blob: 3675a987644daef2d3cfea1f44b521e3007f3ffb [file] [log] [blame]
//! A classic liveness analysis based on dataflow over the AST. Computes,
//! for each local variable in a function, whether that variable is live
//! at a given point. Program execution points are identified by their
//! IDs.
//!
//! # Basic idea
//!
//! The basic model is that each local variable is assigned an index. We
//! represent sets of local variables using a vector indexed by this
//! index. The value in the vector is either 0, indicating the variable
//! is dead, or the ID of an expression that uses the variable.
//!
//! We conceptually walk over the AST in reverse execution order. If we
//! find a use of a variable, we add it to the set of live variables. If
//! we find an assignment to a variable, we remove it from the set of live
//! variables. When we have to merge two flows, we take the union of
//! those two flows -- if the variable is live on both paths, we simply
//! pick one ID. In the event of loops, we continue doing this until a
//! fixed point is reached.
//!
//! ## Checking initialization
//!
//! At the function entry point, all variables must be dead. If this is
//! not the case, we can report an error using the ID found in the set of
//! live variables, which identifies a use of the variable which is not
//! dominated by an assignment.
//!
//! ## Checking moves
//!
//! After each explicit move, the variable must be dead.
//!
//! ## Computing last uses
//!
//! Any use of the variable where the variable is dead afterwards is a
//! last use.
//!
//! # Implementation details
//!
//! The actual implementation contains two (nested) walks over the AST.
//! The outer walk has the job of building up the ir_maps instance for the
//! enclosing function. On the way down the tree, it identifies those AST
//! nodes and variable IDs that will be needed for the liveness analysis
//! and assigns them contiguous IDs. The liveness ID for an AST node is
//! called a `live_node` (it's a newtype'd `u32`) and the ID for a variable
//! is called a `variable` (another newtype'd `u32`).
//!
//! On the way back up the tree, as we are about to exit from a function
//! declaration we allocate a `liveness` instance. Now that we know
//! precisely how many nodes and variables we need, we can allocate all
//! the various arrays that we will need to precisely the right size. We then
//! perform the actual propagation on the `liveness` instance.
//!
//! This propagation is encoded in the various `propagate_through_*()`
//! methods. It effectively does a reverse walk of the AST; whenever we
//! reach a loop node, we iterate until a fixed point is reached.
//!
//! ## The `RWU` struct
//!
//! At each live node `N`, we track three pieces of information for each
//! variable `V` (these are encapsulated in the `RWU` struct):
//!
//! - `reader`: the `LiveNode` ID of some node which will read the value
//! that `V` holds on entry to `N`. Formally: a node `M` such
//! that there exists a path `P` from `N` to `M` where `P` does not
//! write `V`. If the `reader` is `invalid_node()`, then the current
//! value will never be read (the variable is dead, essentially).
//!
//! - `writer`: the `LiveNode` ID of some node which will write the
//! variable `V` and which is reachable from `N`. Formally: a node `M`
//! such that there exists a path `P` from `N` to `M` and `M` writes
//! `V`. If the `writer` is `invalid_node()`, then there is no writer
//! of `V` that follows `N`.
//!
//! - `used`: a boolean value indicating whether `V` is *used*. We
//! distinguish a *read* from a *use* in that a *use* is some read that
//! is not just used to generate a new value. For example, `x += 1` is
//! a read but not a use. This is used to generate better warnings.
//!
//! ## Special nodes and variables
//!
//! We generate various special nodes for various, well, special purposes.
//! These are described in the `Specials` struct.
use self::LiveNodeKind::*;
use self::VarKind::*;
use rustc_ast::ast::InlineAsmOptions;
use rustc_data_structures::fx::FxIndexMap;
use rustc_errors::Applicability;
use rustc_hir as hir;
use rustc_hir::def::*;
use rustc_hir::def_id::LocalDefId;
use rustc_hir::intravisit::{self, FnKind, NestedVisitorMap, Visitor};
use rustc_hir::{Expr, HirId, HirIdMap, HirIdSet, Node};
use rustc_middle::hir::map::Map;
use rustc_middle::ty::query::Providers;
use rustc_middle::ty::{self, TyCtxt};
use rustc_session::lint;
use rustc_span::symbol::{sym, Symbol};
use rustc_span::Span;
use std::collections::VecDeque;
use std::fmt;
use std::io;
use std::io::prelude::*;
use std::rc::Rc;
#[derive(Copy, Clone, PartialEq)]
struct Variable(u32);
#[derive(Copy, Clone, PartialEq)]
struct LiveNode(u32);
impl Variable {
fn get(&self) -> usize {
self.0 as usize
}
}
impl LiveNode {
fn get(&self) -> usize {
self.0 as usize
}
}
#[derive(Copy, Clone, PartialEq, Debug)]
enum LiveNodeKind {
UpvarNode(Span),
ExprNode(Span),
VarDefNode(Span),
ClosureNode,
ExitNode,
}
fn live_node_kind_to_string(lnk: LiveNodeKind, tcx: TyCtxt<'_>) -> String {
let sm = tcx.sess.source_map();
match lnk {
UpvarNode(s) => format!("Upvar node [{}]", sm.span_to_string(s)),
ExprNode(s) => format!("Expr node [{}]", sm.span_to_string(s)),
VarDefNode(s) => format!("Var def node [{}]", sm.span_to_string(s)),
ClosureNode => "Closure node".to_owned(),
ExitNode => "Exit node".to_owned(),
}
}
impl<'tcx> Visitor<'tcx> for IrMaps<'tcx> {
type Map = Map<'tcx>;
fn nested_visit_map(&mut self) -> NestedVisitorMap<Self::Map> {
NestedVisitorMap::OnlyBodies(self.tcx.hir())
}
fn visit_fn(
&mut self,
fk: FnKind<'tcx>,
fd: &'tcx hir::FnDecl<'tcx>,
b: hir::BodyId,
s: Span,
id: HirId,
) {
visit_fn(self, fk, fd, b, s, id);
}
fn visit_local(&mut self, l: &'tcx hir::Local<'tcx>) {
visit_local(self, l);
}
fn visit_expr(&mut self, ex: &'tcx Expr<'tcx>) {
visit_expr(self, ex);
}
fn visit_arm(&mut self, a: &'tcx hir::Arm<'tcx>) {
visit_arm(self, a);
}
}
fn check_mod_liveness(tcx: TyCtxt<'_>, module_def_id: LocalDefId) {
tcx.hir().visit_item_likes_in_module(
module_def_id,
&mut IrMaps::new(tcx, module_def_id).as_deep_visitor(),
);
}
pub fn provide(providers: &mut Providers) {
*providers = Providers { check_mod_liveness, ..*providers };
}
impl fmt::Debug for LiveNode {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "ln({})", self.get())
}
}
impl fmt::Debug for Variable {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "v({})", self.get())
}
}
// ______________________________________________________________________
// Creating ir_maps
//
// This is the first pass and the one that drives the main
// computation. It walks up and down the IR once. On the way down,
// we count for each function the number of variables as well as
// liveness nodes. A liveness node is basically an expression or
// capture clause that does something of interest: either it has
// interesting control flow or it uses/defines a local variable.
//
// On the way back up, at each function node we create liveness sets
// (we now know precisely how big to make our various vectors and so
// forth) and then do the data-flow propagation to compute the set
// of live variables at each program point.
