blob: 1bdac1039b55a48e07bb179599993968857b0fdf [file] [log] [blame]
//! Finds crate binaries and loads their metadata
//!
//! Might I be the first to welcome you to a world of platform differences,
//! version requirements, dependency graphs, conflicting desires, and fun! This
//! is the major guts (along with metadata::creader) of the compiler for loading
//! crates and resolving dependencies. Let's take a tour!
//!
//! # The problem
//!
//! Each invocation of the compiler is immediately concerned with one primary
//! problem, to connect a set of crates to resolved crates on the filesystem.
//! Concretely speaking, the compiler follows roughly these steps to get here:
//!
//! 1. Discover a set of `extern crate` statements.
//! 2. Transform these directives into crate names. If the directive does not
//! have an explicit name, then the identifier is the name.
//! 3. For each of these crate names, find a corresponding crate on the
//! filesystem.
//!
//! Sounds easy, right? Let's walk into some of the nuances.
//!
//! ## Transitive Dependencies
//!
//! Let's say we've got three crates: A, B, and C. A depends on B, and B depends
//! on C. When we're compiling A, we primarily need to find and locate B, but we
//! also end up needing to find and locate C as well.
//!
//! The reason for this is that any of B's types could be composed of C's types,
//! any function in B could return a type from C, etc. To be able to guarantee
//! that we can always type-check/translate any function, we have to have
//! complete knowledge of the whole ecosystem, not just our immediate
//! dependencies.
//!
//! So now as part of the "find a corresponding crate on the filesystem" step
//! above, this involves also finding all crates for *all upstream
//! dependencies*. This includes all dependencies transitively.
//!
//! ## Rlibs and Dylibs
//!
//! The compiler has two forms of intermediate dependencies. These are dubbed
//! rlibs and dylibs for the static and dynamic variants, respectively. An rlib
//! is a rustc-defined file format (currently just an ar archive) while a dylib
//! is a platform-defined dynamic library. Each library has a metadata somewhere
//! inside of it.
//!
//! A third kind of dependency is an rmeta file. These are metadata files and do
//! not contain any code, etc. To a first approximation, these are treated in the
//! same way as rlibs. Where there is both an rlib and an rmeta file, the rlib
//! gets priority (even if the rmeta file is newer). An rmeta file is only
//! useful for checking a downstream crate, attempting to link one will cause an
//! error.
//!
//! When translating a crate name to a crate on the filesystem, we all of a
//! sudden need to take into account both rlibs and dylibs! Linkage later on may
//! use either one of these files, as each has their pros/cons. The job of crate
//! loading is to discover what's possible by finding all candidates.
//!
//! Most parts of this loading systems keep the dylib/rlib as just separate
//! variables.
//!
//! ## Where to look?
//!
//! We can't exactly scan your whole hard drive when looking for dependencies,
//! so we need to places to look. Currently the compiler will implicitly add the
//! target lib search path ($prefix/lib/rustlib/$target/lib) to any compilation,
//! and otherwise all -L flags are added to the search paths.
//!
//! ## What criterion to select on?
//!
//! This a pretty tricky area of loading crates. Given a file, how do we know
//! whether it's the right crate? Currently, the rules look along these lines:
//!
//! 1. Does the filename match an rlib/dylib pattern? That is to say, does the
//! filename have the right prefix/suffix?
//! 2. Does the filename have the right prefix for the crate name being queried?
//! This is filtering for files like `libfoo*.rlib` and such. If the crate
//! we're looking for was originally compiled with -C extra-filename, the
//! extra filename will be included in this prefix to reduce reading
//! metadata from crates that would otherwise share our prefix.
//! 3. Is the file an actual rust library? This is done by loading the metadata
//! from the library and making sure it's actually there.
//! 4. Does the name in the metadata agree with the name of the library?
//! 5. Does the target in the metadata agree with the current target?
//! 6. Does the SVH match? (more on this later)
//!
//! If the file answers `yes` to all these questions, then the file is
//! considered as being *candidate* for being accepted. It is illegal to have
//! more than two candidates as the compiler has no method by which to resolve
//! this conflict. Additionally, rlib/dylib candidates are considered
//! separately.
//!
//! After all this has happened, we have 1 or two files as candidates. These
//! represent the rlib/dylib file found for a library, and they're returned as
//! being found.
//!
//! ### What about versions?
//!
//! A lot of effort has been put forth to remove versioning from the compiler.
//! There have been forays in the past to have versioning baked in, but it was
//! largely always deemed insufficient to the point that it was recognized that
//! it's probably something the compiler shouldn't do anyway due to its
//! complicated nature and the state of the half-baked solutions.
