blob: b3015dcc2aee87df5e55b178bcfddeb1d7056a87 [file] [log] [blame]
#![allow(non_snake_case)]
use crate::{LateContext, LateLintPass, LintContext};
use rustc_ast::ast;
use rustc_attr as attr;
use rustc_data_structures::fx::FxHashSet;
use rustc_errors::Applicability;
use rustc_hir as hir;
use rustc_hir::{is_range_literal, ExprKind, Node};
use rustc_index::vec::Idx;
use rustc_middle::mir::interpret::{sign_extend, truncate};
use rustc_middle::ty::layout::{IntegerExt, SizeSkeleton};
use rustc_middle::ty::subst::SubstsRef;
use rustc_middle::ty::{self, AdtKind, Ty, TypeFoldable};
use rustc_span::source_map;
use rustc_span::symbol::sym;
use rustc_span::{Span, DUMMY_SP};
use rustc_target::abi::{Integer, LayoutOf, TagEncoding, VariantIdx, Variants};
use rustc_target::spec::abi::Abi;
use log::debug;
use std::cmp;
declare_lint! {
UNUSED_COMPARISONS,
Warn,
"comparisons made useless by limits of the types involved"
}
declare_lint! {
OVERFLOWING_LITERALS,
Deny,
"literal out of range for its type"
}
declare_lint! {
VARIANT_SIZE_DIFFERENCES,
Allow,
"detects enums with widely varying variant sizes"
}
#[derive(Copy, Clone)]
pub struct TypeLimits {
/// Id of the last visited negated expression
negated_expr_id: Option<hir::HirId>,
}
impl_lint_pass!(TypeLimits => [UNUSED_COMPARISONS, OVERFLOWING_LITERALS]);
impl TypeLimits {
pub fn new() -> TypeLimits {
TypeLimits { negated_expr_id: None }
}
}
/// Attempts to special-case the overflowing literal lint when it occurs as a range endpoint.
/// Returns `true` iff the lint was overridden.
fn lint_overflowing_range_endpoint<'tcx>(
cx: &LateContext<'tcx>,
lit: &hir::Lit,
lit_val: u128,
max: u128,
expr: &'tcx hir::Expr<'tcx>,
parent_expr: &'tcx hir::Expr<'tcx>,
ty: &str,
) -> bool {
// We only want to handle exclusive (`..`) ranges,
// which are represented as `ExprKind::Struct`.
let mut overwritten = false;
if let ExprKind::Struct(_, eps, _) = &parent_expr.kind {
if eps.len() != 2 {
return false;
}
// We can suggest using an inclusive range
// (`..=`) instead only if it is the `end` that is
// overflowing and only by 1.
if eps[1].expr.hir_id == expr.hir_id && lit_val - 1 == max {
cx.struct_span_lint(OVERFLOWING_LITERALS, parent_expr.span, |lint| {
let mut err = lint.build(&format!("range endpoint is out of range for `{}`", ty));
if let Ok(start) = cx.sess().source_map().span_to_snippet(eps[0].span) {
use ast::{LitIntType, LitKind};
// We need to preserve the literal's suffix,
// as it may determine typing information.
let suffix = match lit.node {
LitKind::Int(_, LitIntType::Signed(s)) => s.name_str().to_string(),
LitKind::Int(_, LitIntType::Unsigned(s)) => s.name_str().to_string(),
LitKind::Int(_, LitIntType::Unsuffixed) => "".to_string(),
_ => bug!(),
};
let suggestion = format!("{}..={}{}", start, lit_val - 1, suffix);
err.span_suggestion(
parent_expr.span,
&"use an inclusive range instead",
suggestion,
Applicability::MachineApplicable,
);
err.emit();
overwritten = true;
}
});
}
}
overwritten
}
// For `isize` & `usize`, be conservative with the warnings, so that the
// warnings are consistent between 32- and 64-bit platforms.