//
// Finally, we run back over the IR one last time and, using the
// computed liveness, check various safety conditions. For example,
// there must be no live nodes at the definition site for a variable
// unless it has an initializer. Similarly, each non-mutable local
// variable must not be assigned if there is some successor
// assignment. And so forth.
impl LiveNode {
fn is_valid(&self) -> bool {
self.0 != u32::MAX
}
}
fn invalid_node() -> LiveNode {
LiveNode(u32::MAX)
}
struct CaptureInfo {
ln: LiveNode,
var_hid: HirId,
}
#[derive(Copy, Clone, Debug)]
struct LocalInfo {
id: HirId,
name: Symbol,
is_shorthand: bool,
}
#[derive(Copy, Clone, Debug)]
enum VarKind {
Param(HirId, Symbol),
Local(LocalInfo),
Upvar(HirId, Symbol),
}
struct IrMaps<'tcx> {
tcx: TyCtxt<'tcx>,
body_owner: LocalDefId,
num_live_nodes: usize,
num_vars: usize,
live_node_map: HirIdMap<LiveNode>,
variable_map: HirIdMap<Variable>,
capture_info_map: HirIdMap<Rc<Vec<CaptureInfo>>>,
var_kinds: Vec<VarKind>,
lnks: Vec<LiveNodeKind>,
}
impl IrMaps<'tcx> {
fn new(tcx: TyCtxt<'tcx>, body_owner: LocalDefId) -> IrMaps<'tcx> {
IrMaps {
tcx,
body_owner,
num_live_nodes: 0,
num_vars: 0,
live_node_map: HirIdMap::default(),
variable_map: HirIdMap::default(),
capture_info_map: Default::default(),
var_kinds: Vec::new(),
lnks: Vec::new(),
}
}
fn add_live_node(&mut self, lnk: LiveNodeKind) -> LiveNode {
let ln = LiveNode(self.num_live_nodes as u32);
self.lnks.push(lnk);
self.num_live_nodes += 1;
debug!("{:?} is of kind {}", ln, live_node_kind_to_string(lnk, self.tcx));
ln
}
fn add_live_node_for_node(&mut self, hir_id: HirId, lnk: LiveNodeKind) {
let ln = self.add_live_node(lnk);
self.live_node_map.insert(hir_id, ln);
debug!("{:?} is node {:?}", ln, hir_id);
}
fn add_variable(&mut self, vk: VarKind) -> Variable {
let v = Variable(self.num_vars as u32);
self.var_kinds.push(vk);
self.num_vars += 1;
match vk {
Local(LocalInfo { id: node_id, .. }) | Param(node_id, _) | Upvar(node_id, _) => {
self.variable_map.insert(node_id, v);
}
}
debug!("{:?} is {:?}", v, vk);
v
}
fn variable(&self, hir_id: HirId, span: Span) -> Variable {
match self.variable_map.get(&hir_id) {
Some(&var) => var,
None => {
span_bug!(span, "no variable registered for id {:?}", hir_id);
}
}
}
fn variable_name(&self, var: Variable) -> String {
match self.var_kinds[var.get()] {
Local(LocalInfo { name, .. }) | Param(_, name) | Upvar(_, name) => name.to_string(),
}
}
fn variable_is_shorthand(&self, var: Variable) -> bool {
match self.var_kinds[var.get()] {
Local(LocalInfo { is_shorthand, .. }) => is_shorthand,
Param(..) | Upvar(..) => false,
}
}
fn set_captures(&mut self, hir_id: HirId, cs: Vec<CaptureInfo>) {
self.capture_info_map.insert(hir_id, Rc::new(cs));
}
fn lnk(&self, ln: LiveNode) -> LiveNodeKind {
self.lnks[ln.get()]
}
}
fn visit_fn<'tcx>(
ir: &mut IrMaps<'tcx>,
fk: FnKind<'tcx>,
decl: &'tcx hir::FnDecl<'tcx>,
body_id: hir::BodyId,
sp: Span,
id: hir::HirId,
) {
debug!("visit_fn {:?}", id);
// swap in a new set of IR maps for this function body:
let def_id = ir.tcx.hir().local_def_id(id);
let mut fn_maps = IrMaps::new(ir.tcx, def_id);
// Don't run unused pass for #[derive()]
if let FnKind::Method(..) = fk {
let parent = ir.tcx.hir().get_parent_item(id);
if let Some(Node::Item(i)) = ir.tcx.hir().find(parent) {
if i.attrs.iter().any(|a| a.check_name(sym::automatically_derived)) {
return;
}
}
}
debug!("creating fn_maps: {:p}", &fn_maps);
let body = ir.tcx.hir().body(body_id);
if let Some(upvars) = ir.tcx.upvars_mentioned(def_id) {
for (&var_hir_id, _upvar) in upvars {
debug!("adding upvar {:?}", var_hir_id);
let var_name = ir.tcx.hir().name(var_hir_id);
fn_maps.add_variable(Upvar(var_hir_id, var_name));
}
}
for param in body.params {
let is_shorthand = match param.pat.kind {
rustc_hir::PatKind::Struct(..) => true,
_ => false,
};
param.pat.each_binding(|_bm, hir_id, _x, ident| {
debug!("adding parameters {:?}", hir_id);
let var = if is_shorthand {
Local(LocalInfo { id: hir_id, name: ident.name, is_shorthand: true })
} else {
Param(hir_id, ident.name)
};
fn_maps.add_variable(var);
})
}
// gather up the various local variables, significant expressions,
// and so forth:
intravisit::walk_fn(&mut fn_maps, fk, decl, body_id, sp, id);
// compute liveness
let mut lsets = Liveness::new(&mut fn_maps, def_id);
let entry_ln = lsets.compute(fk, &body, sp, id);
lsets.log_liveness(entry_ln, id);
// check for various error conditions
lsets.visit_body(body);
lsets.warn_about_unused_upvars(entry_ln);
lsets.warn_about_unused_args(body, entry_ln);
}
fn add_from_pat(ir: &mut IrMaps<'_>, pat: &hir::Pat<'_>) {
// For struct patterns, take note of which fields used shorthand
// (`x` rather than `x: x`).
let mut shorthand_field_ids = HirIdSet::default();
let mut pats = VecDeque::new();
pats.push_back(pat);
while let Some(pat) = pats.pop_front() {
use rustc_hir::PatKind::*;
match &pat.kind {
Binding(.., inner_pat) => {
pats.extend(inner_pat.iter());
}
Struct(_, fields, _) => {
let ids = fields.iter().filter(|f| f.is_shorthand).map(|f| f.pat.hir_id);
shorthand_field_ids.extend(ids);
}
Ref(inner_pat, _) | Box(inner_pat) => {
pats.push_back(inner_pat);
}
TupleStruct(_, inner_pats, _) | Tuple(inner_pats, _) | Or(inner_pats) => {
pats.extend(inner_pats.iter());
}
Slice(pre_pats, inner_pat, post_pats) => {
pats.extend(pre_pats.iter());
pats.extend(inner_pat.iter());
pats.extend(post_pats.iter());
}
_ => {}
}
}
pat.each_binding(|_, hir_id, _, ident| {
ir.add_live_node_for_node(hir_id, VarDefNode(ident.span));
ir.add_variable(Local(LocalInfo {
id: hir_id,
name: ident.name,
is_shorthand: shorthand_field_ids.contains(&hir_id),
}));
});
}
fn visit_local<'tcx>(ir: &mut IrMaps<'tcx>, local: &'tcx hir::Local<'tcx>) {
add_from_pat(ir, &local.pat);
intravisit::walk_local(ir, local);
}
fn visit_arm<'tcx>(ir: &mut IrMaps<'tcx>, arm: &'tcx hir::Arm<'tcx>) {
add_from_pat(ir, &arm.pat);
intravisit::walk_arm(ir, arm);
}
fn visit_expr<'tcx>(ir: &mut IrMaps<'tcx>, expr: &'tcx Expr<'tcx>) {
match expr.kind {
// live nodes required for uses or definitions of variables:
hir::ExprKind::Path(hir::QPath::Resolved(_, ref path)) => {
debug!("expr {}: path that leads to {:?}", expr.hir_id, path.res);
if let Res::Local(_var_hir_id) = path.res {
ir.add_live_node_for_node(expr.hir_id, ExprNode(expr.span));
}
intravisit::walk_expr(ir, expr);
}
hir::ExprKind::Closure(..) => {
// Interesting control flow (for loops can contain labeled
// breaks or continues)
ir.add_live_node_for_node(expr.hir_id, ExprNode(expr.span));
// Make a live_node for each captured variable, with the span
// being the location that the variable is used. This results
// in better error messages than just pointing at the closure
// construction site.
