blob: 9a9630f09588698fc551517f3c8286641d016e27 [file] [log] [blame]
use crate::check::FnCtxt;
use rustc_infer::infer::InferOk;
use rustc_trait_selection::infer::InferCtxtExt as _;
use rustc_trait_selection::traits::ObligationCause;
use rustc_ast::util::parser::PREC_POSTFIX;
use rustc_errors::{Applicability, DiagnosticBuilder};
use rustc_hir as hir;
use rustc_hir::lang_items::CloneTraitLangItem;
use rustc_hir::{is_range_literal, Node};
use rustc_middle::ty::adjustment::AllowTwoPhase;
use rustc_middle::ty::{self, AssocItem, Ty, TypeAndMut};
use rustc_span::symbol::sym;
use rustc_span::Span;
use super::method::probe;
use std::fmt;
impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
pub fn emit_coerce_suggestions(
&self,
err: &mut DiagnosticBuilder<'_>,
expr: &hir::Expr<'_>,
expr_ty: Ty<'tcx>,
expected: Ty<'tcx>,
expected_ty_expr: Option<&'tcx hir::Expr<'tcx>>,
) {
self.annotate_expected_due_to_let_ty(err, expr);
self.suggest_compatible_variants(err, expr, expected, expr_ty);
self.suggest_deref_ref_or_into(err, expr, expected, expr_ty, expected_ty_expr);
if self.suggest_calling_boxed_future_when_appropriate(err, expr, expected, expr_ty) {
return;
}
self.suggest_boxing_when_appropriate(err, expr, expected, expr_ty);
self.suggest_missing_await(err, expr, expected, expr_ty);
self.note_need_for_fn_pointer(err, expected, expr_ty);
}
// Requires that the two types unify, and prints an error message if
// they don't.
pub fn demand_suptype(&self, sp: Span, expected: Ty<'tcx>, actual: Ty<'tcx>) {
if let Some(mut e) = self.demand_suptype_diag(sp, expected, actual) {
e.emit();
}
}
pub fn demand_suptype_diag(
&self,
sp: Span,
expected: Ty<'tcx>,
actual: Ty<'tcx>,
) -> Option<DiagnosticBuilder<'tcx>> {
self.demand_suptype_with_origin(&self.misc(sp), expected, actual)
}
pub fn demand_suptype_with_origin(
&self,
cause: &ObligationCause<'tcx>,
expected: Ty<'tcx>,
actual: Ty<'tcx>,
) -> Option<DiagnosticBuilder<'tcx>> {
match self.at(cause, self.param_env).sup(expected, actual) {
Ok(InferOk { obligations, value: () }) => {
self.register_predicates(obligations);
None
}
Err(e) => Some(self.report_mismatched_types(&cause, expected, actual, e)),
}
}
pub fn demand_eqtype(&self, sp: Span, expected: Ty<'tcx>, actual: Ty<'tcx>) {
if let Some(mut err) = self.demand_eqtype_diag(sp, expected, actual) {
err.emit();
}
}
pub fn demand_eqtype_diag(
&self,
sp: Span,
expected: Ty<'tcx>,
actual: Ty<'tcx>,
) -> Option<DiagnosticBuilder<'tcx>> {
self.demand_eqtype_with_origin(&self.misc(sp), expected, actual)
}
pub fn demand_eqtype_with_origin(
&self,
cause: &ObligationCause<'tcx>,
expected: Ty<'tcx>,
actual: Ty<'tcx>,
) -> Option<DiagnosticBuilder<'tcx>> {
match self.at(cause, self.param_env).eq(expected, actual) {
Ok(InferOk { obligations, value: () }) => {
self.register_predicates(obligations);
None
}
Err(e) => Some(self.report_mismatched_types(cause, expected, actual, e)),
}
}
pub fn demand_coerce(
&self,
expr: &hir::Expr<'_>,
checked_ty: Ty<'tcx>,
expected: Ty<'tcx>,
expected_ty_expr: Option<&'tcx hir::Expr<'tcx>>,
allow_two_phase: AllowTwoPhase,
) -> Ty<'tcx> {
let (ty, err) =
self.demand_coerce_diag(expr, checked_ty, expected, expected_ty_expr, allow_two_phase);
if let Some(mut err) = err {
err.emit();
}
ty
}
// Checks that the type of `expr` can be coerced to `expected`.