fn int_ty_range(int_ty: ast::IntTy) -> (i128, i128) {
match int_ty {
ast::IntTy::Isize => (i64::MIN as i128, i64::MAX as i128),
ast::IntTy::I8 => (i8::MIN as i64 as i128, i8::MAX as i128),
ast::IntTy::I16 => (i16::MIN as i64 as i128, i16::MAX as i128),
ast::IntTy::I32 => (i32::MIN as i64 as i128, i32::MAX as i128),
ast::IntTy::I64 => (i64::MIN as i128, i64::MAX as i128),
ast::IntTy::I128 => (i128::MIN as i128, i128::MAX),
}
}
fn uint_ty_range(uint_ty: ast::UintTy) -> (u128, u128) {
match uint_ty {
ast::UintTy::Usize => (u64::MIN as u128, u64::MAX as u128),
ast::UintTy::U8 => (u8::MIN as u128, u8::MAX as u128),
ast::UintTy::U16 => (u16::MIN as u128, u16::MAX as u128),
ast::UintTy::U32 => (u32::MIN as u128, u32::MAX as u128),
ast::UintTy::U64 => (u64::MIN as u128, u64::MAX as u128),
ast::UintTy::U128 => (u128::MIN, u128::MAX),
}
}
fn get_bin_hex_repr(cx: &LateContext<'_>, lit: &hir::Lit) -> Option<String> {
let src = cx.sess().source_map().span_to_snippet(lit.span).ok()?;
let firstch = src.chars().next()?;
if firstch == '0' {
match src.chars().nth(1) {
Some('x' | 'b') => return Some(src),
_ => return None,
}
}
None
}
fn report_bin_hex_error(
cx: &LateContext<'_>,
expr: &hir::Expr<'_>,
ty: attr::IntType,
repr_str: String,
val: u128,
negative: bool,
) {
let size = Integer::from_attr(&cx.tcx, ty).size();
cx.struct_span_lint(OVERFLOWING_LITERALS, expr.span, |lint| {
let (t, actually) = match ty {
attr::IntType::SignedInt(t) => {
let actually = sign_extend(val, size) as i128;
(t.name_str(), actually.to_string())
}
attr::IntType::UnsignedInt(t) => {
let actually = truncate(val, size);
(t.name_str(), actually.to_string())
}
};
let mut err = lint.build(&format!("literal out of range for {}", t));
err.note(&format!(
"the literal `{}` (decimal `{}`) does not fit into \
the type `{}` and will become `{}{}`",
repr_str, val, t, actually, t
));
if let Some(sugg_ty) =
get_type_suggestion(&cx.tables().node_type(expr.hir_id), val, negative)
{
if let Some(pos) = repr_str.chars().position(|c| c == 'i' || c == 'u') {
let (sans_suffix, _) = repr_str.split_at(pos);
err.span_suggestion(
expr.span,
&format!("consider using `{}` instead", sugg_ty),
format!("{}{}", sans_suffix, sugg_ty),
Applicability::MachineApplicable,
);
} else {
err.help(&format!("consider using `{}` instead", sugg_ty));
}
}
err.emit();
});
}
// This function finds the next fitting type and generates a suggestion string.
// It searches for fitting types in the following way (`X < Y`):
// - `iX`: if literal fits in `uX` => `uX`, else => `iY`
// - `-iX` => `iY`
// - `uX` => `uY`
//
// No suggestion for: `isize`, `usize`.
fn get_type_suggestion(t: Ty<'_>, val: u128, negative: bool) -> Option<&'static str> {
use rustc_ast::ast::IntTy::*;
use rustc_ast::ast::UintTy::*;
macro_rules! find_fit {
($ty:expr, $val:expr, $negative:expr,
$($type:ident => [$($utypes:expr),*] => [$($itypes:expr),*]),+) => {
{
let _neg = if negative { 1 } else { 0 };
match $ty {
$($type => {
$(if !negative && val <= uint_ty_range($utypes).1 {
return Some($utypes.name_str())
})*
$(if val <= int_ty_range($itypes).1 as u128 + _neg {
return Some($itypes.name_str())
})*
None
},)+
_ => None
}
}
}
}
match t.kind {
ty::Int(i) => find_fit!(i, val, negative,
I8 => [U8] => [I16, I32, I64, I128],
I16 => [U16] => [I32, I64, I128],
I32 => [U32] => [I64, I128],
I64 => [U64] => [I128],
I128 => [U128] => []),
ty::Uint(u) => find_fit!(u, val, negative,
U8 => [U8, U16, U32, U64, U128] => [],
U16 => [U16, U32, U64, U128] => [],
U32 => [U32, U64, U128] => [],
U64 => [U64, U128] => [],
U128 => [U128] => []),
_ => None,
}
}
fn lint_int_literal<'tcx>(
cx: &LateContext<'tcx>,
type_limits: &TypeLimits,
e: &'tcx hir::Expr<'tcx>,
lit: &hir::Lit,
t: ast::IntTy,
v: u128,
) {
let int_type = t.normalize(cx.sess().target.ptr_width);
let (min, max) = int_ty_range(int_type);
let max = max as u128;
let negative = type_limits.negated_expr_id == Some(e.hir_id);
// Detect literal value out of range [min, max] inclusive
// avoiding use of -min to prevent overflow/panic
if (negative && v > max + 1) || (!negative && v > max) {
if let Some(repr_str) = get_bin_hex_repr(cx, lit) {
report_bin_hex_error(cx, e, attr::IntType::SignedInt(t), repr_str, v, negative);
return;
}
let par_id = cx.tcx.hir().get_parent_node(e.hir_id);
if let Node::Expr(par_e) = cx.tcx.hir().get(par_id) {
if let hir::ExprKind::Struct(..) = par_e.kind {
if is_range_literal(cx.sess().source_map(), par_e)
&& lint_overflowing_range_endpoint(cx, lit, v, max, e, par_e, t.name_str())
{
// The overflowing literal lint was overridden.
