blob: 00665c4cafb6b4d24d23c180cddeecaa52cd0414 [file] [log] [blame]
use super::{AnonymousLifetimeMode, LoweringContext, ParamMode};
use super::{ImplTraitContext, ImplTraitPosition};
use crate::Arena;
use rustc_ast::ast::*;
use rustc_ast::attr;
use rustc_ast::node_id::NodeMap;
use rustc_ast::ptr::P;
use rustc_ast::visit::{self, AssocCtxt, Visitor};
use rustc_data_structures::fx::FxHashSet;
use rustc_errors::struct_span_err;
use rustc_hir as hir;
use rustc_hir::def::{DefKind, Res};
use rustc_hir::def_id::LocalDefId;
use rustc_span::source_map::{respan, DesugaringKind};
use rustc_span::symbol::{kw, sym, Ident};
use rustc_span::Span;
use rustc_target::spec::abi;
use log::debug;
use smallvec::{smallvec, SmallVec};
use std::collections::BTreeSet;
pub(super) struct ItemLowerer<'a, 'lowering, 'hir> {
pub(super) lctx: &'a mut LoweringContext<'lowering, 'hir>,
}
impl ItemLowerer<'_, '_, '_> {
fn with_trait_impl_ref(&mut self, impl_ref: &Option<TraitRef>, f: impl FnOnce(&mut Self)) {
let old = self.lctx.is_in_trait_impl;
self.lctx.is_in_trait_impl = if let &None = impl_ref { false } else { true };
f(self);
self.lctx.is_in_trait_impl = old;
}
}
impl<'a> Visitor<'a> for ItemLowerer<'a, '_, '_> {
fn visit_mod(&mut self, m: &'a Mod, _s: Span, _attrs: &[Attribute], n: NodeId) {
let hir_id = self.lctx.lower_node_id(n);
self.lctx.modules.insert(
hir_id,
hir::ModuleItems {
items: BTreeSet::new(),
trait_items: BTreeSet::new(),
impl_items: BTreeSet::new(),
},
);
let old = self.lctx.current_module;
self.lctx.current_module = hir_id;
visit::walk_mod(self, m);
self.lctx.current_module = old;
}
fn visit_item(&mut self, item: &'a Item) {
let mut item_hir_id = None;
self.lctx.with_hir_id_owner(item.id, |lctx| {
lctx.without_in_scope_lifetime_defs(|lctx| {
if let Some(hir_item) = lctx.lower_item(item) {
item_hir_id = Some(hir_item.hir_id);
lctx.insert_item(hir_item);
}
})
});
if let Some(hir_id) = item_hir_id {
self.lctx.with_parent_item_lifetime_defs(hir_id, |this| {
let this = &mut ItemLowerer { lctx: this };
if let ItemKind::Impl { ref of_trait, .. } = item.kind {
this.with_trait_impl_ref(of_trait, |this| visit::walk_item(this, item));
} else {
visit::walk_item(this, item);
}
});
}
}
fn visit_assoc_item(&mut self, item: &'a AssocItem, ctxt: AssocCtxt) {
self.lctx.with_hir_id_owner(item.id, |lctx| match ctxt {
AssocCtxt::Trait => {
let hir_item = lctx.lower_trait_item(item);
let id = hir::TraitItemId { hir_id: hir_item.hir_id };
lctx.trait_items.insert(id, hir_item);
lctx.modules.get_mut(&lctx.current_module).unwrap().trait_items.insert(id);
}
AssocCtxt::Impl => {
let hir_item = lctx.lower_impl_item(item);
let id = hir::ImplItemId { hir_id: hir_item.hir_id };
lctx.impl_items.insert(id, hir_item);
lctx.modules.get_mut(&lctx.current_module).unwrap().impl_items.insert(id);
}
});
visit::walk_assoc_item(self, item, ctxt);
}
}
impl<'hir> LoweringContext<'_, 'hir> {
// Same as the method above, but accepts `hir::GenericParam`s
// instead of `ast::GenericParam`s.
// This should only be used with generics that have already had their
// in-band lifetimes added. In practice, this means that this function is
// only used when lowering a child item of a trait or impl.
fn with_parent_item_lifetime_defs<T>(
&mut self,
parent_hir_id: hir::HirId,
f: impl FnOnce(&mut LoweringContext<'_, '_>) -> T,
) -> T {
let old_len = self.in_scope_lifetimes.len();
let parent_generics = match self.items.get(&parent_hir_id).unwrap().kind {
hir::ItemKind::Impl { ref generics, .. }
| hir::ItemKind::Trait(_, _, ref generics, ..) => &generics.params[..],
_ => &[],
};
let lt_def_names = parent_generics.iter().filter_map(|param| match param.kind {
hir::GenericParamKind::Lifetime { .. } => Some(param.name.normalize_to_macros_2_0()),
_ => None,
});
self.in_scope_lifetimes.extend(lt_def_names);
let res = f(self);
self.in_scope_lifetimes.truncate(old_len);
res
}
// Clears (and restores) the `in_scope_lifetimes` field. Used when
// visiting nested items, which never inherit in-scope lifetimes
// from their surrounding environment.