//
// N.B., this code relies on `self.diverges` to be accurate. In
// particular, assignments to `!` will be permitted if the
// diverges flag is currently "always".
pub fn demand_coerce_diag(
&self,
expr: &hir::Expr<'_>,
checked_ty: Ty<'tcx>,
expected: Ty<'tcx>,
expected_ty_expr: Option<&'tcx hir::Expr<'tcx>>,
allow_two_phase: AllowTwoPhase,
) -> (Ty<'tcx>, Option<DiagnosticBuilder<'tcx>>) {
let expected = self.resolve_vars_with_obligations(expected);
let e = match self.try_coerce(expr, checked_ty, expected, allow_two_phase) {
Ok(ty) => return (ty, None),
Err(e) => e,
};
let expr = expr.peel_drop_temps();
let cause = self.misc(expr.span);
let expr_ty = self.resolve_vars_with_obligations(checked_ty);
let mut err = self.report_mismatched_types(&cause, expected, expr_ty, e);
if self.is_assign_to_bool(expr, expected) {
// Error reported in `check_assign` so avoid emitting error again.
err.delay_as_bug();
return (expected, None);
}
self.emit_coerce_suggestions(&mut err, expr, expr_ty, expected, expected_ty_expr);
(expected, Some(err))
}
fn annotate_expected_due_to_let_ty(
&self,
err: &mut DiagnosticBuilder<'_>,
expr: &hir::Expr<'_>,
) {
let parent = self.tcx.hir().get_parent_node(expr.hir_id);
if let Some(hir::Node::Local(hir::Local { ty: Some(ty), init: Some(init), .. })) =
self.tcx.hir().find(parent)
{
if init.hir_id == expr.hir_id {
// Point at `let` assignment type.
err.span_label(ty.span, "expected due to this");
}
}
}
/// Returns whether the expected type is `bool` and the expression is `x = y`.
pub fn is_assign_to_bool(&self, expr: &hir::Expr<'_>, expected: Ty<'tcx>) -> bool {
if let hir::ExprKind::Assign(..) = expr.kind {
return expected == self.tcx.types.bool;
}
false
}
/// If the expected type is an enum (Issue #55250) with any variants whose
/// sole field is of the found type, suggest such variants. (Issue #42764)
fn suggest_compatible_variants(
&self,
err: &mut DiagnosticBuilder<'_>,
expr: &hir::Expr<'_>,
expected: Ty<'tcx>,
expr_ty: Ty<'tcx>,
) {
if let ty::Adt(expected_adt, substs) = expected.kind {
if !expected_adt.is_enum() {
return;
}
let mut compatible_variants = expected_adt
.variants
.iter()
.filter(|variant| variant.fields.len() == 1)
.filter_map(|variant| {
let sole_field = &variant.fields[0];
let sole_field_ty = sole_field.ty(self.tcx, substs);
if self.can_coerce(expr_ty, sole_field_ty) {
let variant_path = self.tcx.def_path_str(variant.def_id);
// FIXME #56861: DRYer prelude filtering
Some(variant_path.trim_start_matches("std::prelude::v1::").to_string())
} else {
None
}
})
.peekable();
if compatible_variants.peek().is_some() {
if let Ok(expr_text) = self.tcx.sess.source_map().span_to_snippet(expr.span) {
let suggestions = compatible_variants.map(|v| format!("{}({})", v, expr_text));
let msg = "try using a variant of the expected enum";
err.span_suggestions(
expr.span,
msg,
suggestions,
Applicability::MaybeIncorrect,
);
}
}
}
}
pub fn get_conversion_methods(
&self,
span: Span,
expected: Ty<'tcx>,
checked_ty: Ty<'tcx>,
hir_id: hir::HirId,
) -> Vec<AssocItem> {
let mut methods =
self.probe_for_return_type(span, probe::Mode::MethodCall, expected, checked_ty, hir_id);
methods.retain(|m| {
self.has_only_self_parameter(m)
&& self
.tcx
.get_attrs(m.def_id)
.iter()
// This special internal attribute is used to permit
// "identity-like" conversion methods to be suggested here.