return;
}
}
}
cx.struct_span_lint(OVERFLOWING_LITERALS, e.span, |lint| {
lint.build(&format!("literal out of range for `{}`", t.name_str()))
.note(&format!(
"the literal `{}` does not fit into the type `{}` whose range is `{}..={}`",
cx.sess()
.source_map()
.span_to_snippet(lit.span)
.expect("must get snippet from literal"),
t.name_str(),
min,
max,
))
.emit();
});
}
}
fn lint_uint_literal<'tcx>(
cx: &LateContext<'tcx>,
e: &'tcx hir::Expr<'tcx>,
lit: &hir::Lit,
t: ast::UintTy,
) {
let uint_type = t.normalize(cx.sess().target.ptr_width);
let (min, max) = uint_ty_range(uint_type);
let lit_val: u128 = match lit.node {
// _v is u8, within range by definition
ast::LitKind::Byte(_v) => return,
ast::LitKind::Int(v, _) => v,
_ => bug!(),
};
if lit_val < min || lit_val > max {
let parent_id = cx.tcx.hir().get_parent_node(e.hir_id);
if let Node::Expr(par_e) = cx.tcx.hir().get(parent_id) {
match par_e.kind {
hir::ExprKind::Cast(..) => {
if let ty::Char = cx.tables().expr_ty(par_e).kind {
cx.struct_span_lint(OVERFLOWING_LITERALS, par_e.span, |lint| {
lint.build("only `u8` can be cast into `char`")
.span_suggestion(
par_e.span,
&"use a `char` literal instead",
format!("'\\u{{{:X}}}'", lit_val),
Applicability::MachineApplicable,
)
.emit();
});
return;
}
}
hir::ExprKind::Struct(..) if is_range_literal(cx.sess().source_map(), par_e) => {
let t = t.name_str();
if lint_overflowing_range_endpoint(cx, lit, lit_val, max, e, par_e, t) {
// The overflowing literal lint was overridden.
return;
}
}
_ => {}
}
}
if let Some(repr_str) = get_bin_hex_repr(cx, lit) {
report_bin_hex_error(cx, e, attr::IntType::UnsignedInt(t), repr_str, lit_val, false);
return;
}
cx.struct_span_lint(OVERFLOWING_LITERALS, e.span, |lint| {
lint.build(&format!("literal out of range for `{}`", t.name_str()))
.note(&format!(
"the literal `{}` does not fit into the type `{}` whose range is `{}..={}`",
cx.sess()
.source_map()
.span_to_snippet(lit.span)
.expect("must get snippet from literal"),
t.name_str(),
min,
max,
))
.emit()
});
}
}
fn lint_literal<'tcx>(
cx: &LateContext<'tcx>,
type_limits: &TypeLimits,
e: &'tcx hir::Expr<'tcx>,
lit: &hir::Lit,
) {
match cx.tables().node_type(e.hir_id).kind {
ty::Int(t) => {
match lit.node {
ast::LitKind::Int(v, ast::LitIntType::Signed(_) | ast::LitIntType::Unsuffixed) => {
lint_int_literal(cx, type_limits, e, lit, t, v)
}
_ => bug!(),
};
}
ty::Uint(t) => lint_uint_literal(cx, e, lit, t),
ty::Float(t) => {
let is_infinite = match lit.node {
ast::LitKind::Float(v, _) => match t {
ast::FloatTy::F32 => v.as_str().parse().map(f32::is_infinite),
ast::FloatTy::F64 => v.as_str().parse().map(f64::is_infinite),
},
_ => bug!(),
};
if is_infinite == Ok(true) {
cx.struct_span_lint(OVERFLOWING_LITERALS, e.span, |lint| {
lint.build(&format!("literal out of range for `{}`", t.name_str()))
.note(&format!(
"the literal `{}` does not fit into the type `{}` and will be converted to `std::{}::INFINITY`",
cx.sess()
.source_map()
.span_to_snippet(lit.span)
.expect("must get snippet from literal"),
t.name_str(),
t.name_str(),
))
.emit();
});
}
}
_ => {}
}
}
impl<'tcx> LateLintPass<'tcx> for TypeLimits {
fn check_expr(&mut self, cx: &LateContext<'tcx>, e: &'tcx hir::Expr<'tcx>) {
match e.kind {
hir::ExprKind::Unary(hir::UnOp::UnNeg, ref expr) => {
// propagate negation, if the negation itself isn't negated
if self.negated_expr_id != Some(e.hir_id) {
self.negated_expr_id = Some(expr.hir_id);
}
}
hir::ExprKind::Binary(binop, ref l, ref r) => {
if is_comparison(binop) && !check_limits(cx, binop, &l, &r) {
