blob: dbf2dcf1c0aea461d6be050c33deaf806f453dc5 [file] [log] [blame]
//! Validates all used crates and extern libraries and loads their metadata
use crate::locator::{CrateLocator, CratePaths};
use crate::rmeta::{CrateMetadata, CrateNumMap, CrateRoot, CrateDep, MetadataBlob};
use rustc::hir::def_id::CrateNum;
use rustc_data_structures::svh::Svh;
use rustc_data_structures::sync::Lrc;
use rustc_index::vec::IndexVec;
use rustc::middle::cstore::DepKind;
use rustc::session::{Session, CrateDisambiguator};
use rustc::session::config::{Sanitizer, self};
use rustc_target::spec::{PanicStrategy, TargetTriple};
use rustc::session::search_paths::PathKind;
use rustc::middle::cstore::{CrateSource, ExternCrate, ExternCrateSource, MetadataLoaderDyn};
use rustc::hir::map::Definitions;
use rustc::hir::def_id::LOCAL_CRATE;
use rustc::ty::TyCtxt;
use std::path::Path;
use std::{cmp, fs};
use syntax::ast;
use syntax::attr;
use syntax::edition::Edition;
use syntax::expand::allocator::{global_allocator_spans, AllocatorKind};
use syntax::symbol::{Symbol, sym};
use syntax::span_fatal;
use syntax_expand::base::SyntaxExtension;
use syntax_pos::{Span, DUMMY_SP};
use log::{debug, info, log_enabled};
use proc_macro::bridge::client::ProcMacro;
use rustc_error_codes::*;
#[derive(Clone)]
pub struct CStore {
metas: IndexVec<CrateNum, Option<Lrc<CrateMetadata>>>,
injected_panic_runtime: Option<CrateNum>,
/// This crate needs an allocator and either provides it itself, or finds it in a dependency.
/// If the above is true, then this field denotes the kind of the found allocator.
allocator_kind: Option<AllocatorKind>,
/// This crate has a `#[global_allocator]` item.
has_global_allocator: bool,
}
pub struct CrateLoader<'a> {
// Immutable configuration.
sess: &'a Session,
metadata_loader: &'a MetadataLoaderDyn,
local_crate_name: Symbol,
// Mutable output.
cstore: CStore,
}
pub enum LoadedMacro {
MacroDef(ast::Item, Edition),
ProcMacro(SyntaxExtension),
}
crate struct Library {
pub source: CrateSource,
pub metadata: MetadataBlob,
}
enum LoadResult {
Previous(CrateNum),
Loaded(Library),
}
enum LoadError<'a> {
LocatorError(CrateLocator<'a>),
}
impl<'a> LoadError<'a> {
fn report(self) -> ! {
match self {
LoadError::LocatorError(locator) => locator.report_errs(),
}
}
}
fn dump_crates(cstore: &CStore) {
info!("resolved crates:");
cstore.iter_crate_data(|cnum, data| {
info!(" name: {}", data.name());
info!(" cnum: {}", cnum);
info!(" hash: {}", data.hash());
info!(" reqd: {:?}", data.dep_kind());
let CrateSource { dylib, rlib, rmeta } = data.source();
dylib.as_ref().map(|dl| info!(" dylib: {}", dl.0.display()));
rlib.as_ref().map(|rl| info!(" rlib: {}", rl.0.display()));
rmeta.as_ref().map(|rl| info!(" rmeta: {}", rl.0.display()));
});
}
impl CStore {
crate fn from_tcx(tcx: TyCtxt<'_>) -> &CStore {
tcx.cstore_as_any().downcast_ref::<CStore>().expect("`tcx.cstore` is not a `CStore`")
}
fn alloc_new_crate_num(&mut self) -> CrateNum {
self.metas.push(None);
CrateNum::new(self.metas.len() - 1)
}
crate fn get_crate_data(&self, cnum: CrateNum) -> &CrateMetadata {
self.metas[cnum].as_ref()
.unwrap_or_else(|| panic!("Failed to get crate data for {:?}", cnum))
}
fn set_crate_data(&mut self, cnum: CrateNum, data: CrateMetadata) {
assert!(self.metas[cnum].is_none(), "Overwriting crate metadata entry");
self.metas[cnum] = Some(Lrc::new(data));
}
crate fn iter_crate_data(&self, mut f: impl FnMut(CrateNum, &CrateMetadata)) {
