blob: ce00060b9b17270d2a6d473308758c98271545ea [file] [log] [blame]
use rustc_data_structures::fx::FxHashSet;
use rustc_hir::def_id::DefId;
use rustc_infer::infer::canonical::{Canonical, QueryResponse};
use rustc_infer::infer::TyCtxtInferExt;
use rustc_infer::traits::TraitEngineExt as _;
use rustc_middle::ty::query::Providers;
use rustc_middle::ty::subst::{InternalSubsts, Subst};
use rustc_middle::ty::{self, ParamEnvAnd, Ty, TyCtxt};
use rustc_span::source_map::{Span, DUMMY_SP};
use rustc_trait_selection::traits::query::dropck_outlives::trivial_dropck_outlives;
use rustc_trait_selection::traits::query::dropck_outlives::{
DropckOutlivesResult, DtorckConstraint,
};
use rustc_trait_selection::traits::query::normalize::AtExt;
use rustc_trait_selection::traits::query::{CanonicalTyGoal, NoSolution};
use rustc_trait_selection::traits::{
Normalized, ObligationCause, TraitEngine, TraitEngineExt as _,
};
crate fn provide(p: &mut Providers) {
*p = Providers { dropck_outlives, adt_dtorck_constraint, ..*p };
}
fn dropck_outlives<'tcx>(
tcx: TyCtxt<'tcx>,
canonical_goal: CanonicalTyGoal<'tcx>,
) -> Result<&'tcx Canonical<'tcx, QueryResponse<'tcx, DropckOutlivesResult<'tcx>>>, NoSolution> {
debug!("dropck_outlives(goal={:#?})", canonical_goal);
tcx.infer_ctxt().enter_with_canonical(
DUMMY_SP,
&canonical_goal,
|ref infcx, goal, canonical_inference_vars| {
let tcx = infcx.tcx;
let ParamEnvAnd { param_env, value: for_ty } = goal;
let mut result = DropckOutlivesResult { kinds: vec![], overflows: vec![] };
// A stack of types left to process. Each round, we pop
// something from the stack and invoke
// `dtorck_constraint_for_ty`. This may produce new types that
// have to be pushed on the stack. This continues until we have explored
// all the reachable types from the type `for_ty`.
//
// Example: Imagine that we have the following code:
//
// ```rust
// struct A {
// value: B,
// children: Vec<A>,
// }
//
// struct B {
// value: u32
// }
//
// fn f() {
// let a: A = ...;
// ..
// } // here, `a` is dropped
// ```
//
// at the point where `a` is dropped, we need to figure out
// which types inside of `a` contain region data that may be
// accessed by any destructors in `a`. We begin by pushing `A`
// onto the stack, as that is the type of `a`. We will then
// invoke `dtorck_constraint_for_ty` which will expand `A`
// into the types of its fields `(B, Vec<A>)`. These will get
// pushed onto the stack. Eventually, expanding `Vec<A>` will
// lead to us trying to push `A` a second time -- to prevent
// infinite recursion, we notice that `A` was already pushed
// once and stop.
let mut ty_stack = vec![(for_ty, 0)];
// Set used to detect infinite recursion.
let mut ty_set = FxHashSet::default();
let mut fulfill_cx = TraitEngine::new(infcx.tcx);
let cause = ObligationCause::dummy();
let mut constraints = DtorckConstraint::empty();
while let Some((ty, depth)) = ty_stack.pop() {
info!(
"{} kinds, {} overflows, {} ty_stack",
result.kinds.len(),
result.overflows.len(),
ty_stack.len()
);
dtorck_constraint_for_ty(tcx, DUMMY_SP, for_ty, depth, ty, &mut constraints)?;
// "outlives" represent types/regions that may be touched
// by a destructor.
result.kinds.extend(constraints.outlives.drain(..));
result.overflows.extend(constraints.overflows.drain(..));
// If we have even one overflow, we should stop trying to evaluate further --
// chances are, the subsequent overflows for this evaluation won't provide useful
// information and will just decrease the speed at which we can emit these errors
// (since we'll be printing for just that much longer for the often enormous types
// that result here).
if !result.overflows.is_empty() {
break;
}
// dtorck types are "types that will get dropped but which
// do not themselves define a destructor", more or less. We have
// to push them onto the stack to be expanded.
for ty in constraints.dtorck_types.drain(..) {
match infcx.at(&cause, param_env).normalize(&ty) {
Ok(Normalized { value: ty, obligations }) => {
fulfill_cx.register_predicate_obligations(infcx, obligations);
debug!("dropck_outlives: ty from dtorck_types = {:?}", ty);
match ty.kind {
// All parameters live for the duration of the
// function.
ty::Param(..) => {}
// A projection that we couldn't resolve - it
// might have a destructor.
ty::Projection(..) | ty::Opaque(..) => {
result.kinds.push(ty.into());
}
_ => {
if ty_set.insert(ty) {
ty_stack.push((ty, depth + 1));
}
}
}
}
// We don't actually expect to fail to normalize.
// That implies a WF error somewhere else.