fn without_in_scope_lifetime_defs<T>(
&mut self,
f: impl FnOnce(&mut LoweringContext<'_, '_>) -> T,
) -> T {
let old_in_scope_lifetimes = std::mem::replace(&mut self.in_scope_lifetimes, vec![]);
// this vector is only used when walking over impl headers,
// input types, and the like, and should not be non-empty in
// between items
assert!(self.lifetimes_to_define.is_empty());
let res = f(self);
assert!(self.in_scope_lifetimes.is_empty());
self.in_scope_lifetimes = old_in_scope_lifetimes;
res
}
pub(super) fn lower_mod(&mut self, m: &Mod) -> hir::Mod<'hir> {
hir::Mod {
inner: m.inner,
item_ids: self
.arena
.alloc_from_iter(m.items.iter().flat_map(|x| self.lower_item_id(x))),
}
}
pub(super) fn lower_item_id(&mut self, i: &Item) -> SmallVec<[hir::ItemId; 1]> {
let node_ids = match i.kind {
ItemKind::Use(ref use_tree) => {
let mut vec = smallvec![i.id];
self.lower_item_id_use_tree(use_tree, i.id, &mut vec);
vec
}
ItemKind::MacroDef(..) => SmallVec::new(),
ItemKind::Fn(..) | ItemKind::Impl { of_trait: None, .. } => smallvec![i.id],
_ => smallvec![i.id],
};
node_ids
.into_iter()
.map(|node_id| hir::ItemId { id: self.allocate_hir_id_counter(node_id) })
.collect()
}
fn lower_item_id_use_tree(
&mut self,
tree: &UseTree,
base_id: NodeId,
vec: &mut SmallVec<[NodeId; 1]>,
) {
match tree.kind {
UseTreeKind::Nested(ref nested_vec) => {
for &(ref nested, id) in nested_vec {
vec.push(id);
self.lower_item_id_use_tree(nested, id, vec);
}
}
UseTreeKind::Glob => {}
UseTreeKind::Simple(_, id1, id2) => {
for (_, &id) in
self.expect_full_res_from_use(base_id).skip(1).zip([id1, id2].iter())
{
vec.push(id);
}
}
}
}
pub fn lower_item(&mut self, i: &Item) -> Option<hir::Item<'hir>> {
let mut ident = i.ident;
let mut vis = self.lower_visibility(&i.vis, None);
let attrs = self.lower_attrs(&i.attrs);
if let ItemKind::MacroDef(MacroDef { ref body, macro_rules }) = i.kind {
if !macro_rules || attr::contains_name(&i.attrs, sym::macro_export) {
let hir_id = self.lower_node_id(i.id);
let body = P(self.lower_mac_args(body));
self.exported_macros.push(hir::MacroDef {
ident,
vis,
attrs,
hir_id,
span: i.span,
ast: MacroDef { body, macro_rules },
});
} else {
self.non_exported_macro_attrs.extend(attrs.iter().cloned());
}
return None;
}
let kind = self.lower_item_kind(i.span, i.id, &mut ident, attrs, &mut vis, &i.kind);
Some(hir::Item { hir_id: self.lower_node_id(i.id), ident, attrs, kind, vis, span: i.span })
}
fn lower_item_kind(
&mut self,
span: Span,
id: NodeId,
ident: &mut Ident,
attrs: &'hir [Attribute],
vis: &mut hir::Visibility<'hir>,
i: &ItemKind,
) -> hir::ItemKind<'hir> {
match *i {
ItemKind::ExternCrate(orig_name) => hir::ItemKind::ExternCrate(orig_name),
ItemKind::Use(ref use_tree) => {
// Start with an empty prefix.
let prefix = Path { segments: vec![], span: use_tree.span };
self.lower_use_tree(use_tree, &prefix, id, vis, ident, attrs)
}
ItemKind::Static(ref t, m, ref e) => {
let (ty, body_id) = self.lower_const_item(t, span, e.as_deref());
hir::ItemKind::Static(ty, m, body_id)
}
ItemKind::Const(_, ref t, ref e) => {
let (ty, body_id) = self.lower_const_item(t, span, e.as_deref());
hir::ItemKind::Const(ty, body_id)
}
ItemKind::Fn(_, FnSig { ref decl, header }, ref generics, ref body) => {
let fn_def_id = self.resolver.local_def_id(id);
self.with_new_scopes(|this| {
this.current_item = Some(ident.span);
// Note: we don't need to change the return type from `T` to
// `impl Future<Output = T>` here because lower_body
// only cares about the input argument patterns in the function
// declaration (decl), not the return types.
let asyncness = header.asyncness;
let body_id =
this.lower_maybe_async_body(span, &decl, asyncness, body.as_deref());
let (generics, decl) = this.add_in_band_defs(
generics,
fn_def_id,
AnonymousLifetimeMode::PassThrough,
|this, idty| {
let ret_id = asyncness.opt_return_id();
this.lower_fn_decl(
&decl,
Some((fn_def_id.to_def_id(), idty)),
true,
ret_id,
)
},
);
let sig = hir::FnSig { decl, header: this.lower_fn_header(header) };
hir::ItemKind::Fn(sig, generics, body_id)
})
}
ItemKind::Mod(ref m) => hir::ItemKind::Mod(self.lower_mod(m)),
ItemKind::ForeignMod(ref nm) => hir::ItemKind::ForeignMod(self.lower_foreign_mod(nm)),
ItemKind::GlobalAsm(ref ga) => hir::ItemKind::GlobalAsm(self.lower_global_asm(ga)),
ItemKind::TyAlias(_, ref gen, _, Some(ref ty)) => {
// We lower
//
// type Foo = impl Trait
//
// to
//
// type Foo = Foo1
// opaque type Foo1: Trait
let ty = self.lower_ty(
ty,
ImplTraitContext::OtherOpaqueTy {
capturable_lifetimes: &mut FxHashSet::default(),
origin: hir::OpaqueTyOrigin::Misc,
},
);
let generics = self.lower_generics(gen, ImplTraitContext::disallowed());
hir::ItemKind::TyAlias(ty, generics)
}
ItemKind::TyAlias(_, ref generics, _, None) => {
let ty = self.arena.alloc(self.ty(span, hir::TyKind::Err));
let generics = self.lower_generics(generics, ImplTraitContext::disallowed());
hir::ItemKind::TyAlias(ty, generics)
}
ItemKind::Enum(ref enum_definition, ref generics) => hir::ItemKind::Enum(
hir::EnumDef {
variants: self.arena.alloc_from_iter(
enum_definition.variants.iter().map(|x| self.lower_variant(x)),
),
},
self.lower_generics(generics, ImplTraitContext::disallowed()),
),
ItemKind::Struct(ref struct_def, ref generics) => {
let struct_def = self.lower_variant_data(struct_def);
hir::ItemKind::Struct(
struct_def,
self.lower_generics(generics, ImplTraitContext::disallowed()),
)
}
ItemKind::Union(ref vdata, ref generics) => {
let vdata = self.lower_variant_data(vdata);
hir::ItemKind::Union(
vdata,
self.lower_generics(generics, ImplTraitContext::disallowed()),
)
}
ItemKind::Impl {
unsafety,
polarity,
defaultness,
constness,
generics: ref ast_generics,
of_trait: ref trait_ref,
self_ty: ref ty,
items: ref impl_items,
} => {
let def_id = self.resolver.local_def_id(id);
// Lower the "impl header" first. This ordering is important
// for in-band lifetimes! Consider `'a` here:
//
// impl Foo<'a> for u32 {
// fn method(&'a self) { .. }
// }
//
// Because we start by lowering the `Foo<'a> for u32`
// part, we will add `'a` to the list of generics on
// the impl. When we then encounter it later in the
// method, it will not be considered an in-band
// lifetime to be added, but rather a reference to a
// parent lifetime.