//
// FIXME (#46459 and #46460): ideally
// `std::convert::Into::into` and `std::borrow:ToOwned` would
// also be `#[rustc_conversion_suggestion]`, if not for
// method-probing false-positives and -negatives (respectively).
//
// FIXME? Other potential candidate methods: `as_ref` and
// `as_mut`?
.any(|a| a.check_name(sym::rustc_conversion_suggestion))
});
methods
}
/// This function checks whether the method is not static and does not accept other parameters than `self`.
fn has_only_self_parameter(&self, method: &AssocItem) -> bool {
match method.kind {
ty::AssocKind::Fn => {
method.fn_has_self_parameter
&& self.tcx.fn_sig(method.def_id).inputs().skip_binder().len() == 1
}
_ => false,
}
}
/// Identify some cases where `as_ref()` would be appropriate and suggest it.
///
/// Given the following code:
/// ```
/// struct Foo;
/// fn takes_ref(_: &Foo) {}
/// let ref opt = Some(Foo);
///
/// opt.map(|param| takes_ref(param));
/// ```
/// Suggest using `opt.as_ref().map(|param| takes_ref(param));` instead.
///
/// It only checks for `Option` and `Result` and won't work with
/// ```
/// opt.map(|param| { takes_ref(param) });
/// ```
fn can_use_as_ref(&self, expr: &hir::Expr<'_>) -> Option<(Span, &'static str, String)> {
let path = match expr.kind {
hir::ExprKind::Path(hir::QPath::Resolved(_, ref path)) => path,
_ => return None,
};
let local_id = match path.res {
hir::def::Res::Local(id) => id,
_ => return None,
};
let local_parent = self.tcx.hir().get_parent_node(local_id);
let param_hir_id = match self.tcx.hir().find(local_parent) {
Some(Node::Param(hir::Param { hir_id, .. })) => hir_id,
_ => return None,
};
let param_parent = self.tcx.hir().get_parent_node(*param_hir_id);
let (expr_hir_id, closure_fn_decl) = match self.tcx.hir().find(param_parent) {
Some(Node::Expr(hir::Expr {
hir_id,
kind: hir::ExprKind::Closure(_, decl, ..),
..
})) => (hir_id, decl),
_ => return None,
};
let expr_parent = self.tcx.hir().get_parent_node(*expr_hir_id);
let hir = self.tcx.hir().find(expr_parent);
let closure_params_len = closure_fn_decl.inputs.len();
let (method_path, method_span, method_expr) = match (hir, closure_params_len) {
(
Some(Node::Expr(hir::Expr {
kind: hir::ExprKind::MethodCall(path, span, expr, _),
..
})),
1,
) => (path, span, expr),
_ => return None,
};
let self_ty = self.tables.borrow().node_type(method_expr[0].hir_id);
let self_ty = format!("{:?}", self_ty);
let name = method_path.ident.as_str();
let is_as_ref_able = (self_ty.starts_with("&std::option::Option")
|| self_ty.starts_with("&std::result::Result")
|| self_ty.starts_with("std::option::Option")
|| self_ty.starts_with("std::result::Result"))
&& (name == "map" || name == "and_then");
match (is_as_ref_able, self.sess().source_map().span_to_snippet(*method_span)) {
(true, Ok(src)) => {
let suggestion = format!("as_ref().{}", src);
Some((*method_span, "consider using `as_ref` instead", suggestion))
}
_ => None,
}
}
crate fn is_hir_id_from_struct_pattern_shorthand_field(
&self,
hir_id: hir::HirId,
sp: Span,
) -> bool {
let sm = self.sess().source_map();
let parent_id = self.tcx.hir().get_parent_node(hir_id);
if let Some(parent) = self.tcx.hir().find(parent_id) {
// Account for fields
if let Node::Expr(hir::Expr { kind: hir::ExprKind::Struct(_, fields, ..), .. }) = parent
{
if let Ok(src) = sm.span_to_snippet(sp) {
for field in *fields {
if field.ident.as_str() == src && field.is_shorthand {
return true;
}
}
}
}
}
false
}
fn replace_prefix<A, B, C>(&self, s: A, old: B, new: C) -> Option<String>
where
A: AsRef<str>,
B: AsRef<str>,
C: AsRef<str>,
{
let s = s.as_ref();
let old = old.as_ref();
if s.starts_with(old) { Some(new.as_ref().to_owned() + &s[old.len()..]) } else { None }
}
/// This function is used to determine potential "simple" improvements or users' errors and
/// provide them useful help. For example:
///
/// ```
/// fn some_fn(s: &str) {}
///
/// let x = "hey!".to_owned();
/// some_fn(x); // error
/// ```
///
/// No need to find every potential function which could make a coercion to transform a
/// `String` into a `&str` since a `&` would do the trick!