cx.struct_span_lint(UNUSED_COMPARISONS, e.span, |lint| {
lint.build("comparison is useless due to type limits").emit()
});
}
}
hir::ExprKind::Lit(ref lit) => lint_literal(cx, self, e, lit),
_ => {}
};
fn is_valid<T: cmp::PartialOrd>(binop: hir::BinOp, v: T, min: T, max: T) -> bool {
match binop.node {
hir::BinOpKind::Lt => v > min && v <= max,
hir::BinOpKind::Le => v >= min && v < max,
hir::BinOpKind::Gt => v >= min && v < max,
hir::BinOpKind::Ge => v > min && v <= max,
hir::BinOpKind::Eq | hir::BinOpKind::Ne => v >= min && v <= max,
_ => bug!(),
}
}
fn rev_binop(binop: hir::BinOp) -> hir::BinOp {
source_map::respan(
binop.span,
match binop.node {
hir::BinOpKind::Lt => hir::BinOpKind::Gt,
hir::BinOpKind::Le => hir::BinOpKind::Ge,
hir::BinOpKind::Gt => hir::BinOpKind::Lt,
hir::BinOpKind::Ge => hir::BinOpKind::Le,
_ => return binop,
},
)
}
fn check_limits(
cx: &LateContext<'_>,
binop: hir::BinOp,
l: &hir::Expr<'_>,
r: &hir::Expr<'_>,
) -> bool {
let (lit, expr, swap) = match (&l.kind, &r.kind) {
(&hir::ExprKind::Lit(_), _) => (l, r, true),
(_, &hir::ExprKind::Lit(_)) => (r, l, false),
_ => return true,
};
// Normalize the binop so that the literal is always on the RHS in
// the comparison
let norm_binop = if swap { rev_binop(binop) } else { binop };
match cx.tables().node_type(expr.hir_id).kind {
ty::Int(int_ty) => {
let (min, max) = int_ty_range(int_ty);
let lit_val: i128 = match lit.kind {
hir::ExprKind::Lit(ref li) => match li.node {
ast::LitKind::Int(
v,
ast::LitIntType::Signed(_) | ast::LitIntType::Unsuffixed,
) => v as i128,
_ => return true,
},
_ => bug!(),
};
is_valid(norm_binop, lit_val, min, max)
}
ty::Uint(uint_ty) => {
let (min, max): (u128, u128) = uint_ty_range(uint_ty);
let lit_val: u128 = match lit.kind {
hir::ExprKind::Lit(ref li) => match li.node {
ast::LitKind::Int(v, _) => v,
_ => return true,
},
_ => bug!(),
};
is_valid(norm_binop, lit_val, min, max)
}
_ => true,
}
}
fn is_comparison(binop: hir::BinOp) -> bool {
match binop.node {
hir::BinOpKind::Eq
| hir::BinOpKind::Lt
| hir::BinOpKind::Le
| hir::BinOpKind::Ne
| hir::BinOpKind::Ge
| hir::BinOpKind::Gt => true,
_ => false,
}
}
}
}
declare_lint! {
IMPROPER_CTYPES,
Warn,
"proper use of libc types in foreign modules"
}
declare_lint_pass!(ImproperCTypesDeclarations => [IMPROPER_CTYPES]);
declare_lint! {
IMPROPER_CTYPES_DEFINITIONS,
Warn,
"proper use of libc types in foreign item definitions"
}
declare_lint_pass!(ImproperCTypesDefinitions => [IMPROPER_CTYPES_DEFINITIONS]);
enum ImproperCTypesMode {
Declarations,
Definitions,
}
struct ImproperCTypesVisitor<'a, 'tcx> {
cx: &'a LateContext<'tcx>,
mode: ImproperCTypesMode,
}
enum FfiResult<'tcx> {
FfiSafe,
FfiPhantom(Ty<'tcx>),
FfiUnsafe { ty: Ty<'tcx>, reason: String, help: Option<String> },
}
impl<'a, 'tcx> ImproperCTypesVisitor<'a, 'tcx> {
/// Is type known to be non-null?
fn ty_is_known_nonnull(&self, ty: Ty<'tcx>) -> bool {
match ty.kind {
ty::FnPtr(_) => true,
ty::Ref(..) => true,
ty::Adt(field_def, substs) if field_def.repr.transparent() && !field_def.is_union() => {
for field in field_def.all_fields() {
let field_ty = self.cx.tcx.normalize_erasing_regions(
self.cx.param_env,
field.ty(self.cx.tcx, substs),
);
if field_ty.is_zst(self.cx.tcx, field.did) {
continue;
}
let attrs = self.cx.tcx.get_attrs(field_def.did);
if attrs
.iter()
.any(|a| a.check_name(sym::rustc_nonnull_optimization_guaranteed))
|| self.ty_is_known_nonnull(field_ty)
{
return true;
}
}
false
}
_ => false,
}
}
/// Check if this enum can be safely exported based on the "nullable pointer optimization".
