blob: f6991120f347989da516a95e7cd58c979805d0d6 [file] [log] [blame]
use crate::check::regionck::RegionCtxt;
use crate::hir;
use crate::hir::def_id::{DefId, LocalDefId};
use rustc_errors::{struct_span_err, ErrorReported};
use rustc_infer::infer::outlives::env::OutlivesEnvironment;
use rustc_infer::infer::{InferOk, RegionckMode, TyCtxtInferExt};
use rustc_infer::traits::TraitEngineExt as _;
use rustc_middle::ty::error::TypeError;
use rustc_middle::ty::relate::{Relate, RelateResult, TypeRelation};
use rustc_middle::ty::subst::{Subst, SubstsRef};
use rustc_middle::ty::{self, Predicate, Ty, TyCtxt};
use rustc_span::Span;
use rustc_trait_selection::traits::error_reporting::InferCtxtExt;
use rustc_trait_selection::traits::query::dropck_outlives::AtExt;
use rustc_trait_selection::traits::{ObligationCause, TraitEngine, TraitEngineExt};
/// This function confirms that the `Drop` implementation identified by
/// `drop_impl_did` is not any more specialized than the type it is
/// attached to (Issue #8142).
///
/// This means:
///
/// 1. The self type must be nominal (this is already checked during
/// coherence),
///
/// 2. The generic region/type parameters of the impl's self type must
/// all be parameters of the Drop impl itself (i.e., no
/// specialization like `impl Drop for Foo<i32>`), and,
///
/// 3. Any bounds on the generic parameters must be reflected in the
/// struct/enum definition for the nominal type itself (i.e.
/// cannot do `struct S<T>; impl<T:Clone> Drop for S<T> { ... }`).
///
pub fn check_drop_impl(tcx: TyCtxt<'_>, drop_impl_did: DefId) -> Result<(), ErrorReported> {
let dtor_self_type = tcx.type_of(drop_impl_did);
let dtor_predicates = tcx.predicates_of(drop_impl_did);
match dtor_self_type.kind {
ty::Adt(adt_def, self_to_impl_substs) => {
ensure_drop_params_and_item_params_correspond(
tcx,
drop_impl_did.expect_local(),
dtor_self_type,
adt_def.did,
)?;
ensure_drop_predicates_are_implied_by_item_defn(
tcx,
dtor_predicates,
adt_def.did.expect_local(),
self_to_impl_substs,
)
}
_ => {
// Destructors only work on nominal types. This was
// already checked by coherence, but compilation may
// not have been terminated.
let span = tcx.def_span(drop_impl_did);
tcx.sess.delay_span_bug(
span,
&format!("should have been rejected by coherence check: {}", dtor_self_type),
);
Err(ErrorReported)
}
}
}
fn ensure_drop_params_and_item_params_correspond<'tcx>(
tcx: TyCtxt<'tcx>,
drop_impl_did: LocalDefId,
drop_impl_ty: Ty<'tcx>,
self_type_did: DefId,
) -> Result<(), ErrorReported> {
let drop_impl_hir_id = tcx.hir().as_local_hir_id(drop_impl_did);
// check that the impl type can be made to match the trait type.
tcx.infer_ctxt().enter(|ref infcx| {
let impl_param_env = tcx.param_env(self_type_did);
let tcx = infcx.tcx;
let mut fulfillment_cx = TraitEngine::new(tcx);
let named_type = tcx.type_of(self_type_did);
let drop_impl_span = tcx.def_span(drop_impl_did);
let fresh_impl_substs =
infcx.fresh_substs_for_item(drop_impl_span, drop_impl_did.to_def_id());
let fresh_impl_self_ty = drop_impl_ty.subst(tcx, fresh_impl_substs);
let cause = &ObligationCause::misc(drop_impl_span, drop_impl_hir_id);
match infcx.at(cause, impl_param_env).eq(named_type, fresh_impl_self_ty) {
Ok(InferOk { obligations, .. }) => {
fulfillment_cx.register_predicate_obligations(infcx, obligations);
}
Err(_) => {
let item_span = tcx.def_span(self_type_did);
let self_descr = tcx.def_kind(self_type_did).descr(self_type_did);
struct_span_err!(
tcx.sess,
drop_impl_span,
E0366,
"`Drop` impls cannot be specialized"
)
.span_note(
item_span,
&format!(
"use the same sequence of generic type, lifetime and const parameters \
as the {} definition",
self_descr,
),
)
.emit();
return Err(ErrorReported);
}
}
if let Err(ref errors) = fulfillment_cx.select_all_or_error(&infcx) {
// this could be reached when we get lazy normalization
infcx.report_fulfillment_errors(errors, None, false);
return Err(ErrorReported);
}
// NB. It seems a bit... suspicious to use an empty param-env
// here. The correct thing, I imagine, would be
// `OutlivesEnvironment::new(impl_param_env)`, which would
// allow region solving to take any `a: 'b` relations on the
// impl into account. But I could not create a test case where
// it did the wrong thing, so I chose to preserve existing
// behavior, since it ought to be simply more
// conservative. -nmatsakis
let outlives_env = OutlivesEnvironment::new(ty::ParamEnv::empty());
infcx.resolve_regions_and_report_errors(
drop_impl_did.to_def_id(),
&outlives_env,
RegionckMode::default(),
);
Ok(())
})
}
/// Confirms that every predicate imposed by dtor_predicates is
/// implied by assuming the predicates attached to self_type_did.