///
/// In addition of this check, it also checks between references mutability state. If the
/// expected is mutable but the provided isn't, maybe we could just say "Hey, try with
/// `&mut`!".
pub fn check_ref(
&self,
expr: &hir::Expr<'_>,
checked_ty: Ty<'tcx>,
expected: Ty<'tcx>,
) -> Option<(Span, &'static str, String, Applicability)> {
let sm = self.sess().source_map();
let sp = expr.span;
if sm.is_imported(sp) {
// Ignore if span is from within a macro #41858, #58298. We previously used the macro
// call span, but that breaks down when the type error comes from multiple calls down.
return None;
}
let is_struct_pat_shorthand_field =
self.is_hir_id_from_struct_pattern_shorthand_field(expr.hir_id, sp);
// If the span is from a macro, then it's hard to extract the text
// and make a good suggestion, so don't bother.
let is_macro = sp.from_expansion() && sp.desugaring_kind().is_none();
// `ExprKind::DropTemps` is semantically irrelevant for these suggestions.
let expr = expr.peel_drop_temps();
match (&expr.kind, &expected.kind, &checked_ty.kind) {
(_, &ty::Ref(_, exp, _), &ty::Ref(_, check, _)) => match (&exp.kind, &check.kind) {
(&ty::Str, &ty::Array(arr, _) | &ty::Slice(arr)) if arr == self.tcx.types.u8 => {
if let hir::ExprKind::Lit(_) = expr.kind {
if let Ok(src) = sm.span_to_snippet(sp) {
if let Some(src) = self.replace_prefix(src, "b\"", "\"") {
return Some((
sp,
"consider removing the leading `b`",
src,
Applicability::MachineApplicable,
));
}
}
}
}
(&ty::Array(arr, _) | &ty::Slice(arr), &ty::Str) if arr == self.tcx.types.u8 => {
if let hir::ExprKind::Lit(_) = expr.kind {
if let Ok(src) = sm.span_to_snippet(sp) {
if let Some(src) = self.replace_prefix(src, "\"", "b\"") {
return Some((
sp,
"consider adding a leading `b`",
src,
Applicability::MachineApplicable,
));
}
}
}
}
_ => {}
},
(_, &ty::Ref(_, _, mutability), _) => {
// Check if it can work when put into a ref. For example:
//
// ```
// fn bar(x: &mut i32) {}
//
// let x = 0u32;
// bar(&x); // error, expected &mut
// ```
let ref_ty = match mutability {
hir::Mutability::Mut => {
self.tcx.mk_mut_ref(self.tcx.mk_region(ty::ReStatic), checked_ty)
}
hir::Mutability::Not => {
self.tcx.mk_imm_ref(self.tcx.mk_region(ty::ReStatic), checked_ty)
}
};
if self.can_coerce(ref_ty, expected) {
let mut sugg_sp = sp;
if let hir::ExprKind::MethodCall(ref segment, sp, ref args, _) = expr.kind {
let clone_trait = self.tcx.require_lang_item(CloneTraitLangItem, Some(sp));
if let ([arg], Some(true), sym::clone) = (
&args[..],
self.tables.borrow().type_dependent_def_id(expr.hir_id).map(|did| {
let ai = self.tcx.associated_item(did);
ai.container == ty::TraitContainer(clone_trait)
}),
segment.ident.name,
) {
// If this expression had a clone call when suggesting borrowing
// we want to suggest removing it because it'd now be unnecessary.