/// Currently restricted to function pointers, references, `core::num::NonZero*`,
/// `core::ptr::NonNull`, and `#[repr(transparent)]` newtypes.
fn is_repr_nullable_ptr(
&self,
ty: Ty<'tcx>,
ty_def: &'tcx ty::AdtDef,
substs: SubstsRef<'tcx>,
) -> bool {
if ty_def.variants.len() != 2 {
return false;
}
let get_variant_fields = |index| &ty_def.variants[VariantIdx::new(index)].fields;
let variant_fields = [get_variant_fields(0), get_variant_fields(1)];
let fields = if variant_fields[0].is_empty() {
&variant_fields[1]
} else if variant_fields[1].is_empty() {
&variant_fields[0]
} else {
return false;
};
if fields.len() != 1 {
return false;
}
let field_ty = fields[0].ty(self.cx.tcx, substs);
if !self.ty_is_known_nonnull(field_ty) {
return false;
}
// At this point, the field's type is known to be nonnull and the parent enum is
// Option-like. If the computed size for the field and the enum are different, the non-null
// optimization isn't being applied (and we've got a problem somewhere).
let compute_size_skeleton =
|t| SizeSkeleton::compute(t, self.cx.tcx, self.cx.param_env).unwrap();
if !compute_size_skeleton(ty).same_size(compute_size_skeleton(field_ty)) {
bug!("improper_ctypes: Option nonnull optimization not applied?");
}
true
}
/// Check if the type is array and emit an unsafe type lint.
fn check_for_array_ty(&mut self, sp: Span, ty: Ty<'tcx>) -> bool {
if let ty::Array(..) = ty.kind {
self.emit_ffi_unsafe_type_lint(
ty,
sp,
"passing raw arrays by value is not FFI-safe",
Some("consider passing a pointer to the array"),
);
true
} else {
false
}
}
/// Checks if the given field's type is "ffi-safe".
fn check_field_type_for_ffi(
&self,
cache: &mut FxHashSet<Ty<'tcx>>,
field: &ty::FieldDef,
substs: SubstsRef<'tcx>,
) -> FfiResult<'tcx> {
let field_ty = field.ty(self.cx.tcx, substs);
if field_ty.has_opaque_types() {
self.check_type_for_ffi(cache, field_ty)
} else {
let field_ty = self.cx.tcx.normalize_erasing_regions(self.cx.param_env, field_ty);
self.check_type_for_ffi(cache, field_ty)
}
}
/// Checks if the given `VariantDef`'s field types are "ffi-safe".
fn check_variant_for_ffi(
&self,
cache: &mut FxHashSet<Ty<'tcx>>,
ty: Ty<'tcx>,
def: &ty::AdtDef,
variant: &ty::VariantDef,
substs: SubstsRef<'tcx>,
) -> FfiResult<'tcx> {
use FfiResult::*;
if def.repr.transparent() {
// Can assume that only one field is not a ZST, so only check
// that field's type for FFI-safety.
if let Some(field) = variant.transparent_newtype_field(self.cx.tcx) {
self.check_field_type_for_ffi(cache, field, substs)
} else {
bug!("malformed transparent type");
}
} else {
// We can't completely trust repr(C) markings; make sure the fields are
// actually safe.
let mut all_phantom = !variant.fields.is_empty();
for field in &variant.fields {
match self.check_field_type_for_ffi(cache, &field, substs) {
FfiSafe => {
all_phantom = false;
}
FfiPhantom(..) if def.is_enum() => {
return FfiUnsafe {
ty,
reason: "this enum contains a PhantomData field".into(),
help: None,
};
}
FfiPhantom(..) => {}
r => return r,
}
}
if all_phantom { FfiPhantom(ty) } else { FfiSafe }
}
}
/// Checks if the given type is "ffi-safe" (has a stable, well-defined
/// representation which can be exported to C code).
fn check_type_for_ffi(&self, cache: &mut FxHashSet<Ty<'tcx>>, ty: Ty<'tcx>) -> FfiResult<'tcx> {
use FfiResult::*;
let cx = self.cx.tcx;
// Protect against infinite recursion, for example
// `struct S(*mut S);`.