let mut call_caps = Vec::new();
let closure_def_id = ir.tcx.hir().local_def_id(expr.hir_id);
if let Some(upvars) = ir.tcx.upvars_mentioned(closure_def_id) {
call_caps.extend(upvars.iter().map(|(&var_id, upvar)| {
let upvar_ln = ir.add_live_node(UpvarNode(upvar.span));
CaptureInfo { ln: upvar_ln, var_hid: var_id }
}));
}
ir.set_captures(expr.hir_id, call_caps);
let old_body_owner = ir.body_owner;
ir.body_owner = closure_def_id;
intravisit::walk_expr(ir, expr);
ir.body_owner = old_body_owner;
}
// live nodes required for interesting control flow:
hir::ExprKind::Match(..) | hir::ExprKind::Loop(..) => {
ir.add_live_node_for_node(expr.hir_id, ExprNode(expr.span));
intravisit::walk_expr(ir, expr);
}
hir::ExprKind::Binary(op, ..) if op.node.is_lazy() => {
ir.add_live_node_for_node(expr.hir_id, ExprNode(expr.span));
intravisit::walk_expr(ir, expr);
}
// otherwise, live nodes are not required:
hir::ExprKind::Index(..)
| hir::ExprKind::Field(..)
| hir::ExprKind::Array(..)
| hir::ExprKind::Call(..)
| hir::ExprKind::MethodCall(..)
| hir::ExprKind::Tup(..)
| hir::ExprKind::Binary(..)
| hir::ExprKind::AddrOf(..)
| hir::ExprKind::Cast(..)
| hir::ExprKind::DropTemps(..)
| hir::ExprKind::Unary(..)
| hir::ExprKind::Break(..)
| hir::ExprKind::Continue(_)
| hir::ExprKind::Lit(_)
| hir::ExprKind::Ret(..)
| hir::ExprKind::Block(..)
| hir::ExprKind::Assign(..)
| hir::ExprKind::AssignOp(..)
| hir::ExprKind::Struct(..)
| hir::ExprKind::Repeat(..)
| hir::ExprKind::InlineAsm(..)
| hir::ExprKind::LlvmInlineAsm(..)
| hir::ExprKind::Box(..)
| hir::ExprKind::Yield(..)
| hir::ExprKind::Type(..)
| hir::ExprKind::Err
| hir::ExprKind::Path(hir::QPath::TypeRelative(..)) => {
intravisit::walk_expr(ir, expr);
}
}
}
// ______________________________________________________________________
// Computing liveness sets
//
// Actually we compute just a bit more than just liveness, but we use
// the same basic propagation framework in all cases.
#[derive(Clone, Copy)]
struct RWU {
reader: LiveNode,
writer: LiveNode,
used: bool,
}
/// Conceptually, this is like a `Vec<RWU>`. But the number of `RWU`s can get
/// very large, so it uses a more compact representation that takes advantage
/// of the fact that when the number of `RWU`s is large, most of them have an
/// invalid reader and an invalid writer.
struct RWUTable {
/// Each entry in `packed_rwus` is either INV_INV_FALSE, INV_INV_TRUE, or
/// an index into `unpacked_rwus`. In the common cases, this compacts the
/// 65 bits of data into 32; in the uncommon cases, it expands the 65 bits
/// in 96.
///
/// More compact representations are possible -- e.g., use only 2 bits per
/// packed `RWU` and make the secondary table a HashMap that maps from
/// indices to `RWU`s -- but this one strikes a good balance between size
/// and speed.
packed_rwus: Vec<u32>,
unpacked_rwus: Vec<RWU>,
}
// A constant representing `RWU { reader: invalid_node(); writer: invalid_node(); used: false }`.
const INV_INV_FALSE: u32 = u32::MAX;
// A constant representing `RWU { reader: invalid_node(); writer: invalid_node(); used: true }`.
const INV_INV_TRUE: u32 = u32::MAX - 1;
impl RWUTable {
fn new(num_rwus: usize) -> RWUTable {
Self { packed_rwus: vec![INV_INV_FALSE; num_rwus], unpacked_rwus: vec![] }
}
fn get(&self, idx: usize) -> RWU {
let packed_rwu = self.packed_rwus[idx];
match packed_rwu {
INV_INV_FALSE => RWU { reader: invalid_node(), writer: invalid_node(), used: false },
INV_INV_TRUE => RWU { reader: invalid_node(), writer: invalid_node(), used: true },
_ => self.unpacked_rwus[packed_rwu as usize],
}
}
fn get_reader(&self, idx: usize) -> LiveNode {
let packed_rwu = self.packed_rwus[idx];
match packed_rwu {
INV_INV_FALSE | INV_INV_TRUE => invalid_node(),
_ => self.unpacked_rwus[packed_rwu as usize].reader,
}
}
fn get_writer(&self, idx: usize) -> LiveNode {
let packed_rwu = self.packed_rwus[idx];
match packed_rwu {
INV_INV_FALSE | INV_INV_TRUE => invalid_node(),
_ => self.unpacked_rwus[packed_rwu as usize].writer,
}
}
fn get_used(&self, idx: usize) -> bool {
let packed_rwu = self.packed_rwus[idx];
match packed_rwu {
INV_INV_FALSE => false,
INV_INV_TRUE => true,
_ => self.unpacked_rwus[packed_rwu as usize].used,
}
}
#[inline]
fn copy_packed(&mut self, dst_idx: usize, src_idx: usize) {
self.packed_rwus[dst_idx] = self.packed_rwus[src_idx];
}
fn assign_unpacked(&mut self, idx: usize, rwu: RWU) {
if rwu.reader == invalid_node() && rwu.writer == invalid_node() {
// When we overwrite an indexing entry in `self.packed_rwus` with
// `INV_INV_{TRUE,FALSE}` we don't remove the corresponding entry
// from `self.unpacked_rwus`; it's not worth the effort, and we
// can't have entries shifting around anyway.
self.packed_rwus[idx] = if rwu.used { INV_INV_TRUE } else { INV_INV_FALSE }
} else {
// Add a new RWU to `unpacked_rwus` and make `packed_rwus[idx]`
// point to it.
self.packed_rwus[idx] = self.unpacked_rwus.len() as u32;
self.unpacked_rwus.push(rwu);
}
}
fn assign_inv_inv(&mut self, idx: usize) {
self.packed_rwus[idx] = if self.get_used(idx) { INV_INV_TRUE } else { INV_INV_FALSE };
}
}
#[derive(Copy, Clone)]
struct Specials {
/// A live node representing a point of execution before closure entry &
/// after closure exit. Used to calculate liveness of captured variables
/// through calls to the same closure. Used for Fn & FnMut closures only.