//!
//! With a departure from versioning, the primary criterion for loading crates
//! is just the name of a crate. If we stopped here, it would imply that you
//! could never link two crates of the same name from different sources
//! together, which is clearly a bad state to be in.
//!
//! To resolve this problem, we come to the next section!
//!
//! # Expert Mode
//!
//! A number of flags have been added to the compiler to solve the "version
//! problem" in the previous section, as well as generally enabling more
//! powerful usage of the crate loading system of the compiler. The goal of
//! these flags and options are to enable third-party tools to drive the
//! compiler with prior knowledge about how the world should look.
//!
//! ## The `--extern` flag
//!
//! The compiler accepts a flag of this form a number of times:
//!
//! ```text
//! --extern crate-name=path/to/the/crate.rlib
//! ```
//!
//! This flag is basically the following letter to the compiler:
//!
//! > Dear rustc,
//! >
//! > When you are attempting to load the immediate dependency `crate-name`, I
//! > would like you to assume that the library is located at
//! > `path/to/the/crate.rlib`, and look nowhere else. Also, please do not
//! > assume that the path I specified has the name `crate-name`.
//!
//! This flag basically overrides most matching logic except for validating that
//! the file is indeed a rust library. The same `crate-name` can be specified
//! twice to specify the rlib/dylib pair.
//!
//! ## Enabling "multiple versions"
//!
//! This basically boils down to the ability to specify arbitrary packages to
//! the compiler. For example, if crate A wanted to use Bv1 and Bv2, then it
//! would look something like:
//!
//! ```compile_fail,E0463
//! extern crate b1;
//! extern crate b2;
//!
//! fn main() {}
//! ```
//!
//! and the compiler would be invoked as:
//!
//! ```text
//! rustc a.rs --extern b1=path/to/libb1.rlib --extern b2=path/to/libb2.rlib
//! ```
//!
//! In this scenario there are two crates named `b` and the compiler must be
//! manually driven to be informed where each crate is.
//!
//! ## Frobbing symbols
//!
//! One of the immediate problems with linking the same library together twice
//! in the same problem is dealing with duplicate symbols. The primary way to
//! deal with this in rustc is to add hashes to the end of each symbol.
//!
//! In order to force hashes to change between versions of a library, if
//! desired, the compiler exposes an option `-C metadata=foo`, which is used to
//! initially seed each symbol hash. The string `foo` is prepended to each
//! string-to-hash to ensure that symbols change over time.
//!
//! ## Loading transitive dependencies
//!
//! Dealing with same-named-but-distinct crates is not just a local problem, but
//! one that also needs to be dealt with for transitive dependencies. Note that
//! in the letter above `--extern` flags only apply to the *local* set of
//! dependencies, not the upstream transitive dependencies. Consider this
//! dependency graph:
//!
//! ```text
//! A.1 A.2
//! | |
//! | |
//! B C
//! \ /
//! \ /
//! D
//! ```
//!
//! In this scenario, when we compile `D`, we need to be able to distinctly
//! resolve `A.1` and `A.2`, but an `--extern` flag cannot apply to these
//! transitive dependencies.
//!
//! Note that the key idea here is that `B` and `C` are both *already compiled*.
//! That is, they have already resolved their dependencies. Due to unrelated
//! technical reasons, when a library is compiled, it is only compatible with
//! the *exact same* version of the upstream libraries it was compiled against.
//! We use the "Strict Version Hash" to identify the exact copy of an upstream
//! library.
//!
//! With this knowledge, we know that `B` and `C` will depend on `A` with
//! different SVH values, so we crawl the normal `-L` paths looking for
//! `liba*.rlib` and filter based on the contained SVH.
//!
//! In the end, this ends up not needing `--extern` to specify upstream
//! transitive dependencies.
//!
//! # Wrapping up
//!
//! That's the general overview of loading crates in the compiler, but it's by
//! no means all of the necessary details. Take a look at the rest of
//! metadata::locator or metadata::creader for all the juicy details!