// FIXME: A recursion limit is necessary as well, for irregular
// recursive types.
if !cache.insert(ty) {
return FfiSafe;
}
match ty.kind {
ty::Adt(def, substs) => {
if def.is_phantom_data() {
return FfiPhantom(ty);
}
match def.adt_kind() {
AdtKind::Struct | AdtKind::Union => {
let kind = if def.is_struct() { "struct" } else { "union" };
if !def.repr.c() && !def.repr.transparent() {
return FfiUnsafe {
ty,
reason: format!("this {} has unspecified layout", kind),
help: Some(format!(
"consider adding a `#[repr(C)]` or \
`#[repr(transparent)]` attribute to this {}",
kind
)),
};
}
let is_non_exhaustive =
def.non_enum_variant().is_field_list_non_exhaustive();
if is_non_exhaustive && !def.did.is_local() {
return FfiUnsafe {
ty,
reason: format!("this {} is non-exhaustive", kind),
help: None,
};
}
if def.non_enum_variant().fields.is_empty() {
return FfiUnsafe {
ty,
reason: format!("this {} has no fields", kind),
help: Some(format!("consider adding a member to this {}", kind)),
};
}
self.check_variant_for_ffi(cache, ty, def, def.non_enum_variant(), substs)
}
AdtKind::Enum => {
if def.variants.is_empty() {
// Empty enums are okay... although sort of useless.
return FfiSafe;
}
// Check for a repr() attribute to specify the size of the
// discriminant.
if !def.repr.c() && !def.repr.transparent() && def.repr.int.is_none() {
// Special-case types like `Option<extern fn()>`.
if !self.is_repr_nullable_ptr(ty, def, substs) {
return FfiUnsafe {
ty,
reason: "enum has no representation hint".into(),
help: Some(
"consider adding a `#[repr(C)]`, \
`#[repr(transparent)]`, or integer `#[repr(...)]` \
attribute to this enum"
.into(),
),
};
}
}
if def.is_variant_list_non_exhaustive() && !def.did.is_local() {
return FfiUnsafe {
ty,
reason: "this enum is non-exhaustive".into(),
help: None,
};
}
// Check the contained variants.
for variant in &def.variants {
let is_non_exhaustive = variant.is_field_list_non_exhaustive();
if is_non_exhaustive && !variant.def_id.is_local() {
return FfiUnsafe {
ty,
reason: "this enum has non-exhaustive variants".into(),
help: None,
};
}
match self.check_variant_for_ffi(cache, ty, def, variant, substs) {
FfiSafe => (),
r => return r,
}
}
FfiSafe
}
}
}
ty::Char => FfiUnsafe {
ty,
reason: "the `char` type has no C equivalent".into(),
help: Some("consider using `u32` or `libc::wchar_t` instead".into()),
},
ty::Int(ast::IntTy::I128) | ty::Uint(ast::UintTy::U128) => FfiUnsafe {
ty,
reason: "128-bit integers don't currently have a known stable ABI".into(),
help: None,
},
// Primitive types with a stable representation.
ty::Bool | ty::Int(..) | ty::Uint(..) | ty::Float(..) | ty::Never => FfiSafe,
ty::Slice(_) => FfiUnsafe {
ty,
reason: "slices have no C equivalent".into(),
help: Some("consider using a raw pointer instead".into()),
},
ty::Dynamic(..) => {
FfiUnsafe { ty, reason: "trait objects have no C equivalent".into(), help: None }
}
ty::Str => FfiUnsafe {
ty,
reason: "string slices have no C equivalent".into(),
help: Some("consider using `*const u8` and a length instead".into()),
},
ty::Tuple(..) => FfiUnsafe {
ty,
reason: "tuples have unspecified layout".into(),
help: Some("consider using a struct instead".into()),
},
ty::RawPtr(ty::TypeAndMut { ty, .. }) | ty::Ref(_, ty, _)
if {
matches!(self.mode, ImproperCTypesMode::Definitions)
&& ty.is_sized(self.cx.tcx.at(DUMMY_SP), self.cx.param_env)
} =>
{
FfiSafe
}
ty::RawPtr(ty::TypeAndMut { ty, .. }) | ty::Ref(_, ty, _) => {
self.check_type_for_ffi(cache, ty)
}
ty::Array(inner_ty, _) => self.check_type_for_ffi(cache, inner_ty),
ty::FnPtr(sig) => {
if self.is_internal_abi(sig.abi()) {
return FfiUnsafe {
ty,
reason: "this function pointer has Rust-specific calling convention".into(),
help: Some(
"consider using an `extern fn(...) -> ...` \
function pointer instead"
.into(),
),
};
}
let sig = cx.erase_late_bound_regions(&sig);
if !sig.output().is_unit() {
let r = self.check_type_for_ffi(cache, sig.output());
match r {
FfiSafe => {}
_ => {
return r;
}
}
}
for arg in sig.inputs() {
let r = self.check_type_for_ffi(cache, arg);
match r {
FfiSafe => {}
_ => {
return r;
}
}
}
FfiSafe
}
ty::Foreign(..) => FfiSafe,
// While opaque types are checked for earlier, if a projection in a struct field
// normalizes to an opaque type, then it will reach this branch.