closure_ln: LiveNode,
/// A live node representing every 'exit' from the function, whether it be
/// by explicit return, panic, or other means.
exit_ln: LiveNode,
}
const ACC_READ: u32 = 1;
const ACC_WRITE: u32 = 2;
const ACC_USE: u32 = 4;
struct Liveness<'a, 'tcx> {
ir: &'a mut IrMaps<'tcx>,
tables: &'a ty::TypeckTables<'tcx>,
param_env: ty::ParamEnv<'tcx>,
s: Specials,
successors: Vec<LiveNode>,
rwu_table: RWUTable,
// mappings from loop node ID to LiveNode
// ("break" label should map to loop node ID,
// it probably doesn't now)
break_ln: HirIdMap<LiveNode>,
cont_ln: HirIdMap<LiveNode>,
}
impl<'a, 'tcx> Liveness<'a, 'tcx> {
fn new(ir: &'a mut IrMaps<'tcx>, def_id: LocalDefId) -> Liveness<'a, 'tcx> {
let specials = Specials {
closure_ln: ir.add_live_node(ClosureNode),
exit_ln: ir.add_live_node(ExitNode),
};
let tables = ir.tcx.typeck_tables_of(def_id);
let param_env = ir.tcx.param_env(def_id);
let num_live_nodes = ir.num_live_nodes;
let num_vars = ir.num_vars;
Liveness {
ir,
tables,
param_env,
s: specials,
successors: vec![invalid_node(); num_live_nodes],
rwu_table: RWUTable::new(num_live_nodes * num_vars),
break_ln: Default::default(),
cont_ln: Default::default(),
}
}
fn live_node(&self, hir_id: HirId, span: Span) -> LiveNode {
match self.ir.live_node_map.get(&hir_id) {
Some(&ln) => ln,
None => {
// This must be a mismatch between the ir_map construction
// above and the propagation code below; the two sets of
// code have to agree about which AST nodes are worth
// creating liveness nodes for.
span_bug!(span, "no live node registered for node {:?}", hir_id);
}
}
}
fn variable(&self, hir_id: HirId, span: Span) -> Variable {
self.ir.variable(hir_id, span)
}
fn define_bindings_in_pat(&mut self, pat: &hir::Pat<'_>, mut succ: LiveNode) -> LiveNode {
// In an or-pattern, only consider the first pattern; any later patterns
// must have the same bindings, and we also consider the first pattern
// to be the "authoritative" set of ids.
pat.each_binding_or_first(&mut |_, hir_id, pat_sp, ident| {
let ln = self.live_node(hir_id, pat_sp);
let var = self.variable(hir_id, ident.span);
self.init_from_succ(ln, succ);
self.define(ln, var);
succ = ln;
});
succ
}
fn idx(&self, ln: LiveNode, var: Variable) -> usize {
ln.get() * self.ir.num_vars + var.get()
}
fn live_on_entry(&self, ln: LiveNode, var: Variable) -> Option<LiveNodeKind> {
assert!(ln.is_valid());
let reader = self.rwu_table.get_reader(self.idx(ln, var));
if reader.is_valid() { Some(self.ir.lnk(reader)) } else { None }
}
// Is this variable live on entry to any of its successor nodes?
fn live_on_exit(&self, ln: LiveNode, var: Variable) -> Option<LiveNodeKind> {
let successor = self.successors[ln.get()];
self.live_on_entry(successor, var)
}
fn used_on_entry(&self, ln: LiveNode, var: Variable) -> bool {
assert!(ln.is_valid());
self.rwu_table.get_used(self.idx(ln, var))
}
fn assigned_on_entry(&self, ln: LiveNode, var: Variable) -> Option<LiveNodeKind> {
assert!(ln.is_valid());
let writer = self.rwu_table.get_writer(self.idx(ln, var));
if writer.is_valid() { Some(self.ir.lnk(writer)) } else { None }
}
fn assigned_on_exit(&self, ln: LiveNode, var: Variable) -> Option<LiveNodeKind> {
let successor = self.successors[ln.get()];
self.assigned_on_entry(successor, var)
}
fn indices2<F>(&mut self, ln: LiveNode, succ_ln: LiveNode, mut op: F)
where
F: FnMut(&mut Liveness<'a, 'tcx>, usize, usize),
{
let node_base_idx = self.idx(ln, Variable(0));
let succ_base_idx = self.idx(succ_ln, Variable(0));
for var_idx in 0..self.ir.num_vars {
op(self, node_base_idx + var_idx, succ_base_idx + var_idx);
}
}
fn write_vars<F>(&self, wr: &mut dyn Write, ln: LiveNode, mut test: F) -> io::Result<()>
where
F: FnMut(usize) -> bool,
{
let node_base_idx = self.idx(ln, Variable(0));
for var_idx in 0..self.ir.num_vars {
let idx = node_base_idx + var_idx;
if test(idx) {
write!(wr, " {:?}", Variable(var_idx as u32))?;
}
}
Ok(())
}
#[allow(unused_must_use)]
fn ln_str(&self, ln: LiveNode) -> String {
let mut wr = Vec::new();
{
let wr = &mut wr as &mut dyn Write;
write!(wr, "[ln({:?}) of kind {:?} reads", ln.get(), self.ir.lnk(ln));
self.write_vars(wr, ln, |idx| self.rwu_table.get_reader(idx).is_valid());
write!(wr, " writes");
self.write_vars(wr, ln, |idx| self.rwu_table.get_writer(idx).is_valid());
write!(wr, " uses");
self.write_vars(wr, ln, |idx| self.rwu_table.get_used(idx));
write!(wr, " precedes {:?}]", self.successors[ln.get()]);
}
String::from_utf8(wr).unwrap()
}
fn log_liveness(&self, entry_ln: LiveNode, hir_id: hir::HirId) {
// hack to skip the loop unless debug! is enabled:
debug!(
"^^ liveness computation results for body {} (entry={:?})",
{
for ln_idx in 0..self.ir.num_live_nodes {
debug!("{:?}", self.ln_str(LiveNode(ln_idx as u32)));
}
hir_id
},
entry_ln
);
}
fn init_empty(&mut self, ln: LiveNode, succ_ln: LiveNode) {
self.successors[ln.get()] = succ_ln;
// It is not necessary to initialize the RWUs here because they are all
// set to INV_INV_FALSE when they are created, and the sets only grow
// during iterations.
}
fn init_from_succ(&mut self, ln: LiveNode, succ_ln: LiveNode) {
// more efficient version of init_empty() / merge_from_succ()
self.successors[ln.get()] = succ_ln;
self.indices2(ln, succ_ln, |this, idx, succ_idx| {
this.rwu_table.copy_packed(idx, succ_idx);
});
debug!("init_from_succ(ln={}, succ={})", self.ln_str(ln), self.ln_str(succ_ln));
}
fn merge_from_succ(&mut self, ln: LiveNode, succ_ln: LiveNode, first_merge: bool) -> bool {
if ln == succ_ln {
return false;
}
let mut any_changed = false;
self.indices2(ln, succ_ln, |this, idx, succ_idx| {
// This is a special case, pulled out from the code below, where we
// don't have to do anything. It occurs about 60-70% of the time.