Err(NoSolution) => {
return Err(NoSolution);
}
}
}
}
debug!("dropck_outlives: result = {:#?}", result);
infcx.make_canonicalized_query_response(
canonical_inference_vars,
result,
&mut *fulfill_cx,
)
},
)
}
/// Returns a set of constraints that needs to be satisfied in
/// order for `ty` to be valid for destruction.
fn dtorck_constraint_for_ty<'tcx>(
tcx: TyCtxt<'tcx>,
span: Span,
for_ty: Ty<'tcx>,
depth: usize,
ty: Ty<'tcx>,
constraints: &mut DtorckConstraint<'tcx>,
) -> Result<(), NoSolution> {
debug!("dtorck_constraint_for_ty({:?}, {:?}, {:?}, {:?})", span, for_ty, depth, ty);
if !tcx.sess.recursion_limit().value_within_limit(depth) {
constraints.overflows.push(ty);
return Ok(());
}
if trivial_dropck_outlives(tcx, ty) {
return Ok(());
}
match ty.kind {
ty::Bool
| ty::Char
| ty::Int(_)
| ty::Uint(_)
| ty::Float(_)
| ty::Str
| ty::Never
| ty::Foreign(..)
| ty::RawPtr(..)
| ty::Ref(..)
| ty::FnDef(..)
| ty::FnPtr(_)
| ty::GeneratorWitness(..) => {
// these types never have a destructor
}
ty::Array(ety, _) | ty::Slice(ety) => {
// single-element containers, behave like their element
rustc_data_structures::stack::ensure_sufficient_stack(|| {
dtorck_constraint_for_ty(tcx, span, for_ty, depth + 1, ety, constraints)
})?;
}
ty::Tuple(tys) => rustc_data_structures::stack::ensure_sufficient_stack(|| {
for ty in tys.iter() {
dtorck_constraint_for_ty(
tcx,
span,
for_ty,
depth + 1,
ty.expect_ty(),
constraints,
)?;
}
Ok::<_, NoSolution>(())
})?,
ty::Closure(_, substs) => rustc_data_structures::stack::ensure_sufficient_stack(|| {
for ty in substs.as_closure().upvar_tys() {
dtorck_constraint_for_ty(tcx, span, for_ty, depth + 1, ty, constraints)?;
}
Ok::<_, NoSolution>(())
})?,
ty::Generator(_, substs, _movability) => {
// rust-lang/rust#49918: types can be constructed, stored
// in the interior, and sit idle when generator yields
// (and is subsequently dropped).
//
// It would be nice to descend into interior of a
// generator to determine what effects dropping it might
// have (by looking at any drop effects associated with
// its interior).
//
// However, the interior's representation uses things like
// GeneratorWitness that explicitly assume they are not
// traversed in such a manner. So instead, we will
// simplify things for now by treating all generators as
// if they were like trait objects, where its upvars must
// all be alive for the generator's (potential)
// destructor.
//
// In particular, skipping over `_interior` is safe
// because any side-effects from dropping `_interior` can
// only take place through references with lifetimes
// derived from lifetimes attached to the upvars and resume
// argument, and we *do* incorporate those here.
constraints.outlives.extend(
substs
.as_generator()
.upvar_tys()
.map(|t| -> ty::subst::GenericArg<'tcx> { t.into() }),
);
constraints.outlives.push(substs.as_generator().resume_ty().into());
}
ty::Adt(def, substs) => {
let DtorckConstraint { dtorck_types, outlives, overflows } =
tcx.at(span).adt_dtorck_constraint(def.did)?;
// FIXME: we can try to recursively `dtorck_constraint_on_ty`
// there, but that needs some way to handle cycles.
constraints.dtorck_types.extend(dtorck_types.subst(tcx, substs));
constraints.outlives.extend(outlives.subst(tcx, substs));
constraints.overflows.extend(overflows.subst(tcx, substs));
}
// Objects must be alive in order for their destructor
// to be called.
ty::Dynamic(..) => {
constraints.outlives.push(ty.into());
}
// Types that can't be resolved. Pass them forward.
ty::Projection(..) | ty::Opaque(..) | ty::Param(..) => {
constraints.dtorck_types.push(ty);
}
ty::Placeholder(..) | ty::Bound(..) | ty::Infer(..) | ty::Error(_) => {
// By the time this code runs, all type variables ought to
// be fully resolved.
return Err(NoSolution);
}
}
Ok(())
}
/// Calculates the dtorck constraint for a type.
crate fn adt_dtorck_constraint(
tcx: TyCtxt<'_>,
def_id: DefId,
) -> Result<DtorckConstraint<'_>, NoSolution> {
let def = tcx.adt_def(def_id);
let span = tcx.def_span(def_id);
debug!("dtorck_constraint: {:?}", def);
if def.is_phantom_data() {
// The first generic parameter here is guaranteed to be a type because it's
// `PhantomData`.
let substs = InternalSubsts::identity_for_item(tcx, def_id);
assert_eq!(substs.len(), 1);
let result = DtorckConstraint {
outlives: vec![],
dtorck_types: vec![substs.type_at(0)],
overflows: vec![],
};
debug!("dtorck_constraint: {:?} => {:?}", def, result);
return Ok(result);
}
let mut result = DtorckConstraint::empty();
for field in def.all_fields() {
let fty = tcx.type_of(field.did);
dtorck_constraint_for_ty(tcx, span, fty, 0, fty, &mut result)?;
}
result.outlives.extend(tcx.destructor_constraints(def));
dedup_dtorck_constraint(&mut result);
debug!("dtorck_constraint: {:?} => {:?}", def, result);
Ok(result)
}
fn dedup_dtorck_constraint(c: &mut DtorckConstraint<'_>) {
let mut outlives = FxHashSet::default();
let mut dtorck_types = FxHashSet::default();
c.outlives.retain(|&val| outlives.replace(val).is_none());
c.dtorck_types.retain(|&val| dtorck_types.replace(val).is_none());
}