for (cnum, data) in self.metas.iter_enumerated() {
if let Some(data) = data {
f(cnum, data);
}
}
}
fn push_dependencies_in_postorder(&self, deps: &mut Vec<CrateNum>, cnum: CrateNum) {
if !deps.contains(&cnum) {
let data = self.get_crate_data(cnum);
for &dep in data.dependencies().iter() {
if dep != cnum {
self.push_dependencies_in_postorder(deps, dep);
}
}
deps.push(cnum);
}
}
crate fn crate_dependencies_in_postorder(&self, cnum: CrateNum) -> Vec<CrateNum> {
let mut deps = Vec::new();
if cnum == LOCAL_CRATE {
self.iter_crate_data(|cnum, _| self.push_dependencies_in_postorder(&mut deps, cnum));
} else {
self.push_dependencies_in_postorder(&mut deps, cnum);
}
deps
}
fn crate_dependencies_in_reverse_postorder(&self, cnum: CrateNum) -> Vec<CrateNum> {
let mut deps = self.crate_dependencies_in_postorder(cnum);
deps.reverse();
deps
}
crate fn injected_panic_runtime(&self) -> Option<CrateNum> {
self.injected_panic_runtime
}
crate fn allocator_kind(&self) -> Option<AllocatorKind> {
self.allocator_kind
}
crate fn has_global_allocator(&self) -> bool {
self.has_global_allocator
}
}
impl<'a> CrateLoader<'a> {
pub fn new(
sess: &'a Session,
metadata_loader: &'a MetadataLoaderDyn,
local_crate_name: &str,
) -> Self {
CrateLoader {
sess,
metadata_loader,
local_crate_name: Symbol::intern(local_crate_name),
cstore: CStore {
// We add an empty entry for LOCAL_CRATE (which maps to zero) in
// order to make array indices in `metas` match with the
// corresponding `CrateNum`. This first entry will always remain
// `None`.
metas: IndexVec::from_elem_n(None, 1),
injected_panic_runtime: None,
allocator_kind: None,
has_global_allocator: false,
}
}
}
pub fn cstore(&self) -> &CStore {
&self.cstore
}
pub fn into_cstore(self) -> CStore {
self.cstore
}
fn existing_match(&self, name: Symbol, hash: Option<Svh>, kind: PathKind) -> Option<CrateNum> {
let mut ret = None;
self.cstore.iter_crate_data(|cnum, data| {
if data.name() != name { return }
match hash {
Some(hash) if hash == data.hash() => { ret = Some(cnum); return }
Some(..) => return,
None => {}
}
// When the hash is None we're dealing with a top-level dependency
// in which case we may have a specification on the command line for
// this library. Even though an upstream library may have loaded
// something of the same name, we have to make sure it was loaded
// from the exact same location as well.
//
// We're also sure to compare *paths*, not actual byte slices. The
// `source` stores paths which are normalized which may be different
// from the strings on the command line.
let source = self.cstore.get_crate_data(cnum).source();
if let Some(entry) = self.sess.opts.externs.get(&name.as_str()) {
// Only use `--extern crate_name=path` here, not `--extern crate_name`.
let found = entry.locations.iter().filter_map(|l| l.as_ref()).any(|l| {
let l = fs::canonicalize(l).ok();
source.dylib.as_ref().map(|p| &p.0) == l.as_ref() ||
source.rlib.as_ref().map(|p| &p.0) == l.as_ref()
});
if found {
ret = Some(cnum);
}
return
}
// Alright, so we've gotten this far which means that `data` has the
// right name, we don't have a hash, and we don't have a --extern
// pointing for ourselves. We're still not quite yet done because we
// have to make sure that this crate was found in the crate lookup
// path (this is a top-level dependency) as we don't want to
// implicitly load anything inside the dependency lookup path.