sugg_sp = arg.span;
}
}
if let Ok(src) = sm.span_to_snippet(sugg_sp) {
let needs_parens = match expr.kind {
// parenthesize if needed (Issue #46756)
hir::ExprKind::Cast(_, _) | hir::ExprKind::Binary(_, _, _) => true,
// parenthesize borrows of range literals (Issue #54505)
_ if is_range_literal(self.tcx.sess.source_map(), expr) => true,
_ => false,
};
let sugg_expr = if needs_parens { format!("({})", src) } else { src };
if let Some(sugg) = self.can_use_as_ref(expr) {
return Some((
sugg.0,
sugg.1,
sugg.2,
Applicability::MachineApplicable,
));
}
let field_name = if is_struct_pat_shorthand_field {
format!("{}: ", sugg_expr)
} else {
String::new()
};
if let Some(hir::Node::Expr(hir::Expr {
kind: hir::ExprKind::Assign(left_expr, ..),
..
})) = self.tcx.hir().find(self.tcx.hir().get_parent_node(expr.hir_id))
{
if mutability == hir::Mutability::Mut {
// Found the following case:
// fn foo(opt: &mut Option<String>){ opt = None }
// --- ^^^^
// | |
// consider dereferencing here: `*opt` |
// expected mutable reference, found enum `Option`
if let Ok(src) = sm.span_to_snippet(left_expr.span) {
return Some((
left_expr.span,
"consider dereferencing here to assign to the mutable \
borrowed piece of memory",
format!("*{}", src),
Applicability::MachineApplicable,
));
}
}
}
return Some(match mutability {
hir::Mutability::Mut => (
sp,
"consider mutably borrowing here",
format!("{}&mut {}", field_name, sugg_expr),
Applicability::MachineApplicable,
),
hir::Mutability::Not => (
sp,
"consider borrowing here",
format!("{}&{}", field_name, sugg_expr),
Applicability::MachineApplicable,
),
});
}
}
}
(
hir::ExprKind::AddrOf(hir::BorrowKind::Ref, _, ref expr),
_,
&ty::Ref(_, checked, _),
) if {
self.infcx.can_sub(self.param_env, checked, &expected).is_ok() && !is_macro
} =>
{
// We have `&T`, check if what was expected was `T`. If so,
// we may want to suggest removing a `&`.
if sm.is_imported(expr.span) {
if let Ok(src) = sm.span_to_snippet(sp) {
if let Some(src) = self.replace_prefix(src, "&", "") {
return Some((
sp,
"consider removing the borrow",
src,
Applicability::MachineApplicable,
));
}
}
return None;
}
if let Ok(code) = sm.span_to_snippet(expr.span) {
return Some((
sp,
"consider removing the borrow",
code,
Applicability::MachineApplicable,
));
}
}
(
_,
&ty::RawPtr(TypeAndMut { ty: ty_b, mutbl: mutbl_b }),
&ty::Ref(_, ty_a, mutbl_a),
) => {
if let Some(steps) = self.deref_steps(ty_a, ty_b) {
// Only suggest valid if dereferencing needed.
if steps > 0 {
// The pointer type implements `Copy` trait so the suggestion is always valid.
if let Ok(src) = sm.span_to_snippet(sp) {
let derefs = &"*".repeat(steps);
if let Some((src, applicability)) = match mutbl_b {
hir::Mutability::Mut => {
let new_prefix = "&mut ".to_owned() + derefs;
match mutbl_a {
hir::Mutability::Mut => {
if let Some(s) =
self.replace_prefix(src, "&mut ", new_prefix)
{
Some((s, Applicability::MachineApplicable))
} else {
None
}
}
hir::Mutability::Not => {
if let Some(s) =
self.replace_prefix(src, "&", new_prefix)
{
Some((s, Applicability::Unspecified))
} else {
None
}
}
}
}
hir::Mutability::Not => {
let new_prefix = "&".to_owned() + derefs;
match mutbl_a {
hir::Mutability::Mut => {
if let Some(s) =
self.replace_prefix(src, "&mut ", new_prefix)
{
Some((s, Applicability::MachineApplicable))
} else {
None
}
}
hir::Mutability::Not => {
if let Some(s) =
self.replace_prefix(src, "&", new_prefix)
{
Some((s, Applicability::MachineApplicable))
} else {
None
}
}
}
}
} {
return Some((sp, "consider dereferencing", src, applicability));
}
}
}
}
}
_ if sp == expr.span && !is_macro => {
if let Some(steps) = self.deref_steps(checked_ty, expected) {
if steps == 1 {
// For a suggestion to make sense, the type would need to be `Copy`.