use crate::creader::Library;
use crate::rmeta::{rustc_version, MetadataBlob, METADATA_HEADER};
use rustc_data_structures::fx::{FxHashMap, FxHashSet};
use rustc_data_structures::svh::Svh;
use rustc_data_structures::sync::MetadataRef;
use rustc_errors::{struct_span_err, DiagnosticBuilder};
use rustc_middle::middle::cstore::{CrateSource, MetadataLoader};
use rustc_session::config::{self, CrateType};
use rustc_session::filesearch::{FileDoesntMatch, FileMatches, FileSearch};
use rustc_session::search_paths::PathKind;
use rustc_session::{CrateDisambiguator, Session};
use rustc_span::symbol::{sym, Symbol};
use rustc_span::Span;
use rustc_target::spec::{Target, TargetTriple};
use std::cmp;
use std::fmt;
use std::fs;
use std::io::{self, Read};
use std::ops::Deref;
use std::path::{Path, PathBuf};
use std::time::Instant;
use flate2::read::DeflateDecoder;
use rustc_data_structures::owning_ref::OwningRef;
use log::{debug, info, warn};
#[derive(Clone)]
struct CrateMismatch {
path: PathBuf,
got: String,
}
#[derive(Clone)]
crate struct CrateLocator<'a> {
// Immutable per-session configuration.
sess: &'a Session,
metadata_loader: &'a dyn MetadataLoader,
// Immutable per-search configuration.
crate_name: Symbol,
exact_paths: Vec<PathBuf>,
pub hash: Option<Svh>,
pub host_hash: Option<Svh>,
extra_filename: Option<&'a str>,
pub target: &'a Target,
pub triple: TargetTriple,
pub filesearch: FileSearch<'a>,
span: Span,
root: Option<&'a CratePaths>,
pub is_proc_macro: Option<bool>,
// Mutable in-progress state or output.
rejected_via_hash: Vec<CrateMismatch>,
rejected_via_triple: Vec<CrateMismatch>,
rejected_via_kind: Vec<CrateMismatch>,
rejected_via_version: Vec<CrateMismatch>,
rejected_via_filename: Vec<CrateMismatch>,
}
crate struct CratePaths {
name: Symbol,
source: CrateSource,
}
impl CratePaths {
crate fn new(name: Symbol, source: CrateSource) -> CratePaths {
CratePaths { name, source }
}
}
#[derive(Copy, Clone, PartialEq)]
enum CrateFlavor {
Rlib,
Rmeta,
Dylib,
}
impl fmt::Display for CrateFlavor {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.write_str(match *self {
CrateFlavor::Rlib => "rlib",
CrateFlavor::Rmeta => "rmeta",
CrateFlavor::Dylib => "dylib",
})
}
}
impl<'a> CrateLocator<'a> {
crate fn new(
sess: &'a Session,
metadata_loader: &'a dyn MetadataLoader,
crate_name: Symbol,
hash: Option<Svh>,
host_hash: Option<Svh>,
extra_filename: Option<&'a str>,
is_host: bool,
path_kind: PathKind,
span: Span,
root: Option<&'a CratePaths>,
is_proc_macro: Option<bool>,
) -> CrateLocator<'a> {
CrateLocator {
sess,
metadata_loader,
crate_name,
exact_paths: if hash.is_none() {
sess.opts
.externs
.get(&crate_name.as_str())
.into_iter()
.filter_map(|entry| entry.files())
.flatten()
.map(PathBuf::from)
.collect()
} else {
// SVH being specified means this is a transitive dependency,
// so `--extern` options do not apply.
Vec::new()
},
hash,
host_hash,
extra_filename,
target: if is_host { &sess.host } else { &sess.target.target },
triple: if is_host {
TargetTriple::from_triple(config::host_triple())
} else {
sess.opts.target_triple.clone()
},
filesearch: if is_host {
sess.host_filesearch(path_kind)
} else {
sess.target_filesearch(path_kind)
},
span,
root,
is_proc_macro,
rejected_via_hash: Vec::new(),
rejected_via_triple: Vec::new(),
rejected_via_kind: Vec::new(),
rejected_via_version: Vec::new(),
rejected_via_filename: Vec::new(),
}
}
crate fn reset(&mut self) {
self.rejected_via_hash.clear();
self.rejected_via_triple.clear();
self.rejected_via_kind.clear();
self.rejected_via_version.clear();
self.rejected_via_filename.clear();
}
crate fn maybe_load_library_crate(&mut self) -> Option<Library> {
if !self.exact_paths.is_empty() {
return self.find_commandline_library();
}
let mut seen_paths = FxHashSet::default();
match self.extra_filename {
Some(s) => self
.find_library_crate(s, &mut seen_paths)
.or_else(|| self.find_library_crate("", &mut seen_paths)),
None => self.find_library_crate("", &mut seen_paths),
}
}
crate fn report_errs(self) -> ! {
let add = match self.root {
None => String::new(),
Some(r) => format!(" which `{}` depends on", r.name),
};
let mut msg = "the following crate versions were found:".to_string();
let mut err = if !self.rejected_via_hash.is_empty() {