ty::Opaque(..) => {
FfiUnsafe { ty, reason: "opaque types have no C equivalent".into(), help: None }
}
// `extern "C" fn` functions can have type parameters, which may or may not be FFI-safe,
// so they are currently ignored for the purposes of this lint.
ty::Param(..) | ty::Projection(..)
if matches!(self.mode, ImproperCTypesMode::Definitions) =>
{
FfiSafe
}
ty::Param(..)
| ty::Projection(..)
| ty::Infer(..)
| ty::Bound(..)
| ty::Error(_)
| ty::Closure(..)
| ty::Generator(..)
| ty::GeneratorWitness(..)
| ty::Placeholder(..)
| ty::FnDef(..) => bug!("unexpected type in foreign function: {:?}", ty),
}
}
fn emit_ffi_unsafe_type_lint(
&mut self,
ty: Ty<'tcx>,
sp: Span,
note: &str,
help: Option<&str>,
) {
let lint = match self.mode {
ImproperCTypesMode::Declarations => IMPROPER_CTYPES,
ImproperCTypesMode::Definitions => IMPROPER_CTYPES_DEFINITIONS,
};
self.cx.struct_span_lint(lint, sp, |lint| {
let item_description = match self.mode {
ImproperCTypesMode::Declarations => "block",
ImproperCTypesMode::Definitions => "fn",
};
let mut diag = lint.build(&format!(
"`extern` {} uses type `{}`, which is not FFI-safe",
item_description, ty
));
diag.span_label(sp, "not FFI-safe");
if let Some(help) = help {
diag.help(help);
}
diag.note(note);
if let ty::Adt(def, _) = ty.kind {
if let Some(sp) = self.cx.tcx.hir().span_if_local(def.did) {
diag.span_note(sp, "the type is defined here");
}
}
diag.emit();
});
}
fn check_for_opaque_ty(&mut self, sp: Span, ty: Ty<'tcx>) -> bool {
struct ProhibitOpaqueTypes<'a, 'tcx> {
cx: &'a LateContext<'tcx>,
ty: Option<Ty<'tcx>>,
};
impl<'a, 'tcx> ty::fold::TypeVisitor<'tcx> for ProhibitOpaqueTypes<'a, 'tcx> {
fn visit_ty(&mut self, ty: Ty<'tcx>) -> bool {
match ty.kind {
ty::Opaque(..) => {
self.ty = Some(ty);
true
}
// Consider opaque types within projections FFI-safe if they do not normalize
// to more opaque types.
ty::Projection(..) => {
let ty = self.cx.tcx.normalize_erasing_regions(self.cx.param_env, ty);
// If `ty` is a opaque type directly then `super_visit_with` won't invoke
// this function again.
if ty.has_opaque_types() { self.visit_ty(ty) } else { false }
}
_ => ty.super_visit_with(self),
}
}
}
let mut visitor = ProhibitOpaqueTypes { cx: self.cx, ty: None };
ty.visit_with(&mut visitor);
if let Some(ty) = visitor.ty {
self.emit_ffi_unsafe_type_lint(ty, sp, "opaque types have no C equivalent", None);
true
} else {
false
}
}
fn check_type_for_ffi_and_report_errors(
&mut self,
sp: Span,
ty: Ty<'tcx>,
is_static: bool,
is_return_type: bool,
) {
// We have to check for opaque types before `normalize_erasing_regions`,
// which will replace opaque types with their underlying concrete type.
if self.check_for_opaque_ty(sp, ty) {
// We've already emitted an error due to an opaque type.
return;
}
// it is only OK to use this function because extern fns cannot have
// any generic types right now:
let ty = self.cx.tcx.normalize_erasing_regions(self.cx.param_env, ty);
// C doesn't really support passing arrays by value - the only way to pass an array by value
// is through a struct. So, first test that the top level isn't an array, and then
// recursively check the types inside.
if !is_static && self.check_for_array_ty(sp, ty) {
return;
}
// Don't report FFI errors for unit return types. This check exists here, and not in
// `check_foreign_fn` (where it would make more sense) so that normalization has definitely
// happened.
if is_return_type && ty.is_unit() {
return;
}
match self.check_type_for_ffi(&mut FxHashSet::default(), ty) {
FfiResult::FfiSafe => {}
FfiResult::FfiPhantom(ty) => {
self.emit_ffi_unsafe_type_lint(ty, sp, "composed only of `PhantomData`", None);
}
// If `ty` is a `repr(transparent)` newtype, and the non-zero-sized type is a generic
// argument, which after substitution, is `()`, then this branch can be hit.