let lowered_trait_impl_id = self.lower_node_id(id);
let (generics, (trait_ref, lowered_ty)) = self.add_in_band_defs(
ast_generics,
def_id,
AnonymousLifetimeMode::CreateParameter,
|this, _| {
let trait_ref = trait_ref.as_ref().map(|trait_ref| {
this.lower_trait_ref(trait_ref, ImplTraitContext::disallowed())
});
if let Some(ref trait_ref) = trait_ref {
if let Res::Def(DefKind::Trait, def_id) = trait_ref.path.res {
this.trait_impls
.entry(def_id)
.or_default()
.push(lowered_trait_impl_id);
}
}
let lowered_ty = this.lower_ty(ty, ImplTraitContext::disallowed());
(trait_ref, lowered_ty)
},
);
let new_impl_items =
self.with_in_scope_lifetime_defs(&ast_generics.params, |this| {
this.arena.alloc_from_iter(
impl_items.iter().map(|item| this.lower_impl_item_ref(item)),
)
});
// `defaultness.has_value()` is never called for an `impl`, always `true` in order
// to not cause an assertion failure inside the `lower_defaultness` function.
let has_val = true;
let (defaultness, defaultness_span) = self.lower_defaultness(defaultness, has_val);
hir::ItemKind::Impl {
unsafety: self.lower_unsafety(unsafety),
polarity,
defaultness,
defaultness_span,
constness: self.lower_constness(constness),
generics,
of_trait: trait_ref,
self_ty: lowered_ty,
items: new_impl_items,
}
}
ItemKind::Trait(is_auto, unsafety, ref generics, ref bounds, ref items) => {
let bounds = self.lower_param_bounds(bounds, ImplTraitContext::disallowed());
let items = self
.arena
.alloc_from_iter(items.iter().map(|item| self.lower_trait_item_ref(item)));
hir::ItemKind::Trait(
is_auto,
self.lower_unsafety(unsafety),
self.lower_generics(generics, ImplTraitContext::disallowed()),
bounds,
items,
)
}
ItemKind::TraitAlias(ref generics, ref bounds) => hir::ItemKind::TraitAlias(
self.lower_generics(generics, ImplTraitContext::disallowed()),
self.lower_param_bounds(bounds, ImplTraitContext::disallowed()),
),
ItemKind::MacroDef(..) | ItemKind::MacCall(..) => {
panic!("`TyMac` should have been expanded by now")
}
}
}
fn lower_const_item(
&mut self,
ty: &Ty,
span: Span,
body: Option<&Expr>,
) -> (&'hir hir::Ty<'hir>, hir::BodyId) {
let mut capturable_lifetimes;
let itctx = if self.sess.features_untracked().impl_trait_in_bindings {
capturable_lifetimes = FxHashSet::default();
ImplTraitContext::OtherOpaqueTy {
capturable_lifetimes: &mut capturable_lifetimes,
origin: hir::OpaqueTyOrigin::Misc,
}
} else {
ImplTraitContext::Disallowed(ImplTraitPosition::Binding)
};
let ty = self.lower_ty(ty, itctx);
(ty, self.lower_const_body(span, body))
}
fn lower_use_tree(
&mut self,
tree: &UseTree,
prefix: &Path,
id: NodeId,
vis: &mut hir::Visibility<'hir>,
ident: &mut Ident,
attrs: &'hir [Attribute],
) -> hir::ItemKind<'hir> {
debug!("lower_use_tree(tree={:?})", tree);
debug!("lower_use_tree: vis = {:?}", vis);
let path = &tree.prefix;
let segments = prefix.segments.iter().chain(path.segments.iter()).cloned().collect();
match tree.kind {
UseTreeKind::Simple(rename, id1, id2) => {
*ident = tree.ident();
// First, apply the prefix to the path.
let mut path = Path { segments, span: path.span };
// Correctly resolve `self` imports.
if path.segments.len() > 1
&& path.segments.last().unwrap().ident.name == kw::SelfLower
{
let _ = path.segments.pop();
if rename.is_none() {
*ident = path.segments.last().unwrap().ident;
}
}
let mut resolutions = self.expect_full_res_from_use(id);
// We want to return *something* from this function, so hold onto the first item
// for later.
let ret_res = self.lower_res(resolutions.next().unwrap_or(Res::Err));
// Here, we are looping over namespaces, if they exist for the definition
// being imported. We only handle type and value namespaces because we
// won't be dealing with macros in the rest of the compiler.
// Essentially a single `use` which imports two names is desugared into
// two imports.
for (res, &new_node_id) in resolutions.zip([id1, id2].iter()) {
let ident = *ident;
let mut path = path.clone();
for seg in &mut path.segments {
seg.id = self.resolver.next_node_id();
}
let span = path.span;
self.with_hir_id_owner(new_node_id, |this| {
let new_id = this.lower_node_id(new_node_id);
let res = this.lower_res(res);
let path = this.lower_path_extra(res, &path, ParamMode::Explicit, None);
let kind = hir::ItemKind::Use(path, hir::UseKind::Single);
let vis = this.rebuild_vis(&vis);
this.insert_item(hir::Item {
hir_id: new_id,
ident,
attrs,
kind,
vis,
span,
});
});
}
let path = self.lower_path_extra(ret_res, &path, ParamMode::Explicit, None);
hir::ItemKind::Use(path, hir::UseKind::Single)
}
UseTreeKind::Glob => {
let path =
self.lower_path(id, &Path { segments, span: path.span }, ParamMode::Explicit);
hir::ItemKind::Use(path, hir::UseKind::Glob)
}
UseTreeKind::Nested(ref trees) => {
// Nested imports are desugared into simple imports.