let mut err = struct_span_err!(
self.sess,
self.span,
E0460,
"found possibly newer version of crate `{}`{}",
self.crate_name,
add
);
err.note("perhaps that crate needs to be recompiled?");
let mismatches = self.rejected_via_hash.iter();
for &CrateMismatch { ref path, .. } in mismatches {
msg.push_str(&format!("\ncrate `{}`: {}", self.crate_name, path.display()));
}
match self.root {
None => {}
Some(r) => {
for path in r.source.paths() {
msg.push_str(&format!("\ncrate `{}`: {}", r.name, path.display()));
}
}
}
err.note(&msg);
err
} else if !self.rejected_via_triple.is_empty() {
let mut err = struct_span_err!(
self.sess,
self.span,
E0461,
"couldn't find crate `{}` \
with expected target triple {}{}",
self.crate_name,
self.triple,
add
);
let mismatches = self.rejected_via_triple.iter();
for &CrateMismatch { ref path, ref got } in mismatches {
msg.push_str(&format!(
"\ncrate `{}`, target triple {}: {}",
self.crate_name,
got,
path.display()
));
}
err.note(&msg);
err
} else if !self.rejected_via_kind.is_empty() {
let mut err = struct_span_err!(
self.sess,
self.span,
E0462,
"found staticlib `{}` instead of rlib or dylib{}",
self.crate_name,
add
);
err.help("please recompile that crate using --crate-type lib");
let mismatches = self.rejected_via_kind.iter();
for &CrateMismatch { ref path, .. } in mismatches {
msg.push_str(&format!("\ncrate `{}`: {}", self.crate_name, path.display()));
}
err.note(&msg);
err
} else if !self.rejected_via_version.is_empty() {
let mut err = struct_span_err!(
self.sess,
self.span,
E0514,
"found crate `{}` compiled by an incompatible version \
of rustc{}",
self.crate_name,
add
);
err.help(&format!(
"please recompile that crate using this compiler ({})",
rustc_version()
));
let mismatches = self.rejected_via_version.iter();
for &CrateMismatch { ref path, ref got } in mismatches {
msg.push_str(&format!(
"\ncrate `{}` compiled by {}: {}",
self.crate_name,
got,
path.display()
));
}
err.note(&msg);
err
} else {
let mut err = struct_span_err!(
self.sess,
self.span,
E0463,
"can't find crate for `{}`{}",
self.crate_name,
add
);
if (self.crate_name == sym::std || self.crate_name == sym::core)
&& self.triple != TargetTriple::from_triple(config::host_triple())
{
err.note(&format!("the `{}` target may not be installed", self.triple));
} else if self.crate_name == sym::profiler_builtins {
err.note(&"the compiler may have been built without the profiler runtime");
}
err.span_label(self.span, "can't find crate");
err
};
if !self.rejected_via_filename.is_empty() {
let dylibname = self.dylibname();
let mismatches = self.rejected_via_filename.iter();
for &CrateMismatch { ref path, .. } in mismatches {
err.note(&format!(
"extern location for {} is of an unknown type: {}",
self.crate_name,
path.display()
))
.help(&format!(
"file name should be lib*.rlib or {}*.{}",
dylibname.0, dylibname.1
));
}
}
err.emit();
self.sess.abort_if_errors();
unreachable!();
}
fn find_library_crate(
&mut self,
extra_prefix: &str,
seen_paths: &mut FxHashSet<PathBuf>,
) -> Option<Library> {
let dypair = self.dylibname();
let staticpair = self.staticlibname();
// want: crate_name.dir_part() + prefix + crate_name.file_part + "-"
let dylib_prefix = format!("{}{}{}", dypair.0, self.crate_name, extra_prefix);
let rlib_prefix = format!("lib{}{}", self.crate_name, extra_prefix);
let staticlib_prefix = format!("{}{}{}", staticpair.0, self.crate_name, extra_prefix);
let mut candidates: FxHashMap<_, (FxHashMap<_, _>, FxHashMap<_, _>, FxHashMap<_, _>)> =
Default::default();
let mut staticlibs = vec![];
// First, find all possible candidate rlibs and dylibs purely based on
// the name of the files themselves. We're trying to match against an
// exact crate name and a possibly an exact hash.
//
// During this step, we can filter all found libraries based on the
// name and id found in the crate id (we ignore the path portion for
// filename matching), as well as the exact hash (if specified). If we
// end up having many candidates, we must look at the metadata to
// perform exact matches against hashes/crate ids. Note that opening up
// the metadata is where we do an exact match against the full contents
// of the crate id (path/name/id).