fn ensure_drop_predicates_are_implied_by_item_defn<'tcx>(
tcx: TyCtxt<'tcx>,
dtor_predicates: ty::GenericPredicates<'tcx>,
self_type_did: LocalDefId,
self_to_impl_substs: SubstsRef<'tcx>,
) -> Result<(), ErrorReported> {
let mut result = Ok(());
// Here is an example, analogous to that from
// `compare_impl_method`.
//
// Consider a struct type:
//
// struct Type<'c, 'b:'c, 'a> {
// x: &'a Contents // (contents are irrelevant;
// y: &'c Cell<&'b Contents>, // only the bounds matter for our purposes.)
// }
//
// and a Drop impl:
//
// impl<'z, 'y:'z, 'x:'y> Drop for P<'z, 'y, 'x> {
// fn drop(&mut self) { self.y.set(self.x); } // (only legal if 'x: 'y)
// }
//
// We start out with self_to_impl_substs, that maps the generic
// parameters of Type to that of the Drop impl.
//
// self_to_impl_substs = {'c => 'z, 'b => 'y, 'a => 'x}
//
// Applying this to the predicates (i.e., assumptions) provided by the item
// definition yields the instantiated assumptions:
//
// ['y : 'z]
//
// We then check all of the predicates of the Drop impl:
//
// ['y:'z, 'x:'y]
//
// and ensure each is in the list of instantiated
// assumptions. Here, `'y:'z` is present, but `'x:'y` is
// absent. So we report an error that the Drop impl injected a
// predicate that is not present on the struct definition.
let self_type_hir_id = tcx.hir().as_local_hir_id(self_type_did);
// We can assume the predicates attached to struct/enum definition
// hold.
let generic_assumptions = tcx.predicates_of(self_type_did);
let assumptions_in_impl_context = generic_assumptions.instantiate(tcx, &self_to_impl_substs);
let assumptions_in_impl_context = assumptions_in_impl_context.predicates;
let self_param_env = tcx.param_env(self_type_did);
// An earlier version of this code attempted to do this checking
// via the traits::fulfill machinery. However, it ran into trouble
// since the fulfill machinery merely turns outlives-predicates
// 'a:'b and T:'b into region inference constraints. It is simpler
// just to look for all the predicates directly.
assert_eq!(dtor_predicates.parent, None);
for &(predicate, predicate_sp) in dtor_predicates.predicates {
// (We do not need to worry about deep analysis of type
// expressions etc because the Drop impls are already forced
// to take on a structure that is roughly an alpha-renaming of
// the generic parameters of the item definition.)
// This path now just checks *all* predicates via an instantiation of
// the `SimpleEqRelation`, which simply forwards to the `relate` machinery
// after taking care of anonymizing late bound regions.
//
// However, it may be more efficient in the future to batch
// the analysis together via the fulfill (see comment above regarding
// the usage of the fulfill machinery), rather than the
// repeated `.iter().any(..)` calls.
// This closure is a more robust way to check `Predicate` equality
// than simple `==` checks (which were the previous implementation).
// It relies on `ty::relate` for `TraitPredicate` and `ProjectionPredicate`
// (which implement the Relate trait), while delegating on simple equality
// for the other `Predicate`.
// This implementation solves (Issue #59497) and (Issue #58311).