// So, if we start with
//
// ```
// pub(x) use foo::{a, b};
// ```
//
// we will create three items:
//
// ```
// pub(x) use foo::a;
// pub(x) use foo::b;
// pub(x) use foo::{}; // <-- this is called the `ListStem`
// ```
//
// The first two are produced by recursively invoking
// `lower_use_tree` (and indeed there may be things
// like `use foo::{a::{b, c}}` and so forth). They
// wind up being directly added to
// `self.items`. However, the structure of this
// function also requires us to return one item, and
// for that we return the `{}` import (called the
// `ListStem`).
let prefix = Path { segments, span: prefix.span.to(path.span) };
// Add all the nested `PathListItem`s to the HIR.
for &(ref use_tree, id) in trees {
let new_hir_id = self.lower_node_id(id);
let mut prefix = prefix.clone();
// Give the segments new node-ids since they are being cloned.
for seg in &mut prefix.segments {
seg.id = self.resolver.next_node_id();
}
// Each `use` import is an item and thus are owners of the
// names in the path. Up to this point the nested import is
// the current owner, since we want each desugared import to
// own its own names, we have to adjust the owner before
// lowering the rest of the import.
self.with_hir_id_owner(id, |this| {
let mut vis = this.rebuild_vis(&vis);
let mut ident = *ident;
let kind =
this.lower_use_tree(use_tree, &prefix, id, &mut vis, &mut ident, attrs);
this.insert_item(hir::Item {
hir_id: new_hir_id,
ident,
attrs,
kind,
vis,
span: use_tree.span,
});
});
}
// Subtle and a bit hacky: we lower the privacy level
// of the list stem to "private" most of the time, but
// not for "restricted" paths. The key thing is that
// we don't want it to stay as `pub` (with no caveats)
// because that affects rustdoc and also the lints
// about `pub` items. But we can't *always* make it
// private -- particularly not for restricted paths --
// because it contains node-ids that would then be
// unused, failing the check that HirIds are "densely
// assigned".
match vis.node {
hir::VisibilityKind::Public
| hir::VisibilityKind::Crate(_)
| hir::VisibilityKind::Inherited => {
*vis = respan(prefix.span.shrink_to_lo(), hir::VisibilityKind::Inherited);
}
hir::VisibilityKind::Restricted { .. } => {
// Do nothing here, as described in the comment on the match.
}
}
let res = self.expect_full_res_from_use(id).next().unwrap_or(Res::Err);
let res = self.lower_res(res);
let path = self.lower_path_extra(res, &prefix, ParamMode::Explicit, None);
hir::ItemKind::Use(path, hir::UseKind::ListStem)
}
}
}
/// Paths like the visibility path in `pub(super) use foo::{bar, baz}` are repeated
/// many times in the HIR tree; for each occurrence, we need to assign distinct
/// `NodeId`s. (See, e.g., #56128.)
fn rebuild_use_path(&mut self, path: &hir::Path<'hir>) -> &'hir hir::Path<'hir> {
debug!("rebuild_use_path(path = {:?})", path);
let segments =
self.arena.alloc_from_iter(path.segments.iter().map(|seg| hir::PathSegment {
ident: seg.ident,
hir_id: seg.hir_id.map(|_| self.next_id()),
res: seg.res,
args: None,
infer_args: seg.infer_args,
}));
self.arena.alloc(hir::Path { span: path.span, res: path.res, segments })
}
fn rebuild_vis(&mut self, vis: &hir::Visibility<'hir>) -> hir::Visibility<'hir> {
let vis_kind = match vis.node {
hir::VisibilityKind::Public => hir::VisibilityKind::Public,
hir::VisibilityKind::Crate(sugar) => hir::VisibilityKind::Crate(sugar),
hir::VisibilityKind::Inherited => hir::VisibilityKind::Inherited,
hir::VisibilityKind::Restricted { ref path, hir_id: _ } => {
hir::VisibilityKind::Restricted {
path: self.rebuild_use_path(path),
hir_id: self.next_id(),
}
}
};
respan(vis.span, vis_kind)
}
fn lower_foreign_item(&mut self, i: &ForeignItem) -> hir::ForeignItem<'hir> {
let def_id = self.resolver.local_def_id(i.id);
hir::ForeignItem {
hir_id: self.lower_node_id(i.id),
ident: i.ident,
attrs: self.lower_attrs(&i.attrs),
kind: match i.kind {
ForeignItemKind::Fn(_, ref sig, ref generics, _) => {
let fdec = &sig.decl;
let (generics, (fn_dec, fn_args)) = self.add_in_band_defs(
generics,
def_id,
AnonymousLifetimeMode::PassThrough,
|this, _| {
(
// Disallow `impl Trait` in foreign items.