if self.infcx.type_is_copy_modulo_regions(self.param_env, expected, sp) {
if let Ok(code) = sm.span_to_snippet(sp) {
let message = if checked_ty.is_region_ptr() {
"consider dereferencing the borrow"
} else {
"consider dereferencing the type"
};
let suggestion = if is_struct_pat_shorthand_field {
format!("{}: *{}", code, code)
} else {
format!("*{}", code)
};
return Some((
sp,
message,
suggestion,
Applicability::MachineApplicable,
));
}
}
}
}
}
_ => {}
}
None
}
pub fn check_for_cast(
&self,
err: &mut DiagnosticBuilder<'_>,
expr: &hir::Expr<'_>,
checked_ty: Ty<'tcx>,
expected_ty: Ty<'tcx>,
expected_ty_expr: Option<&'tcx hir::Expr<'tcx>>,
) -> bool {
if self.tcx.sess.source_map().is_imported(expr.span) {
// Ignore if span is from within a macro.
return false;
}
let src = if let Ok(src) = self.tcx.sess.source_map().span_to_snippet(expr.span) {
src
} else {
return false;
};
// If casting this expression to a given numeric type would be appropriate in case of a type
// mismatch.
//
// We want to minimize the amount of casting operations that are suggested, as it can be a
// lossy operation with potentially bad side effects, so we only suggest when encountering
// an expression that indicates that the original type couldn't be directly changed.
//
// For now, don't suggest casting with `as`.
let can_cast = false;
let prefix = if let Some(hir::Node::Expr(hir::Expr {
kind: hir::ExprKind::Struct(_, fields, _),
..
})) = self.tcx.hir().find(self.tcx.hir().get_parent_node(expr.hir_id))
{
// `expr` is a literal field for a struct, only suggest if appropriate
match (*fields)
.iter()
.find(|field| field.expr.hir_id == expr.hir_id && field.is_shorthand)
{
// This is a field literal
Some(field) => format!("{}: ", field.ident),
// Likely a field was meant, but this field wasn't found. Do not suggest anything.
None => return false,
}
} else {
String::new()
};
if let hir::ExprKind::Call(path, args) = &expr.kind {
if let (hir::ExprKind::Path(hir::QPath::TypeRelative(base_ty, path_segment)), 1) =
(&path.kind, args.len())
{
// `expr` is a conversion like `u32::from(val)`, do not suggest anything (#63697).
if let (hir::TyKind::Path(hir::QPath::Resolved(None, base_ty_path)), sym::from) =
(&base_ty.kind, path_segment.ident.name)
{
if let Some(ident) = &base_ty_path.segments.iter().map(|s| s.ident).next() {
match ident.name {
sym::i128
| sym::i64
| sym::i32
| sym::i16
| sym::i8
| sym::u128
| sym::u64
| sym::u32
| sym::u16
| sym::u8
| sym::isize
| sym::usize
if base_ty_path.segments.len() == 1 =>
{
return false;
}
_ => {}
}
}
}
}
}
let msg = format!("you can convert an `{}` to `{}`", checked_ty, expected_ty);
let cast_msg = format!("you can cast an `{} to `{}`", checked_ty, expected_ty);
let lit_msg = format!(
"change the type of the numeric literal from `{}` to `{}`",
checked_ty, expected_ty,
);
let with_opt_paren: fn(&dyn fmt::Display) -> String =
if expr.precedence().order() < PREC_POSTFIX {
|s| format!("({})", s)
} else {
|s| s.to_string()
};
let cast_suggestion = format!("{}{} as {}", prefix, with_opt_paren(&src), expected_ty);
let into_suggestion = format!("{}{}.into()", prefix, with_opt_paren(&src));
let suffix_suggestion = with_opt_paren(&format_args!(
"{}{}",
if matches!(
(&expected_ty.kind, &checked_ty.kind),
(ty::Int(_) | ty::Uint(_), ty::Float(_))
) {
// Remove fractional part from literal, for example `42.0f32` into `42`
let src = src.trim_end_matches(&checked_ty.to_string());
src.split('.').next().unwrap()
} else {
src.trim_end_matches(&checked_ty.to_string())
},
expected_ty,
));
let literal_is_ty_suffixed = |expr: &hir::Expr<'_>| {
if let hir::ExprKind::Lit(lit) = &expr.kind { lit.node.is_suffixed() } else { false }
};
let is_negative_int =
|expr: &hir::Expr<'_>| matches!(expr.kind, hir::ExprKind::Unary(hir::UnOp::UnNeg, ..));
let is_uint = |ty: Ty<'_>| matches!(ty.kind, ty::Uint(..));
let in_const_context = self.tcx.hir().is_inside_const_context(expr.hir_id);
let suggest_fallible_into_or_lhs_from =
|err: &mut DiagnosticBuilder<'_>, exp_to_found_is_fallible: bool| {
// If we know the expression the expected type is derived from, we might be able
// to suggest a widening conversion rather than a narrowing one (which may
// panic). For example, given x: u8 and y: u32, if we know the span of "x",
// x > y
// can be given the suggestion "u32::from(x) > y" rather than
// "x > y.try_into().unwrap()".