//
// The goal of this step is to look at as little metadata as possible.
self.filesearch.search(|spf, kind| {
let file = match &spf.file_name_str {
None => return FileDoesntMatch,
Some(file) => file,
};
let (hash, found_kind) = if file.starts_with(&rlib_prefix) && file.ends_with(".rlib") {
(&file[(rlib_prefix.len())..(file.len() - ".rlib".len())], CrateFlavor::Rlib)
} else if file.starts_with(&rlib_prefix) && file.ends_with(".rmeta") {
(&file[(rlib_prefix.len())..(file.len() - ".rmeta".len())], CrateFlavor::Rmeta)
} else if file.starts_with(&dylib_prefix) && file.ends_with(&dypair.1) {
(&file[(dylib_prefix.len())..(file.len() - dypair.1.len())], CrateFlavor::Dylib)
} else {
if file.starts_with(&staticlib_prefix) && file.ends_with(&staticpair.1) {
staticlibs
.push(CrateMismatch { path: spf.path.clone(), got: "static".to_string() });
}
return FileDoesntMatch;
};
info!("lib candidate: {}", spf.path.display());
let hash_str = hash.to_string();
let slot = candidates.entry(hash_str).or_default();
let (ref mut rlibs, ref mut rmetas, ref mut dylibs) = *slot;
fs::canonicalize(&spf.path)
.map(|p| {
if seen_paths.contains(&p) {
return FileDoesntMatch;
};
seen_paths.insert(p.clone());
match found_kind {
CrateFlavor::Rlib => {
rlibs.insert(p, kind);
}
CrateFlavor::Rmeta => {
rmetas.insert(p, kind);
}
CrateFlavor::Dylib => {
dylibs.insert(p, kind);
}
}
FileMatches
})
.unwrap_or(FileDoesntMatch)
});
self.rejected_via_kind.extend(staticlibs);
// We have now collected all known libraries into a set of candidates
// keyed of the filename hash listed. For each filename, we also have a
// list of rlibs/dylibs that apply. Here, we map each of these lists
// (per hash), to a Library candidate for returning.
//
// A Library candidate is created if the metadata for the set of
// libraries corresponds to the crate id and hash criteria that this
// search is being performed for.
let mut libraries = FxHashMap::default();
for (_hash, (rlibs, rmetas, dylibs)) in candidates {
if let Some((svh, lib)) = self.extract_lib(rlibs, rmetas, dylibs) {
libraries.insert(svh, lib);
}
}
// Having now translated all relevant found hashes into libraries, see
// what we've got and figure out if we found multiple candidates for
// libraries or not.
match libraries.len() {
0 => None,
1 => Some(libraries.into_iter().next().unwrap().1),
_ => {
let mut err = struct_span_err!(
self.sess,
self.span,
E0464,
"multiple matching crates for `{}`",
self.crate_name
);
let candidates = libraries
.iter()
.filter_map(|(_, lib)| {
let crate_name = &lib.metadata.get_root().name().as_str();
match &(&lib.source.dylib, &lib.source.rlib) {
&(&Some((ref pd, _)), &Some((ref pr, _))) => Some(format!(
"\ncrate `{}`: {}\n{:>padding$}",
crate_name,
pd.display(),
pr.display(),
padding = 8 + crate_name.len()
)),
&(&Some((ref p, _)), &None) | &(&None, &Some((ref p, _))) => {
Some(format!("\ncrate `{}`: {}", crate_name, p.display()))
}
&(&None, &None) => None,
}
})
.collect::<String>();
err.note(&format!("candidates:{}", candidates));
err.emit();
None
}
}
}
fn extract_lib(
&mut self,
rlibs: FxHashMap<PathBuf, PathKind>,
rmetas: FxHashMap<PathBuf, PathKind>,
dylibs: FxHashMap<PathBuf, PathKind>,
) -> Option<(Svh, Library)> {
let mut slot = None;
// Order here matters, rmeta should come first. See comment in
// `extract_one` below.
let source = CrateSource {
rmeta: self.extract_one(rmetas, CrateFlavor::Rmeta, &mut slot),
rlib: self.extract_one(rlibs, CrateFlavor::Rlib, &mut slot),
dylib: self.extract_one(dylibs, CrateFlavor::Dylib, &mut slot),
};
slot.map(|(svh, metadata)| (svh, Library { source, metadata }))
}
fn needs_crate_flavor(&self, flavor: CrateFlavor) -> bool {
if flavor == CrateFlavor::Dylib && self.is_proc_macro == Some(true) {
return true;
}
// The all loop is because `--crate-type=rlib --crate-type=rlib` is
// legal and produces both inside this type.
let is_rlib = self.sess.crate_types().iter().all(|c| *c == CrateType::Rlib);
let needs_object_code = self.sess.opts.output_types.should_codegen();
// If we're producing an rlib, then we don't need object code.