this.lower_fn_decl(fdec, None, false, None),
this.lower_fn_params_to_names(fdec),
)
},
);
hir::ForeignItemKind::Fn(fn_dec, fn_args, generics)
}
ForeignItemKind::Static(ref t, m, _) => {
let ty = self.lower_ty(t, ImplTraitContext::disallowed());
hir::ForeignItemKind::Static(ty, m)
}
ForeignItemKind::TyAlias(..) => hir::ForeignItemKind::Type,
ForeignItemKind::MacCall(_) => panic!("macro shouldn't exist here"),
},
vis: self.lower_visibility(&i.vis, None),
span: i.span,
}
}
fn lower_foreign_mod(&mut self, fm: &ForeignMod) -> hir::ForeignMod<'hir> {
hir::ForeignMod {
abi: fm.abi.map_or(abi::Abi::C, |abi| self.lower_abi(abi)),
items: self.arena.alloc_from_iter(fm.items.iter().map(|x| self.lower_foreign_item(x))),
}
}
fn lower_global_asm(&mut self, ga: &GlobalAsm) -> &'hir hir::GlobalAsm {
self.arena.alloc(hir::GlobalAsm { asm: ga.asm })
}
fn lower_variant(&mut self, v: &Variant) -> hir::Variant<'hir> {
hir::Variant {
attrs: self.lower_attrs(&v.attrs),
data: self.lower_variant_data(&v.data),
disr_expr: v.disr_expr.as_ref().map(|e| self.lower_anon_const(e)),
id: self.lower_node_id(v.id),
ident: v.ident,
span: v.span,
}
}
fn lower_variant_data(&mut self, vdata: &VariantData) -> hir::VariantData<'hir> {
match *vdata {
VariantData::Struct(ref fields, recovered) => hir::VariantData::Struct(
self.arena
.alloc_from_iter(fields.iter().enumerate().map(|f| self.lower_struct_field(f))),
recovered,
),
VariantData::Tuple(ref fields, id) => hir::VariantData::Tuple(
self.arena
.alloc_from_iter(fields.iter().enumerate().map(|f| self.lower_struct_field(f))),
self.lower_node_id(id),
),
VariantData::Unit(id) => hir::VariantData::Unit(self.lower_node_id(id)),
}
}
fn lower_struct_field(&mut self, (index, f): (usize, &StructField)) -> hir::StructField<'hir> {
let ty = if let TyKind::Path(ref qself, ref path) = f.ty.kind {
let t = self.lower_path_ty(
&f.ty,
qself,
path,
ParamMode::ExplicitNamed, // no `'_` in declarations (Issue #61124)
ImplTraitContext::disallowed(),
);
self.arena.alloc(t)
} else {
self.lower_ty(&f.ty, ImplTraitContext::disallowed())
};
hir::StructField {
span: f.span,
hir_id: self.lower_node_id(f.id),
ident: match f.ident {
Some(ident) => ident,
// FIXME(jseyfried): positional field hygiene.
None => Ident::new(sym::integer(index), f.span),
},
vis: self.lower_visibility(&f.vis, None),
ty,
attrs: self.lower_attrs(&f.attrs),
}
}
fn lower_trait_item(&mut self, i: &AssocItem) -> hir::TraitItem<'hir> {
let trait_item_def_id = self.resolver.local_def_id(i.id);
let (generics, kind) = match i.kind {
AssocItemKind::Const(_, ref ty, ref default) => {
let ty = self.lower_ty(ty, ImplTraitContext::disallowed());
let body = default.as_ref().map(|x| self.lower_const_body(i.span, Some(x)));
(hir::Generics::empty(), hir::TraitItemKind::Const(ty, body))
}
AssocItemKind::Fn(_, ref sig, ref generics, None) => {
let names = self.lower_fn_params_to_names(&sig.decl);
let (generics, sig) =
self.lower_method_sig(generics, sig, trait_item_def_id, false, None);
(generics, hir::TraitItemKind::Fn(sig, hir::TraitFn::Required(names)))
}
AssocItemKind::Fn(_, ref sig, ref generics, Some(ref body)) => {
let body_id = self.lower_fn_body_block(i.span, &sig.decl, Some(body));
let (generics, sig) =
self.lower_method_sig(generics, sig, trait_item_def_id, false, None);
(generics, hir::TraitItemKind::Fn(sig, hir::TraitFn::Provided(body_id)))
}
AssocItemKind::TyAlias(_, ref generics, ref bounds, ref default) => {
let ty = default.as_ref().map(|x| self.lower_ty(x, ImplTraitContext::disallowed()));
let generics = self.lower_generics(generics, ImplTraitContext::disallowed());
let kind = hir::TraitItemKind::Type(
self.lower_param_bounds(bounds, ImplTraitContext::disallowed()),
ty,
);
(generics, kind)
}
AssocItemKind::MacCall(..) => panic!("macro item shouldn't exist at this point"),
};
hir::TraitItem {
hir_id: self.lower_node_id(i.id),
ident: i.ident,
attrs: self.lower_attrs(&i.attrs),
generics,
kind,
span: i.span,
}
}
fn lower_trait_item_ref(&mut self, i: &AssocItem) -> hir::TraitItemRef {
let (kind, has_default) = match &i.kind {
AssocItemKind::Const(_, _, default) => (hir::AssocItemKind::Const, default.is_some()),
AssocItemKind::TyAlias(_, _, _, default) => {
(hir::AssocItemKind::Type, default.is_some())
}
AssocItemKind::Fn(_, sig, _, default) => {
(hir::AssocItemKind::Fn { has_self: sig.decl.has_self() }, default.is_some())
}
AssocItemKind::MacCall(..) => unimplemented!(),
};
let id = hir::TraitItemId { hir_id: self.lower_node_id(i.id) };
let defaultness = hir::Defaultness::Default { has_value: has_default };
hir::TraitItemRef { id, ident: i.ident, span: i.span, defaultness, kind }
}
/// Construct `ExprKind::Err` for the given `span`.
crate fn expr_err(&mut self, span: Span) -> hir::Expr<'hir> {
self.expr(span, hir::ExprKind::Err, AttrVec::new())
}
fn lower_impl_item(&mut self, i: &AssocItem) -> hir::ImplItem<'hir> {
let impl_item_def_id = self.resolver.local_def_id(i.id);
let (generics, kind) = match &i.kind {
AssocItemKind::Const(_, ty, expr) => {
let ty = self.lower_ty(ty, ImplTraitContext::disallowed());
(
hir::Generics::empty(),
hir::ImplItemKind::Const(ty, self.lower_const_body(i.span, expr.as_deref())),
)
}
AssocItemKind::Fn(_, sig, generics, body) => {
self.current_item = Some(i.span);
let asyncness = sig.header.asyncness;
let body_id =
self.lower_maybe_async_body(i.span, &sig.decl, asyncness, body.as_deref());
let impl_trait_return_allow = !self.is_in_trait_impl;
let (generics, sig) = self.lower_method_sig(
generics,
sig,
impl_item_def_id,
impl_trait_return_allow,
asyncness.opt_return_id(),
);
(generics, hir::ImplItemKind::Fn(sig, body_id))
}
AssocItemKind::TyAlias(_, generics, _, ty) => {
let generics = self.lower_generics(generics, ImplTraitContext::disallowed());
let kind = match ty {
None => {
let ty = self.arena.alloc(self.ty(i.span, hir::TyKind::Err));
hir::ImplItemKind::TyAlias(ty)
}
Some(ty) => {
let ty = self.lower_ty(
ty,
ImplTraitContext::OtherOpaqueTy {
capturable_lifetimes: &mut FxHashSet::default(),
origin: hir::OpaqueTyOrigin::Misc,
},
);
hir::ImplItemKind::TyAlias(ty)
}
};
(generics, kind)
}
AssocItemKind::MacCall(..) => panic!("`TyMac` should have been expanded by now"),
};
// Since `default impl` is not yet implemented, this is always true in impls.