if this.rwu_table.packed_rwus[succ_idx] == INV_INV_FALSE {
return;
}
let mut changed = false;
let mut rwu = this.rwu_table.get(idx);
let succ_rwu = this.rwu_table.get(succ_idx);
if succ_rwu.reader.is_valid() && !rwu.reader.is_valid() {
rwu.reader = succ_rwu.reader;
changed = true
}
if succ_rwu.writer.is_valid() && !rwu.writer.is_valid() {
rwu.writer = succ_rwu.writer;
changed = true
}
if succ_rwu.used && !rwu.used {
rwu.used = true;
changed = true;
}
if changed {
this.rwu_table.assign_unpacked(idx, rwu);
any_changed = true;
}
});
debug!(
"merge_from_succ(ln={:?}, succ={}, first_merge={}, changed={})",
ln,
self.ln_str(succ_ln),
first_merge,
any_changed
);
any_changed
}
// Indicates that a local variable was *defined*; we know that no
// uses of the variable can precede the definition (resolve checks
// this) so we just clear out all the data.
fn define(&mut self, writer: LiveNode, var: Variable) {
let idx = self.idx(writer, var);
self.rwu_table.assign_inv_inv(idx);
debug!("{:?} defines {:?} (idx={}): {}", writer, var, idx, self.ln_str(writer));
}
// Either read, write, or both depending on the acc bitset
fn acc(&mut self, ln: LiveNode, var: Variable, acc: u32) {
debug!("{:?} accesses[{:x}] {:?}: {}", ln, acc, var, self.ln_str(ln));
let idx = self.idx(ln, var);
let mut rwu = self.rwu_table.get(idx);
if (acc & ACC_WRITE) != 0 {
rwu.reader = invalid_node();
rwu.writer = ln;
}
// Important: if we both read/write, must do read second
// or else the write will override.
if (acc & ACC_READ) != 0 {
rwu.reader = ln;
}
if (acc & ACC_USE) != 0 {
rwu.used = true;
}
self.rwu_table.assign_unpacked(idx, rwu);
}
fn compute(
&mut self,
fk: FnKind<'_>,
body: &hir::Body<'_>,
span: Span,
id: hir::HirId,
) -> LiveNode {
debug!("compute: using id for body, {:?}", body.value);
// # Liveness of captured variables
//
// When computing the liveness for captured variables we take into
// account how variable is captured (ByRef vs ByValue) and what is the
// closure kind (Generator / FnOnce vs Fn / FnMut).
//
// Variables captured by reference are assumed to be used on the exit
// from the closure.
//
// In FnOnce closures, variables captured by value are known to be dead
// on exit since it is impossible to call the closure again.
//
// In Fn / FnMut closures, variables captured by value are live on exit
// if they are live on the entry to the closure, since only the closure
// itself can access them on subsequent calls.
if let Some(upvars) = self.ir.tcx.upvars_mentioned(self.ir.body_owner) {
// Mark upvars captured by reference as used after closure exits.
for (&var_hir_id, upvar) in upvars.iter().rev() {
let upvar_id = ty::UpvarId {
var_path: ty::UpvarPath { hir_id: var_hir_id },
closure_expr_id: self.ir.body_owner,
};
match self.tables.upvar_capture(upvar_id) {
ty::UpvarCapture::ByRef(_) => {
let var = self.variable(var_hir_id, upvar.span);
self.acc(self.s.exit_ln, var, ACC_READ | ACC_USE);
}
ty::UpvarCapture::ByValue => {}
}
}
}
let succ = self.propagate_through_expr(&body.value, self.s.exit_ln);
match fk {
FnKind::Method(..) | FnKind::ItemFn(..) => return succ,
FnKind::Closure(..) => {}
}
let ty = self.tables.node_type(id);
match ty.kind {
ty::Closure(_def_id, substs) => match substs.as_closure().kind() {
ty::ClosureKind::Fn => {}
ty::ClosureKind::FnMut => {}
ty::ClosureKind::FnOnce => return succ,
},
ty::Generator(..) => return succ,
_ => {
span_bug!(span, "type of closure expr {:?} is not a closure {:?}", id, ty,);
}
};
// Propagate through calls to the closure.
let mut first_merge = true;
loop {
self.init_from_succ(self.s.closure_ln, succ);
for param in body.params {
param.pat.each_binding(|_bm, hir_id, _x, ident| {
let var = self.variable(hir_id, ident.span);
self.define(self.s.closure_ln, var);
})
}
if !self.merge_from_succ(self.s.exit_ln, self.s.closure_ln, first_merge) {
break;
}
first_merge = false;
assert_eq!(succ, self.propagate_through_expr(&body.value, self.s.exit_ln));
}
succ
}
fn propagate_through_block(&mut self, blk: &hir::Block<'_>, succ: LiveNode) -> LiveNode {
if blk.targeted_by_break {
self.break_ln.insert(blk.hir_id, succ);
}
let succ = self.propagate_through_opt_expr(blk.expr.as_deref(), succ);
blk.stmts.iter().rev().fold(succ, |succ, stmt| self.propagate_through_stmt(stmt, succ))
}
fn propagate_through_stmt(&mut self, stmt: &hir::Stmt<'_>, succ: LiveNode) -> LiveNode {
match stmt.kind {
hir::StmtKind::Local(ref local) => {
// Note: we mark the variable as defined regardless of whether
// there is an initializer. Initially I had thought to only mark
// the live variable as defined if it was initialized, and then we
// could check for uninit variables just by scanning what is live
// at the start of the function. But that doesn't work so well for
// immutable variables defined in a loop:
// loop { let x; x = 5; }
// because the "assignment" loops back around and generates an error.
//
// So now we just check that variables defined w/o an
// initializer are not live at the point of their
// initialization, which is mildly more complex than checking
// once at the func header but otherwise equivalent.
let succ = self.propagate_through_opt_expr(local.init.as_deref(), succ);
self.define_bindings_in_pat(&local.pat, succ)
}
hir::StmtKind::Item(..) => succ,
hir::StmtKind::Expr(ref expr) | hir::StmtKind::Semi(ref expr) => {
self.propagate_through_expr(&expr, succ)
}
}
}
fn propagate_through_exprs(&mut self, exprs: &[Expr<'_>], succ: LiveNode) -> LiveNode {
exprs.iter().rev().fold(succ, |succ, expr| self.propagate_through_expr(&expr, succ))
}
fn propagate_through_opt_expr(
&mut self,
opt_expr: Option<&Expr<'_>>,
succ: LiveNode,
) -> LiveNode {
opt_expr.map_or(succ, |expr| self.propagate_through_expr(expr, succ))
}
fn propagate_through_expr(&mut self, expr: &Expr<'_>, succ: LiveNode) -> LiveNode {
debug!("propagate_through_expr: {:?}", expr);
match expr.kind {
// Interesting cases with control flow or which gen/kill
hir::ExprKind::Path(hir::QPath::Resolved(_, ref path)) => {
self.access_path(expr.hir_id, path, succ, ACC_READ | ACC_USE)
}
hir::ExprKind::Field(ref e, _) => self.propagate_through_expr(&e, succ),
hir::ExprKind::Closure(..) => {
debug!("{:?} is an ExprKind::Closure", expr);
// the construction of a closure itself is not important,
// but we have to consider the closed over variables.
let caps = self
.ir
.capture_info_map
.get(&expr.hir_id)
.cloned()
.unwrap_or_else(|| span_bug!(expr.span, "no registered caps"));
caps.iter().rev().fold(succ, |succ, cap| {
self.init_from_succ(cap.ln, succ);
let var = self.variable(cap.var_hid, expr.span);
self.acc(cap.ln, var, ACC_READ | ACC_USE);
cap.ln
})
}
// Note that labels have been resolved, so we don't need to look
// at the label ident
hir::ExprKind::Loop(ref blk, _, _) => self.propagate_through_loop(expr, &blk, succ),
hir::ExprKind::Match(ref e, arms, _) => {
//
// (e)
// |
// v
// (expr)
// / | \
// | | |
// v v v
// (..arms..)