let prev_kind = source.dylib.as_ref().or(source.rlib.as_ref())
.or(source.rmeta.as_ref())
.expect("No sources for crate").1;
if kind.matches(prev_kind) {
ret = Some(cnum);
}
});
return ret;
}
fn verify_no_symbol_conflicts(&self,
span: Span,
root: &CrateRoot<'_>) {
// Check for (potential) conflicts with the local crate
if self.local_crate_name == root.name() &&
self.sess.local_crate_disambiguator() == root.disambiguator() {
span_fatal!(self.sess, span, E0519,
"the current crate is indistinguishable from one of its \
dependencies: it has the same crate-name `{}` and was \
compiled with the same `-C metadata` arguments. This \
will result in symbol conflicts between the two.",
root.name())
}
// Check for conflicts with any crate loaded so far
self.cstore.iter_crate_data(|_, other| {
if other.name() == root.name() && // same crate-name
other.disambiguator() == root.disambiguator() && // same crate-disambiguator
other.hash() != root.hash() { // but different SVH
span_fatal!(self.sess, span, E0523,
"found two different crates with name `{}` that are \
not distinguished by differing `-C metadata`. This \
will result in symbol conflicts between the two.",
root.name())
}
});
}
fn register_crate(
&mut self,
host_lib: Option<Library>,
root: Option<&CratePaths>,
span: Span,
lib: Library,
dep_kind: DepKind,
name: Symbol
) -> CrateNum {
let _prof_timer = self.sess.prof.generic_activity("metadata_register_crate");
let Library { source, metadata } = lib;
let crate_root = metadata.get_root();
let host_hash = host_lib.as_ref().map(|lib| lib.metadata.get_root().hash());
self.verify_no_symbol_conflicts(span, &crate_root);
let private_dep = self.sess.opts.externs.get(&name.as_str())
.map(|e| e.is_private_dep)
.unwrap_or(false);
info!("register crate `{}` (private_dep = {})", crate_root.name(), private_dep);
// Claim this crate number and cache it
let cnum = self.cstore.alloc_new_crate_num();
// Maintain a reference to the top most crate.
// Stash paths for top-most crate locally if necessary.
let crate_paths;
let root = if let Some(root) = root {
root
} else {
crate_paths = CratePaths::new(crate_root.name(), source.clone());
&crate_paths
};
let cnum_map = self.resolve_crate_deps(root, &crate_root, &metadata, cnum, span, dep_kind);
let raw_proc_macros = if crate_root.is_proc_macro_crate() {
let temp_root;
let (dlsym_source, dlsym_root) = match &host_lib {
Some(host_lib) =>
(&host_lib.source, { temp_root = host_lib.metadata.get_root(); &temp_root }),
None => (&source, &crate_root),
};
let dlsym_dylib = dlsym_source.dylib.as_ref().expect("no dylib for a proc-macro crate");
Some(self.dlsym_proc_macros(&dlsym_dylib.0, dlsym_root.disambiguator(), span))
} else {
None
};
self.cstore.set_crate_data(cnum, CrateMetadata::new(
self.sess,
metadata,
crate_root,
raw_proc_macros,
cnum,
cnum_map,
dep_kind,
source,
private_dep,
host_hash,
));
cnum
}
fn load_proc_macro<'b>(
&self,
locator: &mut CrateLocator<'b>,
path_kind: PathKind,
) -> Option<(LoadResult, Option<Library>)>
where
'a: 'b,
{
// Use a new crate locator so trying to load a proc macro doesn't affect the error
// message we emit
let mut proc_macro_locator = locator.clone();
// Try to load a proc macro
proc_macro_locator.is_proc_macro = Some(true);
// Load the proc macro crate for the target
let (locator, target_result) = if self.sess.opts.debugging_opts.dual_proc_macros {
proc_macro_locator.reset();
let result = match self.load(&mut proc_macro_locator)? {
LoadResult::Previous(cnum) => return Some((LoadResult::Previous(cnum), None)),
LoadResult::Loaded(library) => Some(LoadResult::Loaded(library))
};
locator.hash = locator.host_hash;
// Use the locator when looking for the host proc macro crate, as that is required
// so we want it to affect the error message
(locator, result)
} else {
(&mut proc_macro_locator, None)
};
// Load the proc macro crate for the host
locator.reset();
locator.is_proc_macro = Some(true);
locator.target = &self.sess.host;
locator.triple = TargetTriple::from_triple(config::host_triple());