let has_value = true;
let (defaultness, _) = self.lower_defaultness(i.kind.defaultness(), has_value);
hir::ImplItem {
hir_id: self.lower_node_id(i.id),
ident: i.ident,
attrs: self.lower_attrs(&i.attrs),
generics,
vis: self.lower_visibility(&i.vis, None),
defaultness,
kind,
span: i.span,
}
}
fn lower_impl_item_ref(&mut self, i: &AssocItem) -> hir::ImplItemRef<'hir> {
// Since `default impl` is not yet implemented, this is always true in impls.
let has_value = true;
let (defaultness, _) = self.lower_defaultness(i.kind.defaultness(), has_value);
hir::ImplItemRef {
id: hir::ImplItemId { hir_id: self.lower_node_id(i.id) },
ident: i.ident,
span: i.span,
vis: self.lower_visibility(&i.vis, Some(i.id)),
defaultness,
kind: match &i.kind {
AssocItemKind::Const(..) => hir::AssocItemKind::Const,
AssocItemKind::TyAlias(..) => hir::AssocItemKind::Type,
AssocItemKind::Fn(_, sig, ..) => {
hir::AssocItemKind::Fn { has_self: sig.decl.has_self() }
}
AssocItemKind::MacCall(..) => unimplemented!(),
},
}
}
/// If an `explicit_owner` is given, this method allocates the `HirId` in
/// the address space of that item instead of the item currently being
/// lowered. This can happen during `lower_impl_item_ref()` where we need to
/// lower a `Visibility` value although we haven't lowered the owning
/// `ImplItem` in question yet.
fn lower_visibility(
&mut self,
v: &Visibility,
explicit_owner: Option<NodeId>,
) -> hir::Visibility<'hir> {
let node = match v.node {
VisibilityKind::Public => hir::VisibilityKind::Public,
VisibilityKind::Crate(sugar) => hir::VisibilityKind::Crate(sugar),
VisibilityKind::Restricted { ref path, id } => {
debug!("lower_visibility: restricted path id = {:?}", id);
let lowered_id = if let Some(owner) = explicit_owner {
self.lower_node_id_with_owner(id, owner)
} else {
self.lower_node_id(id)
};
let res = self.expect_full_res(id);
let res = self.lower_res(res);
hir::VisibilityKind::Restricted {
path: self.lower_path_extra(res, path, ParamMode::Explicit, explicit_owner),
hir_id: lowered_id,
}
}
VisibilityKind::Inherited => hir::VisibilityKind::Inherited,
};
respan(v.span, node)
}
fn lower_defaultness(
&self,
d: Defaultness,
has_value: bool,
) -> (hir::Defaultness, Option<Span>) {
match d {
Defaultness::Default(sp) => (hir::Defaultness::Default { has_value }, Some(sp)),
Defaultness::Final => {
assert!(has_value);
(hir::Defaultness::Final, None)
}
}
}
fn record_body(
&mut self,
params: &'hir [hir::Param<'hir>],
value: hir::Expr<'hir>,
) -> hir::BodyId {
let body = hir::Body { generator_kind: self.generator_kind, params, value };
let id = body.id();
self.bodies.insert(id, body);
id
}
pub(super) fn lower_body(
&mut self,
f: impl FnOnce(&mut Self) -> (&'hir [hir::Param<'hir>], hir::Expr<'hir>),
) -> hir::BodyId {
let prev_gen_kind = self.generator_kind.take();
let task_context = self.task_context.take();
let (parameters, result) = f(self);
let body_id = self.record_body(parameters, result);
self.task_context = task_context;
self.generator_kind = prev_gen_kind;
body_id
}
fn lower_param(&mut self, param: &Param) -> hir::Param<'hir> {
hir::Param {
attrs: self.lower_attrs(&param.attrs),
hir_id: self.lower_node_id(param.id),
pat: self.lower_pat(&param.pat),
span: param.span,
}
}
pub(super) fn lower_fn_body(
&mut self,
decl: &FnDecl,
body: impl FnOnce(&mut Self) -> hir::Expr<'hir>,
) -> hir::BodyId {
self.lower_body(|this| {
(
this.arena.alloc_from_iter(decl.inputs.iter().map(|x| this.lower_param(x))),
body(this),
)
})
}
fn lower_fn_body_block(
&mut self,
span: Span,
decl: &FnDecl,
body: Option<&Block>,
) -> hir::BodyId {
self.lower_fn_body(decl, |this| this.lower_block_expr_opt(span, body))
}
fn lower_block_expr_opt(&mut self, span: Span, block: Option<&Block>) -> hir::Expr<'hir> {
match block {
Some(block) => self.lower_block_expr(block),
None => self.expr_err(span),
}
}
pub(super) fn lower_const_body(&mut self, span: Span, expr: Option<&Expr>) -> hir::BodyId {
self.lower_body(|this| {
(
&[],
match expr {
Some(expr) => this.lower_expr_mut(expr),
None => this.expr_err(span),
},
)
})
}
fn lower_maybe_async_body(
&mut self,
span: Span,
decl: &FnDecl,
asyncness: Async,
body: Option<&Block>,
) -> hir::BodyId {
let closure_id = match asyncness {
Async::Yes { closure_id, .. } => closure_id,
Async::No => return self.lower_fn_body_block(span, decl, body),
};
self.lower_body(|this| {
let mut parameters: Vec<hir::Param<'_>> = Vec::new();
let mut statements: Vec<hir::Stmt<'_>> = Vec::new();
// Async function parameters are lowered into the closure body so that they are
// captured and so that the drop order matches the equivalent non-async functions.