// | | |
// v v v
// ( succ )
//
//
let ln = self.live_node(expr.hir_id, expr.span);
self.init_empty(ln, succ);
let mut first_merge = true;
for arm in arms {
let body_succ = self.propagate_through_expr(&arm.body, succ);
let guard_succ = self.propagate_through_opt_expr(
arm.guard.as_ref().map(|hir::Guard::If(e)| *e),
body_succ,
);
let arm_succ = self.define_bindings_in_pat(&arm.pat, guard_succ);
self.merge_from_succ(ln, arm_succ, first_merge);
first_merge = false;
}
self.propagate_through_expr(&e, ln)
}
hir::ExprKind::Ret(ref o_e) => {
// ignore succ and subst exit_ln:
let exit_ln = self.s.exit_ln;
self.propagate_through_opt_expr(o_e.as_ref().map(|e| &**e), exit_ln)
}
hir::ExprKind::Break(label, ref opt_expr) => {
// Find which label this break jumps to
let target = match label.target_id {
Ok(hir_id) => self.break_ln.get(&hir_id),
Err(err) => span_bug!(expr.span, "loop scope error: {}", err),
}
.cloned();
// Now that we know the label we're going to,
// look it up in the break loop nodes table
match target {
Some(b) => self.propagate_through_opt_expr(opt_expr.as_ref().map(|e| &**e), b),
None => span_bug!(expr.span, "`break` to unknown label"),
}
}
hir::ExprKind::Continue(label) => {
// Find which label this expr continues to
let sc = label
.target_id
.unwrap_or_else(|err| span_bug!(expr.span, "loop scope error: {}", err));
// Now that we know the label we're going to,
// look it up in the continue loop nodes table
self.cont_ln
.get(&sc)
.cloned()
.unwrap_or_else(|| span_bug!(expr.span, "continue to unknown label"))
}
hir::ExprKind::Assign(ref l, ref r, _) => {
// see comment on places in
// propagate_through_place_components()
let succ = self.write_place(&l, succ, ACC_WRITE);
let succ = self.propagate_through_place_components(&l, succ);
self.propagate_through_expr(&r, succ)
}
hir::ExprKind::AssignOp(_, ref l, ref r) => {
// an overloaded assign op is like a method call
if self.tables.is_method_call(expr) {
let succ = self.propagate_through_expr(&l, succ);
self.propagate_through_expr(&r, succ)
} else {
// see comment on places in
// propagate_through_place_components()
let succ = self.write_place(&l, succ, ACC_WRITE | ACC_READ);
let succ = self.propagate_through_expr(&r, succ);
self.propagate_through_place_components(&l, succ)
}
}
// Uninteresting cases: just propagate in rev exec order
hir::ExprKind::Array(ref exprs) => self.propagate_through_exprs(exprs, succ),
hir::ExprKind::Struct(_, ref fields, ref with_expr) => {
let succ = self.propagate_through_opt_expr(with_expr.as_ref().map(|e| &**e), succ);
fields
.iter()
.rev()
.fold(succ, |succ, field| self.propagate_through_expr(&field.expr, succ))
}
hir::ExprKind::Call(ref f, ref args) => {
let m = self.ir.tcx.parent_module(expr.hir_id).to_def_id();
let succ = if self.ir.tcx.is_ty_uninhabited_from(
m,
self.tables.expr_ty(expr),
self.param_env,
) {
self.s.exit_ln
} else {
succ
};
let succ = self.propagate_through_exprs(args, succ);
self.propagate_through_expr(&f, succ)
}
hir::ExprKind::MethodCall(.., ref args, _) => {
let m = self.ir.tcx.parent_module(expr.hir_id).to_def_id();
let succ = if self.ir.tcx.is_ty_uninhabited_from(
m,
self.tables.expr_ty(expr),
self.param_env,
) {
self.s.exit_ln
} else {
succ
};
self.propagate_through_exprs(args, succ)
}
hir::ExprKind::Tup(ref exprs) => self.propagate_through_exprs(exprs, succ),
hir::ExprKind::Binary(op, ref l, ref r) if op.node.is_lazy() => {
let r_succ = self.propagate_through_expr(&r, succ);
let ln = self.live_node(expr.hir_id, expr.span);
self.init_from_succ(ln, succ);
self.merge_from_succ(ln, r_succ, false);
self.propagate_through_expr(&l, ln)
}
hir::ExprKind::Index(ref l, ref r) | hir::ExprKind::Binary(_, ref l, ref r) => {
let r_succ = self.propagate_through_expr(&r, succ);
self.propagate_through_expr(&l, r_succ)
}
hir::ExprKind::Box(ref e)
| hir::ExprKind::AddrOf(_, _, ref e)
| hir::ExprKind::Cast(ref e, _)
| hir::ExprKind::Type(ref e, _)
| hir::ExprKind::DropTemps(ref e)
| hir::ExprKind::Unary(_, ref e)
| hir::ExprKind::Yield(ref e, _)
| hir::ExprKind::Repeat(ref e, _) => self.propagate_through_expr(&e, succ),
hir::ExprKind::InlineAsm(ref asm) => {
// Handle non-returning asm
let mut succ = if asm.options.contains(InlineAsmOptions::NORETURN) {
self.s.exit_ln
} else {
succ
};
// Do a first pass for writing outputs only
for op in asm.operands.iter().rev() {
match op {
hir::InlineAsmOperand::In { .. }
| hir::InlineAsmOperand::Const { .. }
| hir::InlineAsmOperand::Sym { .. } => {}
hir::InlineAsmOperand::Out { expr, .. } => {
if let Some(expr) = expr {
succ = self.write_place(expr, succ, ACC_WRITE);
}
}
hir::InlineAsmOperand::InOut { expr, .. } => {
succ = self.write_place(expr, succ, ACC_READ | ACC_WRITE);
}
hir::InlineAsmOperand::SplitInOut { out_expr, .. } => {
if let Some(expr) = out_expr {
succ = self.write_place(expr, succ, ACC_WRITE);
}
}
}
}
// Then do a second pass for inputs
let mut succ = succ;
for op in asm.operands.iter().rev() {
match op {
hir::InlineAsmOperand::In { expr, .. }
| hir::InlineAsmOperand::Const { expr, .. }
| hir::InlineAsmOperand::Sym { expr, .. } => {
succ = self.propagate_through_expr(expr, succ)
}
hir::InlineAsmOperand::Out { expr, .. } => {
if let Some(expr) = expr {
succ = self.propagate_through_place_components(expr, succ);
}
}
hir::InlineAsmOperand::InOut { expr, .. } => {
succ = self.propagate_through_place_components(expr, succ);
}
hir::InlineAsmOperand::SplitInOut { in_expr, out_expr, .. } => {
if let Some(expr) = out_expr {
succ = self.propagate_through_place_components(expr, succ);
}
succ = self.propagate_through_expr(in_expr, succ);
}
}
}
succ
}
hir::ExprKind::LlvmInlineAsm(ref asm) => {
let ia = &asm.inner;
let outputs = asm.outputs_exprs;
let inputs = asm.inputs_exprs;
let succ = ia.outputs.iter().zip(outputs).rev().fold(succ, |succ, (o, output)| {
// see comment on places
// in propagate_through_place_components()
if o.is_indirect {
self.propagate_through_expr(output, succ)
} else {
let acc = if o.is_rw { ACC_WRITE | ACC_READ } else { ACC_WRITE };
let succ = self.write_place(output, succ, acc);
self.propagate_through_place_components(output, succ)
}
});
// Inputs are executed first. Propagate last because of rev order
self.propagate_through_exprs(inputs, succ)
}
hir::ExprKind::Lit(..)
| hir::ExprKind::Err
| hir::ExprKind::Path(hir::QPath::TypeRelative(..)) => succ,
// Note that labels have been resolved, so we don't need to look
// at the label ident
hir::ExprKind::Block(ref blk, _) => self.propagate_through_block(&blk, succ),
}
}
fn propagate_through_place_components(&mut self, expr: &Expr<'_>, succ: LiveNode) -> LiveNode {
// # Places
//
// In general, the full flow graph structure for an
// assignment/move/etc can be handled in one of two ways,
// depending on whether what is being assigned is a "tracked
// value" or not. A tracked value is basically a local
// variable or argument.