// It is unclear to me at the moment whether the approach based on `relate`
// could be extended easily also to the other `Predicate`.
let predicate_matches_closure = |p: Predicate<'tcx>| {
let mut relator: SimpleEqRelation<'tcx> = SimpleEqRelation::new(tcx, self_param_env);
match (predicate.kind(), p.kind()) {
(&ty::PredicateKind::Trait(a, _), &ty::PredicateKind::Trait(b, _)) => {
relator.relate(a, b).is_ok()
}
(&ty::PredicateKind::Projection(a), &ty::PredicateKind::Projection(b)) => {
relator.relate(a, b).is_ok()
}
_ => predicate == p,
}
};
if !assumptions_in_impl_context.iter().copied().any(predicate_matches_closure) {
let item_span = tcx.hir().span(self_type_hir_id);
let self_descr = tcx.def_kind(self_type_did).descr(self_type_did.to_def_id());
struct_span_err!(
tcx.sess,
predicate_sp,
E0367,
"`Drop` impl requires `{}` but the {} it is implemented for does not",
predicate,
self_descr,
)
.span_note(item_span, "the implementor must specify the same requirement")
.emit();
result = Err(ErrorReported);
}
}
result
}
/// This function is not only checking that the dropck obligations are met for
/// the given type, but it's also currently preventing non-regular recursion in
/// types from causing stack overflows (dropck_no_diverge_on_nonregular_*.rs).
crate fn check_drop_obligations<'a, 'tcx>(
rcx: &mut RegionCtxt<'a, 'tcx>,
ty: Ty<'tcx>,
span: Span,
body_id: hir::HirId,
) -> Result<(), ErrorReported> {
debug!("check_drop_obligations typ: {:?}", ty);
let cause = &ObligationCause::misc(span, body_id);
let infer_ok = rcx.infcx.at(cause, rcx.fcx.param_env).dropck_outlives(ty);
debug!("dropck_outlives = {:#?}", infer_ok);
rcx.fcx.register_infer_ok_obligations(infer_ok);
Ok(())
}
// This is an implementation of the TypeRelation trait with the
// aim of simply comparing for equality (without side-effects).
// It is not intended to be used anywhere else other than here.
crate struct SimpleEqRelation<'tcx> {
tcx: TyCtxt<'tcx>,
param_env: ty::ParamEnv<'tcx>,
}
impl<'tcx> SimpleEqRelation<'tcx> {
fn new(tcx: TyCtxt<'tcx>, param_env: ty::ParamEnv<'tcx>) -> SimpleEqRelation<'tcx> {
SimpleEqRelation { tcx, param_env }
}
}
impl TypeRelation<'tcx> for SimpleEqRelation<'tcx> {
fn tcx(&self) -> TyCtxt<'tcx> {
self.tcx
}
fn param_env(&self) -> ty::ParamEnv<'tcx> {
self.param_env
}
fn tag(&self) -> &'static str {
"dropck::SimpleEqRelation"
}
fn a_is_expected(&self) -> bool {
true
}
fn relate_with_variance<T: Relate<'tcx>>(
&mut self,
_: ty::Variance,
a: T,
b: T,
) -> RelateResult<'tcx, T> {
// Here we ignore variance because we require drop impl's types
// to be *exactly* the same as to the ones in the struct definition.
self.relate(a, b)
}
fn tys(&mut self, a: Ty<'tcx>, b: Ty<'tcx>) -> RelateResult<'tcx, Ty<'tcx>> {
debug!("SimpleEqRelation::tys(a={:?}, b={:?})", a, b);
ty::relate::super_relate_tys(self, a, b)
}
fn regions(
&mut self,
a: ty::Region<'tcx>,
b: ty::Region<'tcx>,
) -> RelateResult<'tcx, ty::Region<'tcx>> {
debug!("SimpleEqRelation::regions(a={:?}, b={:?})", a, b);
// We can just equate the regions because LBRs have been
// already anonymized.
if a == b {
Ok(a)
} else {
// I'm not sure is this `TypeError` is the right one, but
// it should not matter as it won't be checked (the dropck
// will emit its own, more informative and higher-level errors
// in case anything goes wrong).
Err(TypeError::RegionsPlaceholderMismatch)
}
}
fn consts(
&mut self,
a: &'tcx ty::Const<'tcx>,
b: &'tcx ty::Const<'tcx>,
) -> RelateResult<'tcx, &'tcx ty::Const<'tcx>> {
debug!("SimpleEqRelation::consts(a={:?}, b={:?})", a, b);
ty::relate::super_relate_consts(self, a, b)
}
fn binders<T>(
&mut self,
a: ty::Binder<T>,
b: ty::Binder<T>,
) -> RelateResult<'tcx, ty::Binder<T>>
where
T: Relate<'tcx>,
{
debug!("SimpleEqRelation::binders({:?}: {:?}", a, b);
// Anonymizing the LBRs is necessary to solve (Issue #59497).
// After we do so, it should be totally fine to skip the binders.
let anon_a = self.tcx.anonymize_late_bound_regions(&a);
let anon_b = self.tcx.anonymize_late_bound_regions(&b);
self.relate(anon_a.skip_binder(), anon_b.skip_binder())?;
Ok(a.clone())
}
}