//
// from:
//
// async fn foo(<pattern>: <ty>, <pattern>: <ty>, <pattern>: <ty>) {
// <body>
// }
//
// into:
//
// fn foo(__arg0: <ty>, __arg1: <ty>, __arg2: <ty>) {
// async move {
// let __arg2 = __arg2;
// let <pattern> = __arg2;
// let __arg1 = __arg1;
// let <pattern> = __arg1;
// let __arg0 = __arg0;
// let <pattern> = __arg0;
// drop-temps { <body> } // see comments later in fn for details
// }
// }
//
// If `<pattern>` is a simple ident, then it is lowered to a single
// `let <pattern> = <pattern>;` statement as an optimization.
//
// Note that the body is embedded in `drop-temps`; an
// equivalent desugaring would be `return { <body>
// };`. The key point is that we wish to drop all the
// let-bound variables and temporaries created in the body
// (and its tail expression!) before we drop the
// parameters (c.f. rust-lang/rust#64512).
for (index, parameter) in decl.inputs.iter().enumerate() {
let parameter = this.lower_param(parameter);
let span = parameter.pat.span;
// Check if this is a binding pattern, if so, we can optimize and avoid adding a
// `let <pat> = __argN;` statement. In this case, we do not rename the parameter.
let (ident, is_simple_parameter) = match parameter.pat.kind {
hir::PatKind::Binding(hir::BindingAnnotation::Unannotated, _, ident, _) => {
(ident, true)
}
_ => {
// Replace the ident for bindings that aren't simple.
let name = format!("__arg{}", index);
let ident = Ident::from_str(&name);
(ident, false)
}
};
let desugared_span = this.mark_span_with_reason(DesugaringKind::Async, span, None);
// Construct a parameter representing `__argN: <ty>` to replace the parameter of the
// async function.
//
// If this is the simple case, this parameter will end up being the same as the
// original parameter, but with a different pattern id.
let mut stmt_attrs = AttrVec::new();
stmt_attrs.extend(parameter.attrs.iter().cloned());
let (new_parameter_pat, new_parameter_id) = this.pat_ident(desugared_span, ident);
let new_parameter = hir::Param {
attrs: parameter.attrs,
hir_id: parameter.hir_id,
pat: new_parameter_pat,
span: parameter.span,
};
if is_simple_parameter {
// If this is the simple case, then we only insert one statement that is
// `let <pat> = <pat>;`. We re-use the original argument's pattern so that
// `HirId`s are densely assigned.
let expr = this.expr_ident(desugared_span, ident, new_parameter_id);
let stmt = this.stmt_let_pat(
stmt_attrs,
desugared_span,
Some(expr),
parameter.pat,
hir::LocalSource::AsyncFn,
);
statements.push(stmt);
} else {
// If this is not the simple case, then we construct two statements:
//
// ```
// let __argN = __argN;
// let <pat> = __argN;
// ```
//
// The first statement moves the parameter into the closure and thus ensures
// that the drop order is correct.
//
// The second statement creates the bindings that the user wrote.
// Construct the `let mut __argN = __argN;` statement. It must be a mut binding
// because the user may have specified a `ref mut` binding in the next
// statement.
let (move_pat, move_id) = this.pat_ident_binding_mode(
desugared_span,
ident,
hir::BindingAnnotation::Mutable,
);
let move_expr = this.expr_ident(desugared_span, ident, new_parameter_id);
let move_stmt = this.stmt_let_pat(
AttrVec::new(),
desugared_span,
Some(move_expr),
move_pat,
hir::LocalSource::AsyncFn,
);
// Construct the `let <pat> = __argN;` statement. We re-use the original
// parameter's pattern so that `HirId`s are densely assigned.
let pattern_expr = this.expr_ident(desugared_span, ident, move_id);
let pattern_stmt = this.stmt_let_pat(
stmt_attrs,
desugared_span,
Some(pattern_expr),
parameter.pat,
hir::LocalSource::AsyncFn,
);
statements.push(move_stmt);
statements.push(pattern_stmt);
};
parameters.push(new_parameter);
}
let body_span = body.map_or(span, |b| b.span);
let async_expr = this.make_async_expr(
CaptureBy::Value,
closure_id,
None,
body_span,
hir::AsyncGeneratorKind::Fn,
|this| {
// Create a block from the user's function body:
let user_body = this.lower_block_expr_opt(body_span, body);
// Transform into `drop-temps { <user-body> }`, an expression:
let desugared_span =
this.mark_span_with_reason(DesugaringKind::Async, user_body.span, None);
let user_body = this.expr_drop_temps(
desugared_span,
this.arena.alloc(user_body),
AttrVec::new(),
);
// As noted above, create the final block like
//
// ```
// {
// let $param_pattern = $raw_param;
// ...
// drop-temps { <user-body> }
// }
// ```
let body = this.block_all(
desugared_span,
this.arena.alloc_from_iter(statements),
Some(user_body),
);
this.expr_block(body, AttrVec::new())
},
);
(
this.arena.alloc_from_iter(parameters),
this.expr(body_span, async_expr, AttrVec::new()),
)
})
}
fn lower_method_sig(
&mut self,
generics: &Generics,
sig: &FnSig,
fn_def_id: LocalDefId,
impl_trait_return_allow: bool,
is_async: Option<NodeId>,
) -> (hir::Generics<'hir>, hir::FnSig<'hir>) {
let header = self.lower_fn_header(sig.header);
let (generics, decl) = self.add_in_band_defs(
generics,
fn_def_id,
AnonymousLifetimeMode::PassThrough,
|this, idty| {
this.lower_fn_decl(
&sig.decl,
Some((fn_def_id.to_def_id(), idty)),
impl_trait_return_allow,
is_async,
)
},
);
(generics, hir::FnSig { header, decl })
}
fn lower_fn_header(&mut self, h: FnHeader) -> hir::FnHeader {
hir::FnHeader {
unsafety: self.lower_unsafety(h.unsafety),
asyncness: self.lower_asyncness(h.asyncness),
constness: self.lower_constness(h.constness),
abi: self.lower_extern(h.ext),
}
}
pub(super) fn lower_abi(&mut self, abi: StrLit) -> abi::Abi {
abi::lookup(&abi.symbol_unescaped.as_str()).unwrap_or_else(|| {
self.error_on_invalid_abi(abi);
abi::Abi::Rust
})
}
pub(super) fn lower_extern(&mut self, ext: Extern) -> abi::Abi {
match ext {
Extern::None => abi::Abi::Rust,
Extern::Implicit => abi::Abi::C,
Extern::Explicit(abi) => self.lower_abi(abi),
}
}
fn error_on_invalid_abi(&self, abi: StrLit) {
struct_span_err!(self.sess, abi.span, E0703, "invalid ABI: found `{}`", abi.symbol)
.span_label(abi.span, "invalid ABI")
.help(&format!("valid ABIs: {}", abi::all_names().join(", ")))
.emit();
}
fn lower_asyncness(&mut self, a: Async) -> hir::IsAsync {
match a {
Async::Yes { .. } => hir::IsAsync::Async,
Async::No => hir::IsAsync::NotAsync,
}
}
fn lower_constness(&mut self, c: Const) -> hir::Constness {
match c {
Const::Yes(_) => hir::Constness::Const,
Const::No => hir::Constness::NotConst,
}
}
pub(super) fn lower_unsafety(&mut self, u: Unsafe) -> hir::Unsafety {
match u {
Unsafe::Yes(_) => hir::Unsafety::Unsafe,
Unsafe::No => hir::Unsafety::Normal,
}
}
pub(super) fn lower_generics_mut(
&mut self,
generics: &Generics,
itctx: ImplTraitContext<'_, 'hir>,
) -> GenericsCtor<'hir> {
// Collect `?Trait` bounds in where clause and move them to parameter definitions.