let lhs_expr_and_src = expected_ty_expr.and_then(|expr| {
match self.tcx.sess.source_map().span_to_snippet(expr.span).ok() {
Some(src) => Some((expr, src)),
None => None,
}
});
let (span, msg, suggestion) = if let (Some((lhs_expr, lhs_src)), false) =
(lhs_expr_and_src, exp_to_found_is_fallible)
{
let msg = format!(
"you can convert `{}` from `{}` to `{}`, matching the type of `{}`",
lhs_src, expected_ty, checked_ty, src
);
let suggestion = format!("{}::from({})", checked_ty, lhs_src);
(lhs_expr.span, msg, suggestion)
} else {
let msg = format!("{} and panic if the converted value wouldn't fit", msg);
let suggestion =
format!("{}{}.try_into().unwrap()", prefix, with_opt_paren(&src));
(expr.span, msg, suggestion)
};
err.span_suggestion(span, &msg, suggestion, Applicability::MachineApplicable);
};
let suggest_to_change_suffix_or_into =
|err: &mut DiagnosticBuilder<'_>,
found_to_exp_is_fallible: bool,
exp_to_found_is_fallible: bool| {
let always_fallible = found_to_exp_is_fallible
&& (exp_to_found_is_fallible || expected_ty_expr.is_none());
let msg = if literal_is_ty_suffixed(expr) {
&lit_msg
} else if always_fallible && (is_negative_int(expr) && is_uint(expected_ty)) {
// We now know that converting either the lhs or rhs is fallible. Before we
// suggest a fallible conversion, check if the value can never fit in the
// expected type.
let msg = format!("`{}` cannot fit into type `{}`", src, expected_ty);
err.note(&msg);
return;
} else if in_const_context {
// Do not recommend `into` or `try_into` in const contexts.