FfiResult::FfiUnsafe { ty, .. } if is_return_type && ty.is_unit() => return,
FfiResult::FfiUnsafe { ty, reason, help } => {
self.emit_ffi_unsafe_type_lint(ty, sp, &reason, help.as_deref());
}
}
}
fn check_foreign_fn(&mut self, id: hir::HirId, decl: &hir::FnDecl<'_>) {
let def_id = self.cx.tcx.hir().local_def_id(id);
let sig = self.cx.tcx.fn_sig(def_id);
let sig = self.cx.tcx.erase_late_bound_regions(&sig);
for (input_ty, input_hir) in sig.inputs().iter().zip(decl.inputs) {
self.check_type_for_ffi_and_report_errors(input_hir.span, input_ty, false, false);
}
if let hir::FnRetTy::Return(ref ret_hir) = decl.output {
let ret_ty = sig.output();
self.check_type_for_ffi_and_report_errors(ret_hir.span, ret_ty, false, true);
}
}
fn check_foreign_static(&mut self, id: hir::HirId, span: Span) {
let def_id = self.cx.tcx.hir().local_def_id(id);
let ty = self.cx.tcx.type_of(def_id);
self.check_type_for_ffi_and_report_errors(span, ty, true, false);
}
fn is_internal_abi(&self, abi: Abi) -> bool {
if let Abi::Rust | Abi::RustCall | Abi::RustIntrinsic | Abi::PlatformIntrinsic = abi {
true
} else {
false
}
}
}
impl<'tcx> LateLintPass<'tcx> for ImproperCTypesDeclarations {
fn check_foreign_item(&mut self, cx: &LateContext<'_>, it: &hir::ForeignItem<'_>) {
let mut vis = ImproperCTypesVisitor { cx, mode: ImproperCTypesMode::Declarations };
let abi = cx.tcx.hir().get_foreign_abi(it.hir_id);
if !vis.is_internal_abi(abi) {
match it.kind {
hir::ForeignItemKind::Fn(ref decl, _, _) => {
vis.check_foreign_fn(it.hir_id, decl);
}
hir::ForeignItemKind::Static(ref ty, _) => {
vis.check_foreign_static(it.hir_id, ty.span);
}
hir::ForeignItemKind::Type => (),
}
}
}
}
impl<'tcx> LateLintPass<'tcx> for ImproperCTypesDefinitions {
fn check_fn(
&mut self,
cx: &LateContext<'tcx>,
kind: hir::intravisit::FnKind<'tcx>,
decl: &'tcx hir::FnDecl<'_>,
_: &'tcx hir::Body<'_>,
_: Span,
hir_id: hir::HirId,
) {
use hir::intravisit::FnKind;
let abi = match kind {
FnKind::ItemFn(_, _, header, ..) => header.abi,
FnKind::Method(_, sig, ..) => sig.header.abi,
_ => return,
};
let mut vis = ImproperCTypesVisitor { cx, mode: ImproperCTypesMode::Definitions };
if !vis.is_internal_abi(abi) {
vis.check_foreign_fn(hir_id, decl);
}
}
}
declare_lint_pass!(VariantSizeDifferences => [VARIANT_SIZE_DIFFERENCES]);
impl<'tcx> LateLintPass<'tcx> for VariantSizeDifferences {
fn check_item(&mut self, cx: &LateContext<'_>, it: &hir::Item<'_>) {
if let hir::ItemKind::Enum(ref enum_definition, _) = it.kind {
let item_def_id = cx.tcx.hir().local_def_id(it.hir_id);
let t = cx.tcx.type_of(item_def_id);
let ty = cx.tcx.erase_regions(&t);
let layout = match cx.layout_of(ty) {
Ok(layout) => layout,
Err(
ty::layout::LayoutError::Unknown(_) | ty::layout::LayoutError::SizeOverflow(_),
) => return,
};
let (variants, tag) = match layout.variants {
Variants::Multiple {
tag_encoding: TagEncoding::Direct,
ref tag,
ref variants,
..
} => (variants, tag),
_ => return,
};
let tag_size = tag.value.size(&cx.tcx).bytes();
debug!(
"enum `{}` is {} bytes large with layout:\n{:#?}",
t,
layout.size.bytes(),
layout
);
let (largest, slargest, largest_index) = enum_definition
.variants
.iter()
.zip(variants)
.map(|(variant, variant_layout)| {
// Subtract the size of the enum tag.
let bytes = variant_layout.size.bytes().saturating_sub(tag_size);
debug!("- variant `{}` is {} bytes large", variant.ident, bytes);
bytes
})
.enumerate()
.fold((0, 0, 0), |(l, s, li), (idx, size)| {
if size > l {
(size, l, idx)
} else if size > s {
(l, size, li)
} else {
(l, s, li)
}
});
// We only warn if the largest variant is at least thrice as large as
// the second-largest.
if largest > slargest * 3 && slargest > 0 {
cx.struct_span_lint(
VARIANT_SIZE_DIFFERENCES,
enum_definition.variants[largest_index].span,
|lint| {
lint.build(&format!(
"enum variant is more than three times \
larger ({} bytes) than the next largest",
largest
))
.emit()
},
);
}
}
}
}