//
// The two kinds of graphs are:
//
// Tracked place Untracked place
// ----------------------++-----------------------
// ||
// | || |
// v || v
// (rvalue) || (rvalue)
// | || |
// v || v
// (write of place) || (place components)
// | || |
// v || v
// (succ) || (succ)
// ||
// ----------------------++-----------------------
//
// I will cover the two cases in turn:
//
// # Tracked places
//
// A tracked place is a local variable/argument `x`. In
// these cases, the link_node where the write occurs is linked
// to node id of `x`. The `write_place()` routine generates
// the contents of this node. There are no subcomponents to
// consider.
//
// # Non-tracked places
//
// These are places like `x[5]` or `x.f`. In that case, we
// basically ignore the value which is written to but generate
// reads for the components---`x` in these two examples. The
// components reads are generated by
// `propagate_through_place_components()` (this fn).
//
// # Illegal places
//
// It is still possible to observe assignments to non-places;
// these errors are detected in the later pass borrowck. We
// just ignore such cases and treat them as reads.
match expr.kind {
hir::ExprKind::Path(_) => succ,
hir::ExprKind::Field(ref e, _) => self.propagate_through_expr(&e, succ),
_ => self.propagate_through_expr(expr, succ),
}
}
// see comment on propagate_through_place()
fn write_place(&mut self, expr: &Expr<'_>, succ: LiveNode, acc: u32) -> LiveNode {
match expr.kind {
hir::ExprKind::Path(hir::QPath::Resolved(_, ref path)) => {
self.access_path(expr.hir_id, path, succ, acc)
}
// We do not track other places, so just propagate through
// to their subcomponents. Also, it may happen that
// non-places occur here, because those are detected in the
// later pass borrowck.
_ => succ,
}
}
fn access_var(
&mut self,
hir_id: HirId,
var_hid: HirId,
succ: LiveNode,
acc: u32,
span: Span,
) -> LiveNode {
let ln = self.live_node(hir_id, span);
if acc != 0 {
self.init_from_succ(ln, succ);
let var = self.variable(var_hid, span);
self.acc(ln, var, acc);
}
ln
}
fn access_path(
&mut self,
hir_id: HirId,
path: &hir::Path<'_>,
succ: LiveNode,
acc: u32,
) -> LiveNode {
match path.res {
Res::Local(hid) => self.access_var(hir_id, hid, succ, acc, path.span),
_ => succ,
}
}
fn propagate_through_loop(
&mut self,
expr: &Expr<'_>,
body: &hir::Block<'_>,
succ: LiveNode,
) -> LiveNode {
/*
We model control flow like this:
(expr) <-+
| |
v |
(body) --+
Note that a `continue` expression targeting the `loop` will have a successor of `expr`.
Meanwhile, a `break` expression will have a successor of `succ`.
*/
// first iteration:
let mut first_merge = true;
let ln = self.live_node(expr.hir_id, expr.span);
self.init_empty(ln, succ);
debug!("propagate_through_loop: using id for loop body {} {:?}", expr.hir_id, body);
self.break_ln.insert(expr.hir_id, succ);
self.cont_ln.insert(expr.hir_id, ln);
let body_ln = self.propagate_through_block(body, ln);
// repeat until fixed point is reached:
while self.merge_from_succ(ln, body_ln, first_merge) {
first_merge = false;
assert_eq!(body_ln, self.propagate_through_block(body, ln));
}
ln
}
}
// _______________________________________________________________________
// Checking for error conditions
impl<'a, 'tcx> Visitor<'tcx> for Liveness<'a, 'tcx> {
type Map = intravisit::ErasedMap<'tcx>;
fn nested_visit_map(&mut self) -> NestedVisitorMap<Self::Map> {
NestedVisitorMap::None
}
fn visit_local(&mut self, local: &'tcx hir::Local<'tcx>) {
self.check_unused_vars_in_pat(&local.pat, None, |spans, hir_id, ln, var| {
if local.init.is_some() {
self.warn_about_dead_assign(spans, hir_id, ln, var);
}
});
intravisit::walk_local(self, local);
}
fn visit_expr(&mut self, ex: &'tcx Expr<'tcx>) {
check_expr(self, ex);
}
fn visit_arm(&mut self, arm: &'tcx hir::Arm<'tcx>) {
self.check_unused_vars_in_pat(&arm.pat, None, |_, _, _, _| {});
intravisit::walk_arm(self, arm);
}
}
fn check_expr<'tcx>(this: &mut Liveness<'_, 'tcx>, expr: &'tcx Expr<'tcx>) {
match expr.kind {
hir::ExprKind::Assign(ref l, ..) => {
this.check_place(&l);
}
hir::ExprKind::AssignOp(_, ref l, _) => {
if !this.tables.is_method_call(expr) {
this.check_place(&l);
}
}
hir::ExprKind::InlineAsm(ref asm) => {
for op in asm.operands {
match op {
hir::InlineAsmOperand::Out { expr, .. } => {
if let Some(expr) = expr {
this.check_place(expr);
}
}
hir::InlineAsmOperand::InOut { expr, .. } => {
this.check_place(expr);
}
hir::InlineAsmOperand::SplitInOut { out_expr, .. } => {
if let Some(out_expr) = out_expr {
this.check_place(out_expr);
}
}
_ => {}
}
}
}
hir::ExprKind::LlvmInlineAsm(ref asm) => {
for input in asm.inputs_exprs {
this.visit_expr(input);
}
// Output operands must be places
for (o, output) in asm.inner.outputs.iter().zip(asm.outputs_exprs) {
if !o.is_indirect {
this.check_place(output);
}
this.visit_expr(output);
}
}
// no correctness conditions related to liveness
hir::ExprKind::Call(..)
| hir::ExprKind::MethodCall(..)
| hir::ExprKind::Match(..)
| hir::ExprKind::Loop(..)
| hir::ExprKind::Index(..)
| hir::ExprKind::Field(..)
| hir::ExprKind::Array(..)
| hir::ExprKind::Tup(..)
| hir::ExprKind::Binary(..)
| hir::ExprKind::Cast(..)
| hir::ExprKind::DropTemps(..)
| hir::ExprKind::Unary(..)
| hir::ExprKind::Ret(..)
| hir::ExprKind::Break(..)
| hir::ExprKind::Continue(..)
| hir::ExprKind::Lit(_)
| hir::ExprKind::Block(..)
| hir::ExprKind::AddrOf(..)
| hir::ExprKind::Struct(..)
| hir::ExprKind::Repeat(..)
| hir::ExprKind::Closure(..)
| hir::ExprKind::Path(_)
| hir::ExprKind::Yield(..)
| hir::ExprKind::Box(..)
| hir::ExprKind::Type(..)