// Or, if we're not producing object code, then we don't need it either
// (e.g., if we're a cdylib but emitting just metadata).
if is_rlib || !needs_object_code {
flavor == CrateFlavor::Rmeta
} else {
// we need all flavors (perhaps not true, but what we do for now)
true
}
}
// Attempts to extract *one* library from the set `m`. If the set has no
// elements, `None` is returned. If the set has more than one element, then
// the errors and notes are emitted about the set of libraries.
//
// With only one library in the set, this function will extract it, and then
// read the metadata from it if `*slot` is `None`. If the metadata couldn't
// be read, it is assumed that the file isn't a valid rust library (no
// errors are emitted).
fn extract_one(
&mut self,
m: FxHashMap<PathBuf, PathKind>,
flavor: CrateFlavor,
slot: &mut Option<(Svh, MetadataBlob)>,
) -> Option<(PathBuf, PathKind)> {
let mut ret: Option<(PathBuf, PathKind)> = None;
let mut error = 0;
// If we are producing an rlib, and we've already loaded metadata, then
// we should not attempt to discover further crate sources (unless we're
// locating a proc macro; exact logic is in needs_crate_flavor). This means
// that under -Zbinary-dep-depinfo we will not emit a dependency edge on
// the *unused* rlib, and by returning `None` here immediately we
// guarantee that we do indeed not use it.
//
// See also #68149 which provides more detail on why emitting the
// dependency on the rlib is a bad thing.
//
// We currently do not verify that these other sources are even in sync,
// and this is arguably a bug (see #10786), but because reading metadata
// is quite slow (especially from dylibs) we currently do not read it
// from the other crate sources.
if slot.is_some() {
if m.is_empty() || !self.needs_crate_flavor(flavor) {
return None;
} else if m.len() == 1 {
return Some(m.into_iter().next().unwrap());
}
}
let mut err: Option<DiagnosticBuilder<'_>> = None;
for (lib, kind) in m {
info!("{} reading metadata from: {}", flavor, lib.display());
let (hash, metadata) =
match get_metadata_section(self.target, flavor, &lib, self.metadata_loader) {
Ok(blob) => {
if let Some(h) = self.crate_matches(&blob, &lib) {
(h, blob)
} else {
info!("metadata mismatch");
continue;
}
}
Err(err) => {
warn!("no metadata found: {}", err);
continue;
}
};
// If we see multiple hashes, emit an error about duplicate candidates.
if slot.as_ref().map_or(false, |s| s.0 != hash) {
let mut e = struct_span_err!(
self.sess,
self.span,
E0465,
"multiple {} candidates for `{}` found",
flavor,
self.crate_name
);
e.span_note(
self.span,
&format!(r"candidate #1: {}", ret.as_ref().unwrap().0.display()),
);
if let Some(ref mut e) = err {
e.emit();
}
err = Some(e);
error = 1;
*slot = None;
}
if error > 0 {
error += 1;
err.as_mut()
.unwrap()
.span_note(self.span, &format!(r"candidate #{}: {}", error, lib.display()));
continue;
}
// Ok so at this point we've determined that `(lib, kind)` above is
// a candidate crate to load, and that `slot` is either none (this
// is the first crate of its kind) or if some the previous path has
// the exact same hash (e.g., it's the exact same crate).
//
// In principle these two candidate crates are exactly the same so
// we can choose either of them to link. As a stupidly gross hack,
// however, we favor crate in the sysroot.
//
// You can find more info in rust-lang/rust#39518 and various linked
// issues, but the general gist is that during testing libstd the
// compilers has two candidates to choose from: one in the sysroot
// and one in the deps folder. These two crates are the exact same
// crate but if the compiler chooses the one in the deps folder
// it'll cause spurious errors on Windows.
//
// As a result, we favor the sysroot crate here. Note that the
// candidates are all canonicalized, so we canonicalize the sysroot
// as well.