// FIXME: this could probably be done with less rightward drift. It also looks like two
// control paths where `report_error` is called are the only paths that advance to after the
// match statement, so the error reporting could probably just be moved there.
let mut add_bounds: NodeMap<Vec<_>> = Default::default();
for pred in &generics.where_clause.predicates {
if let WherePredicate::BoundPredicate(ref bound_pred) = *pred {
'next_bound: for bound in &bound_pred.bounds {
if let GenericBound::Trait(_, TraitBoundModifier::Maybe) = *bound {
let report_error = |this: &mut Self| {
this.diagnostic().span_err(
bound_pred.bounded_ty.span,
"`?Trait` bounds are only permitted at the \
point where a type parameter is declared",
);
};
// Check if the where clause type is a plain type parameter.
match bound_pred.bounded_ty.kind {
TyKind::Path(None, ref path)
if path.segments.len() == 1
&& bound_pred.bound_generic_params.is_empty() =>
{
if let Some(Res::Def(DefKind::TyParam, def_id)) = self
.resolver
.get_partial_res(bound_pred.bounded_ty.id)
.map(|d| d.base_res())
{
if let Some(def_id) = def_id.as_local() {
for param in &generics.params {
if let GenericParamKind::Type { .. } = param.kind {
if def_id == self.resolver.local_def_id(param.id) {
add_bounds
.entry(param.id)
.or_default()
.push(bound.clone());
continue 'next_bound;
}
}
}
}
}
report_error(self)
}
_ => report_error(self),
}
}
}
}
}
GenericsCtor {
params: self.lower_generic_params_mut(&generics.params, &add_bounds, itctx).collect(),
where_clause: self.lower_where_clause(&generics.where_clause),
span: generics.span,
}
}
pub(super) fn lower_generics(
&mut self,
generics: &Generics,
itctx: ImplTraitContext<'_, 'hir>,
) -> hir::Generics<'hir> {
let generics_ctor = self.lower_generics_mut(generics, itctx);
generics_ctor.into_generics(self.arena)
}
fn lower_where_clause(&mut self, wc: &WhereClause) -> hir::WhereClause<'hir> {
self.with_anonymous_lifetime_mode(AnonymousLifetimeMode::ReportError, |this| {
hir::WhereClause {
predicates: this.arena.alloc_from_iter(
wc.predicates.iter().map(|predicate| this.lower_where_predicate(predicate)),
),
span: wc.span,
}
})
}
fn lower_where_predicate(&mut self, pred: &WherePredicate) -> hir::WherePredicate<'hir> {
match *pred {
WherePredicate::BoundPredicate(WhereBoundPredicate {
ref bound_generic_params,
ref bounded_ty,
ref bounds,
span,
}) => {
self.with_in_scope_lifetime_defs(&bound_generic_params, |this| {
hir::WherePredicate::BoundPredicate(hir::WhereBoundPredicate {
bound_generic_params: this.lower_generic_params(
bound_generic_params,
&NodeMap::default(),
ImplTraitContext::disallowed(),
),
bounded_ty: this.lower_ty(bounded_ty, ImplTraitContext::disallowed()),
bounds: this.arena.alloc_from_iter(bounds.iter().filter_map(|bound| {
match *bound {
// Ignore `?Trait` bounds.
// They were copied into type parameters already.
GenericBound::Trait(_, TraitBoundModifier::Maybe) => None,
_ => Some(
this.lower_param_bound(bound, ImplTraitContext::disallowed()),
),
}
})),
span,
})
})
}
WherePredicate::RegionPredicate(WhereRegionPredicate {
ref lifetime,
ref bounds,
span,
}) => hir::WherePredicate::RegionPredicate(hir::WhereRegionPredicate {
span,
lifetime: self.lower_lifetime(lifetime),
bounds: self.lower_param_bounds(bounds, ImplTraitContext::disallowed()),
}),
WherePredicate::EqPredicate(WhereEqPredicate { id, ref lhs_ty, ref rhs_ty, span }) => {
hir::WherePredicate::EqPredicate(hir::WhereEqPredicate {
hir_id: self.lower_node_id(id),
lhs_ty: self.lower_ty(lhs_ty, ImplTraitContext::disallowed()),
rhs_ty: self.lower_ty(rhs_ty, ImplTraitContext::disallowed()),
span,
})
}
}
}
}
/// Helper struct for delayed construction of Generics.
pub(super) struct GenericsCtor<'hir> {
pub(super) params: SmallVec<[hir::GenericParam<'hir>; 4]>,
where_clause: hir::WhereClause<'hir>,
span: Span,
}
impl<'hir> GenericsCtor<'hir> {
pub(super) fn into_generics(self, arena: &'hir Arena<'hir>) -> hir::Generics<'hir> {
hir::Generics {
params: arena.alloc_from_iter(self.params),
where_clause: self.where_clause,
span: self.span,
}
}
}