| hir::ExprKind::Err => {}
}
intravisit::walk_expr(this, expr);
}
impl<'tcx> Liveness<'_, 'tcx> {
fn check_place(&mut self, expr: &'tcx Expr<'tcx>) {
match expr.kind {
hir::ExprKind::Path(hir::QPath::Resolved(_, ref path)) => {
if let Res::Local(var_hid) = path.res {
// Assignment to an immutable variable or argument: only legal
// if there is no later assignment. If this local is actually
// mutable, then check for a reassignment to flag the mutability
// as being used.
let ln = self.live_node(expr.hir_id, expr.span);
let var = self.variable(var_hid, expr.span);
self.warn_about_dead_assign(vec![expr.span], expr.hir_id, ln, var);
}
}
_ => {
// For other kinds of places, no checks are required,
// and any embedded expressions are actually rvalues
intravisit::walk_expr(self, expr);
}
}
}
fn should_warn(&self, var: Variable) -> Option<String> {
let name = self.ir.variable_name(var);
if name.is_empty() || name.as_bytes()[0] == b'_' { None } else { Some(name) }
}
fn warn_about_unused_upvars(&self, entry_ln: LiveNode) {
let upvars = match self.ir.tcx.upvars_mentioned(self.ir.body_owner) {
None => return,
Some(upvars) => upvars,
};
for (&var_hir_id, upvar) in upvars.iter() {
let var = self.variable(var_hir_id, upvar.span);
let upvar_id = ty::UpvarId {
var_path: ty::UpvarPath { hir_id: var_hir_id },
closure_expr_id: self.ir.body_owner,
};
match self.tables.upvar_capture(upvar_id) {
ty::UpvarCapture::ByValue => {}
ty::UpvarCapture::ByRef(..) => continue,
};
if self.used_on_entry(entry_ln, var) {
if self.live_on_entry(entry_ln, var).is_none() {
if let Some(name) = self.should_warn(var) {
self.ir.tcx.struct_span_lint_hir(
lint::builtin::UNUSED_ASSIGNMENTS,
var_hir_id,
vec![upvar.span],
|lint| {
lint.build(&format!("value captured by `{}` is never read", name))
.help("did you mean to capture by reference instead?")
.emit();
},
);
}
}
} else {
if let Some(name) = self.should_warn(var) {
self.ir.tcx.struct_span_lint_hir(
lint::builtin::UNUSED_VARIABLES,
var_hir_id,
vec![upvar.span],
|lint| {
lint.build(&format!("unused variable: `{}`", name))
.help("did you mean to capture by reference instead?")
.emit();
},
);
}
}
}
}
fn warn_about_unused_args(&self, body: &hir::Body<'_>, entry_ln: LiveNode) {
for p in body.params {
self.check_unused_vars_in_pat(&p.pat, Some(entry_ln), |spans, hir_id, ln, var| {
if self.live_on_entry(ln, var).is_none() {
self.report_unsed_assign(hir_id, spans, var, |name| {
format!("value passed to `{}` is never read", name)
});
}
});
}
}
fn check_unused_vars_in_pat(
&self,
pat: &hir::Pat<'_>,
entry_ln: Option<LiveNode>,
on_used_on_entry: impl Fn(Vec<Span>, HirId, LiveNode, Variable),
) {
// In an or-pattern, only consider the variable; any later patterns must have the same
// bindings, and we also consider the first pattern to be the "authoritative" set of ids.
// However, we should take the ids and spans of variables with the same name from the later
// patterns so the suggestions to prefix with underscores will apply to those too.
let mut vars: FxIndexMap<String, (LiveNode, Variable, Vec<(HirId, Span)>)> = <_>::default();
pat.each_binding(|_, hir_id, pat_sp, ident| {
let ln = entry_ln.unwrap_or_else(|| self.live_node(hir_id, pat_sp));
let var = self.variable(hir_id, ident.span);
let id_and_sp = (hir_id, pat_sp);
vars.entry(self.ir.variable_name(var))
.and_modify(|(.., hir_ids_and_spans)| hir_ids_and_spans.push(id_and_sp))
.or_insert_with(|| (ln, var, vec![id_and_sp]));
});
for (_, (ln, var, hir_ids_and_spans)) in vars {
if self.used_on_entry(ln, var) {
let id = hir_ids_and_spans[0].0;
let spans = hir_ids_and_spans.into_iter().map(|(_, sp)| sp).collect();
on_used_on_entry(spans, id, ln, var);
} else {
self.report_unused(hir_ids_and_spans, ln, var);
}
}
}
fn report_unused(&self, hir_ids_and_spans: Vec<(HirId, Span)>, ln: LiveNode, var: Variable) {
let first_hir_id = hir_ids_and_spans[0].0;
if let Some(name) = self.should_warn(var).filter(|name| name != "self") {
// annoying: for parameters in funcs like `fn(x: i32)
// {ret}`, there is only one node, so asking about
// assigned_on_exit() is not meaningful.
let is_assigned =
if ln == self.s.exit_ln { false } else { self.assigned_on_exit(ln, var).is_some() };
if is_assigned {
self.ir.tcx.struct_span_lint_hir(
lint::builtin::UNUSED_VARIABLES,
first_hir_id,
hir_ids_and_spans.into_iter().map(|(_, sp)| sp).collect::<Vec<_>>(),
|lint| {
lint.build(&format!("variable `{}` is assigned to, but never used", name))
.note(&format!("consider using `_{}` instead", name))
.emit();
},
)
} else {
self.ir.tcx.struct_span_lint_hir(
lint::builtin::UNUSED_VARIABLES,
first_hir_id,
hir_ids_and_spans.iter().map(|(_, sp)| *sp).collect::<Vec<_>>(),
|lint| {
let mut err = lint.build(&format!("unused variable: `{}`", name));
let (shorthands, non_shorthands): (Vec<_>, Vec<_>) =
hir_ids_and_spans.into_iter().partition(|(hir_id, span)| {
let var = self.variable(*hir_id, *span);
self.ir.variable_is_shorthand(var)
});
let mut shorthands = shorthands
.into_iter()
.map(|(_, span)| (span, format!("{}: _", name)))
.collect::<Vec<_>>();
// If we have both shorthand and non-shorthand, prefer the "try ignoring
// the field" message, and suggest `_` for the non-shorthands. If we only
// have non-shorthand, then prefix with an underscore instead.
if !shorthands.is_empty() {
shorthands.extend(
non_shorthands
.into_iter()
.map(|(_, span)| (span, "_".to_string()))
.collect::<Vec<_>>(),
);
err.multipart_suggestion(
"try ignoring the field",
shorthands,
Applicability::MachineApplicable,
);
} else {
err.multipart_suggestion(
"if this is intentional, prefix it with an underscore",
non_shorthands
.into_iter()
.map(|(_, span)| (span, format!("_{}", name)))
.collect::<Vec<_>>(),
Applicability::MachineApplicable,
);
}
err.emit()
},
);
}
}
}
fn warn_about_dead_assign(&self, spans: Vec<Span>, hir_id: HirId, ln: LiveNode, var: Variable) {
if self.live_on_exit(ln, var).is_none() {
self.report_unsed_assign(hir_id, spans, var, |name| {
format!("value assigned to `{}` is never read", name)
});
}
}
fn report_unsed_assign(
&self,
hir_id: HirId,
spans: Vec<Span>,
var: Variable,
message: impl Fn(&str) -> String,
) {
if let Some(name) = self.should_warn(var) {
self.ir.tcx.struct_span_lint_hir(
lint::builtin::UNUSED_ASSIGNMENTS,
hir_id,
spans,
|lint| {
lint.build(&message(&name))
.help("maybe it is overwritten before being read?")
.emit();
},
)
}
}
}