if let Some((ref prev, _)) = ret {
let sysroot = &self.sess.sysroot;
let sysroot = sysroot.canonicalize().unwrap_or_else(|_| sysroot.to_path_buf());
if prev.starts_with(&sysroot) {
continue;
}
}
*slot = Some((hash, metadata));
ret = Some((lib, kind));
}
if error > 0 {
err.unwrap().emit();
None
} else {
ret
}
}
fn crate_matches(&mut self, metadata: &MetadataBlob, libpath: &Path) -> Option<Svh> {
let rustc_version = rustc_version();
let found_version = metadata.get_rustc_version();
if found_version != rustc_version {
info!("Rejecting via version: expected {} got {}", rustc_version, found_version);
self.rejected_via_version
.push(CrateMismatch { path: libpath.to_path_buf(), got: found_version });
return None;
}
let root = metadata.get_root();
if let Some(expected_is_proc_macro) = self.is_proc_macro {
let is_proc_macro = root.is_proc_macro_crate();
if is_proc_macro != expected_is_proc_macro {
info!(
"Rejecting via proc macro: expected {} got {}",
expected_is_proc_macro, is_proc_macro
);
return None;
}
}
if self.exact_paths.is_empty() {
if self.crate_name != root.name() {
info!("Rejecting via crate name");
return None;
}
}
if root.triple() != &self.triple {
info!("Rejecting via crate triple: expected {} got {}", self.triple, root.triple());
self.rejected_via_triple.push(CrateMismatch {
path: libpath.to_path_buf(),
got: root.triple().to_string(),
});
return None;
}
let hash = root.hash();
if let Some(expected_hash) = self.hash {
if hash != expected_hash {
info!("Rejecting via hash: expected {} got {}", expected_hash, hash);
self.rejected_via_hash
.push(CrateMismatch { path: libpath.to_path_buf(), got: hash.to_string() });
return None;
}
}
Some(hash)
}
// Returns the corresponding (prefix, suffix) that files need to have for
// dynamic libraries
fn dylibname(&self) -> (String, String) {
let t = &self.target;
(t.options.dll_prefix.clone(), t.options.dll_suffix.clone())
}
// Returns the corresponding (prefix, suffix) that files need to have for
// static libraries
fn staticlibname(&self) -> (String, String) {
let t = &self.target;
(t.options.staticlib_prefix.clone(), t.options.staticlib_suffix.clone())
}
fn find_commandline_library(&mut self) -> Option<Library> {
// First, filter out all libraries that look suspicious. We only accept
// files which actually exist that have the correct naming scheme for
// rlibs/dylibs.
let sess = self.sess;
let dylibname = self.dylibname();
let mut rlibs = FxHashMap::default();
let mut rmetas = FxHashMap::default();
let mut dylibs = FxHashMap::default();
{
let crate_name = self.crate_name;
let rejected_via_filename = &mut self.rejected_via_filename;
let locs = self.exact_paths.iter().filter(|loc| {
if !loc.exists() {
sess.err(&format!(
"extern location for {} does not exist: {}",
crate_name,
loc.display()
));
return false;
}
let file = match loc.file_name().and_then(|s| s.to_str()) {
Some(file) => file,
None => {
sess.err(&format!(
"extern location for {} is not a file: {}",
crate_name,
loc.display()
));
return false;
}
};
if file.starts_with("lib") && (file.ends_with(".rlib") || file.ends_with(".rmeta"))
{
return true;
} else {
let (ref prefix, ref suffix) = dylibname;
if file.starts_with(&prefix[..]) && file.ends_with(&suffix[..]) {
return true;
}
}
rejected_via_filename
.push(CrateMismatch { path: (*loc).clone(), got: String::new() });
false
});
// Now that we have an iterator of good candidates, make sure
// there's at most one rlib and at most one dylib.
for loc in locs {
if loc.file_name().unwrap().to_str().unwrap().ends_with(".rlib") {
rlibs.insert(fs::canonicalize(&loc).unwrap(), PathKind::ExternFlag);
} else if loc.file_name().unwrap().to_str().unwrap().ends_with(".rmeta") {
rmetas.insert(fs::canonicalize(&loc).unwrap(), PathKind::ExternFlag);
} else {
dylibs.insert(fs::canonicalize(&loc).unwrap(), PathKind::ExternFlag);
}
}
};
// Extract the dylib/rlib/rmeta triple.
self.extract_lib(rlibs, rmetas, dylibs).map(|(_, lib)| lib)
}
}
// Just a small wrapper to time how long reading metadata takes.
fn get_metadata_section(
target: &Target,
flavor: CrateFlavor,
filename: &Path,
loader: &dyn MetadataLoader,
) -> Result<MetadataBlob, String> {
let start = Instant::now();
let ret = get_metadata_section_imp(target, flavor, filename, loader);
info!("reading {:?} => {:?}", filename.file_name().unwrap(), start.elapsed());
ret
}
/// A trivial wrapper for `Mmap` that implements `StableDeref`.
