_link_local_strict
);
check!(
"febf:ffff::",
&[0xfe, 0xbf, 0xff, 0xff, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
unicast_link_local
);
check!(
"febf::",
&[0xfe, 0xbf, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
unicast_link_local
);
check!(
"febf:ffff:ffff:ffff:ffff:ffff:ffff:ffff",
&[
0xfe, 0xbf, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff
],
unicast_link_local
);
check!(
"fe80::ffff:ffff:ffff:ffff",
&[
0xfe, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff
],
unicast_link_local | unicast_link_local_strict
);
check!(
"fe80:0:0:1::",
&[0xfe, 0x80, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0],
unicast_link_local
);
check!(
"fec0::",
&[0xfe, 0xc0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
unicast_site_local | unicast_global | global
);
check!(
"ff01::",
&[0xff, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
multicast_interface_local
);
check!(
"ff02::",
&[0xff, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
multicast_link_local
);
check!(
"ff03::",
&[0xff, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
multicast_realm_local
);
check!(
"ff04::",
&[0xff, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
multicast_admin_local
);
check!(
"ff05::",
&[0xff, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
multicast_site_local
);
check!(
"ff08::",
&[0xff, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
multicast_organization_local
);
check!(
"ff0e::",
&[0xff, 0xe,