return;
} else if found_to_exp_is_fallible {
return suggest_fallible_into_or_lhs_from(err, exp_to_found_is_fallible);
} else {
&msg
};
let suggestion = if literal_is_ty_suffixed(expr) {
suffix_suggestion.clone()
} else {
into_suggestion.clone()
};
err.span_suggestion(expr.span, msg, suggestion, Applicability::MachineApplicable);
};
match (&expected_ty.kind, &checked_ty.kind) {
(&ty::Int(ref exp), &ty::Int(ref found)) => {
let (f2e_is_fallible, e2f_is_fallible) = match (exp.bit_width(), found.bit_width())
{
(Some(exp), Some(found)) if exp < found => (true, false),
(Some(exp), Some(found)) if exp > found => (false, true),
(None, Some(8 | 16)) => (false, true),
(Some(8 | 16), None) => (true, false),
(None, _) | (_, None) => (true, true),
_ => (false, false),
};
suggest_to_change_suffix_or_into(err, f2e_is_fallible, e2f_is_fallible);
true
}
(&ty::Uint(ref exp), &ty::Uint(ref found)) => {
let (f2e_is_fallible, e2f_is_fallible) = match (exp.bit_width(), found.bit_width())
{
(Some(exp), Some(found)) if exp < found => (true, false),
(Some(exp), Some(found)) if exp > found => (false, true),
(None, Some(8 | 16)) => (false, true),
(Some(8 | 16), None) => (true, false),
(None, _) | (_, None) => (true, true),
_ => (false, false),
};
suggest_to_change_suffix_or_into(err, f2e_is_fallible, e2f_is_fallible);
true
}
(&ty::Int(exp), &ty::Uint(found)) => {
let (f2e_is_fallible, e2f_is_fallible) = match (exp.bit_width(), found.bit_width())
{
(Some(exp), Some(found)) if found < exp => (false, true),
(None, Some(8)) => (false, true),
_ => (true, true),
};
suggest_to_change_suffix_or_into(err, f2e_is_fallible, e2f_is_fallible);
true
}
(&ty::Uint(exp), &ty::Int(found)) => {
let (f2e_is_fallible, e2f_is_fallible) = match (exp.bit_width(), found.bit_width())
{
(Some(exp), Some(found)) if found > exp => (true, false),
(Some(8), None) => (true, false),
_ => (true, true),
};
suggest_to_change_suffix_or_into(err, f2e_is_fallible, e2f_is_fallible);
true
}
(&ty::Float(ref exp), &ty::Float(ref found)) => {
if found.bit_width() < exp.bit_width() {
suggest_to_change_suffix_or_into(err, false, true);
} else if literal_is_ty_suffixed(expr) {
err.span_suggestion(
expr.span,
&lit_msg,
suffix_suggestion,
Applicability::MachineApplicable,
);
} else if can_cast {
// Missing try_into implementation for `f64` to `f32`
err.span_suggestion(
expr.span,
&format!("{}, producing the closest possible value", cast_msg),
cast_suggestion,
Applicability::MaybeIncorrect, // lossy conversion
);
}
true
}
(&ty::Uint(_) | &ty::Int(_), &ty::Float(_)) => {
if literal_is_ty_suffixed(expr) {
err.span_suggestion(
expr.span,
&lit_msg,
suffix_suggestion,
Applicability::MachineApplicable,
);
} else if can_cast {
// Missing try_into implementation for `{float}` to `{integer}`
err.span_suggestion(
expr.span,
&format!("{}, rounding the float towards zero", msg),
cast_suggestion,
Applicability::MaybeIncorrect, // lossy conversion
);
}
true
}
(&ty::Float(ref exp), &ty::Uint(ref found)) => {
// if `found` is `None` (meaning found is `usize`), don't suggest `.into()`
if exp.bit_width() > found.bit_width().unwrap_or(256) {
err.span_suggestion(
expr.span,
&format!(
"{}, producing the floating point representation of the integer",
msg,
),
into_suggestion,
Applicability::MachineApplicable,
);
} else if literal_is_ty_suffixed(expr) {
err.span_suggestion(
expr.span,
&lit_msg,
suffix_suggestion,
Applicability::MachineApplicable,
);
} else {
// Missing try_into implementation for `{integer}` to `{float}`
err.span_suggestion(
expr.span,
&format!(
"{}, producing the floating point representation of the integer,
rounded if necessary",
cast_msg,
),
cast_suggestion,
Applicability::MaybeIncorrect, // lossy conversion
);
}
true
}
(&ty::Float(ref exp), &ty::Int(ref found)) => {
// if `found` is `None` (meaning found is `isize`), don't suggest `.into()`
if exp.bit_width() > found.bit_width().unwrap_or(256) {
err.span_suggestion(
expr.span,
&format!(
"{}, producing the floating point representation of the integer",
&msg,
),
into_suggestion,
Applicability::MachineApplicable,
);
} else if literal_is_ty_suffixed(expr) {
err.span_suggestion(
expr.span,
&lit_msg,
suffix_suggestion,
Applicability::MachineApplicable,
);
} else {
// Missing try_into implementation for `{integer}` to `{float}`
err.span_suggestion(
expr.span,
&format!(
"{}, producing the floating point representation of the integer, \
rounded if necessary",
&msg,
),
cast_suggestion,
Applicability::MaybeIncorrect, // lossy conversion
);
}
true
}
_ => false,
}
}
}