struct StableDerefMmap(memmap::Mmap);
impl Deref for StableDerefMmap {
type Target = [u8];
fn deref(&self) -> &[u8] {
self.0.deref()
}
}
unsafe impl stable_deref_trait::StableDeref for StableDerefMmap {}
fn get_metadata_section_imp(
target: &Target,
flavor: CrateFlavor,
filename: &Path,
loader: &dyn MetadataLoader,
) -> Result<MetadataBlob, String> {
if !filename.exists() {
return Err(format!("no such file: '{}'", filename.display()));
}
let raw_bytes: MetadataRef = match flavor {
CrateFlavor::Rlib => loader.get_rlib_metadata(target, filename)?,
CrateFlavor::Dylib => {
let buf = loader.get_dylib_metadata(target, filename)?;
// The header is uncompressed
let header_len = METADATA_HEADER.len();
debug!("checking {} bytes of metadata-version stamp", header_len);
let header = &buf[..cmp::min(header_len, buf.len())];
if header != METADATA_HEADER {
return Err(format!(
"incompatible metadata version found: '{}'",
filename.display()
));
}
// Header is okay -> inflate the actual metadata
let compressed_bytes = &buf[header_len..];
debug!("inflating {} bytes of compressed metadata", compressed_bytes.len());
let mut inflated = Vec::new();
match DeflateDecoder::new(compressed_bytes).read_to_end(&mut inflated) {
Ok(_) => rustc_erase_owner!(OwningRef::new(inflated).map_owner_box()),
Err(_) => {
return Err(format!("failed to decompress metadata: {}", filename.display()));
}
}
}
CrateFlavor::Rmeta => {
// mmap the file, because only a small fraction of it is read.
let file = std::fs::File::open(filename)
.map_err(|_| format!("failed to open rmeta metadata: '{}'", filename.display()))?;
let mmap = unsafe { memmap::Mmap::map(&file) };
let mmap = mmap
.map_err(|_| format!("failed to mmap rmeta metadata: '{}'", filename.display()))?;
rustc_erase_owner!(OwningRef::new(StableDerefMmap(mmap)).map_owner_box())
}
};
let blob = MetadataBlob::new(raw_bytes);
if blob.is_compatible() {
Ok(blob)
} else {
Err(format!("incompatible metadata version found: '{}'", filename.display()))
}
}
/// Look for a plugin registrar. Returns its library path and crate disambiguator.
pub fn find_plugin_registrar(
sess: &Session,
metadata_loader: &dyn MetadataLoader,
span: Span,
name: Symbol,
) -> Option<(PathBuf, CrateDisambiguator)> {
info!("find plugin registrar `{}`", name);
let target_triple = sess.opts.target_triple.clone();
let host_triple = TargetTriple::from_triple(config::host_triple());
let is_cross = target_triple != host_triple;
let mut target_only = false;
let mut locator = CrateLocator::new(
sess,
metadata_loader,
name,
None, // hash
None, // host_hash
None, // extra_filename
true, // is_host
PathKind::Crate,
span,
None, // root
None, // is_proc_macro
);
let library = locator.maybe_load_library_crate().or_else(|| {
if !is_cross {
return None;
}
// Try loading from target crates. This will abort later if we
// try to load a plugin registrar function,
target_only = true;
locator.target = &sess.target.target;
locator.triple = target_triple;
locator.filesearch = sess.target_filesearch(PathKind::Crate);
locator.maybe_load_library_crate()
});
let library = match library {
Some(l) => l,
None => locator.report_errs(),
};
if target_only {
let message = format!(
"plugin `{}` is not available for triple `{}` (only found {})",
name,
config::host_triple(),
sess.opts.target_triple
);
struct_span_err!(sess, span, E0456, "{}", &message).emit();
return None;
}
match library.source.dylib {
Some(dylib) => Some((dylib.0, library.metadata.get_root().disambiguator())),
None => {
struct_span_err!(
sess,
span,
E0457,
"plugin `{}` only found in rlib format, but must be available \
in dylib format",
name
)
.emit();
// No need to abort because the loading code will just ignore this
// empty dylib.
None
}
}
}
/// A diagnostic function for dumping crate metadata to an output stream.
pub fn list_file_metadata(
target: &Target,
path: &Path,
metadata_loader: &dyn MetadataLoader,
out: &mut dyn io::Write,
) -> io::Result<()> {
let filename = path.file_name().unwrap().to_str().unwrap();
let flavor = if filename.ends_with(".rlib") {
CrateFlavor::Rlib
} else if filename.ends_with(".rmeta") {
CrateFlavor::Rmeta
} else {
CrateFlavor::Dylib
};
match get_metadata_section(target, flavor, path, metadata_loader) {
Ok(metadata) => metadata.list_crate_metadata(out),
Err(msg) => write!(out, "{}\n", msg),
}
}