locator.filesearch = self.sess.host_filesearch(path_kind);
let host_result = self.load(locator)?;
Some(if self.sess.opts.debugging_opts.dual_proc_macros {
let host_result = match host_result {
LoadResult::Previous(..) => {
panic!("host and target proc macros must be loaded in lock-step")
}
LoadResult::Loaded(library) => library
};
(target_result.unwrap(), Some(host_result))
} else {
(host_result, None)
})
}
fn resolve_crate<'b>(
&'b mut self,
name: Symbol,
span: Span,
dep_kind: DepKind,
dep: Option<(&'b CratePaths, &'b CrateDep)>,
) -> CrateNum {
self.maybe_resolve_crate(name, span, dep_kind, dep).unwrap_or_else(|err| err.report())
}
fn maybe_resolve_crate<'b>(
&'b mut self,
name: Symbol,
span: Span,
mut dep_kind: DepKind,
dep: Option<(&'b CratePaths, &'b CrateDep)>,
) -> Result<CrateNum, LoadError<'b>> {
info!("resolving crate `{}`", name);
let (root, hash, host_hash, extra_filename, path_kind) = match dep {
Some((root, dep)) => (
Some(root),
Some(dep.hash),
dep.host_hash,
Some(&dep.extra_filename[..]),
PathKind::Dependency,
),
None => (None, None, None, None, PathKind::Crate),
};
let result = if let Some(cnum) = self.existing_match(name, hash, path_kind) {
(LoadResult::Previous(cnum), None)
} else {
info!("falling back to a load");
let mut locator = CrateLocator::new(
self.sess,
self.metadata_loader,
name,
hash,
host_hash,
extra_filename,
false, // is_host
path_kind,
span,
root,
Some(false), // is_proc_macro
);
self.load(&mut locator).map(|r| (r, None)).or_else(|| {
dep_kind = DepKind::UnexportedMacrosOnly;
self.load_proc_macro(&mut locator, path_kind)
}).ok_or_else(move || LoadError::LocatorError(locator))?
};
match result {
(LoadResult::Previous(cnum), None) => {
let data = self.cstore.get_crate_data(cnum);
if data.is_proc_macro_crate() {
dep_kind = DepKind::UnexportedMacrosOnly;
}
data.update_dep_kind(|data_dep_kind| cmp::max(data_dep_kind, dep_kind));
Ok(cnum)
}
(LoadResult::Loaded(library), host_library) => {
Ok(self.register_crate(host_library, root, span, library, dep_kind, name))
}
_ => panic!()
}
}
fn load(&self, locator: &mut CrateLocator<'_>) -> Option<LoadResult> {
let library = locator.maybe_load_library_crate()?;
// In the case that we're loading a crate, but not matching
// against a hash, we could load a crate which has the same hash
// as an already loaded crate. If this is the case prevent
// duplicates by just using the first crate.
//
// Note that we only do this for target triple crates, though, as we
// don't want to match a host crate against an equivalent target one
// already loaded.
let root = library.metadata.get_root();
if locator.triple == self.sess.opts.target_triple {
let mut result = LoadResult::Loaded(library);
self.cstore.iter_crate_data(|cnum, data| {
if data.name() == root.name() && root.hash() == data.hash() {
assert!(locator.hash.is_none());
info!("load success, going to previous cnum: {}", cnum);
result = LoadResult::Previous(cnum);
}
});
Some(result)
} else {
Some(LoadResult::Loaded(library))
}
}
fn update_extern_crate(&self, cnum: CrateNum, extern_crate: ExternCrate) {
let cmeta = self.cstore.get_crate_data(cnum);
if cmeta.update_extern_crate(extern_crate) {
// Propagate the extern crate info to dependencies if it was updated.
let extern_crate = ExternCrate { dependency_of: cnum, ..extern_crate };
for &dep_cnum in cmeta.dependencies().iter() {
self.update_extern_crate(dep_cnum, extern_crate);
}
}
}
// Go through the crate metadata and load any crates that it references
fn resolve_crate_deps(&mut self,
root: &CratePaths,
crate_root: &CrateRoot<'_>,
metadata: &MetadataBlob,
krate: CrateNum,
span: Span,
dep_kind: DepKind)
-> CrateNumMap {
debug!("resolving deps of external crate");
if crate_root.is_proc_macro_crate() {
return CrateNumMap::new();
}
// The map from crate numbers in the crate we're resolving to local crate numbers.
// We map 0 and all other holes in the map to our parent crate. The "additional"
// self-dependencies should be harmless.
std::iter::once(krate).chain(crate_root.decode_crate_deps(metadata).map(|dep| {
info!("resolving dep crate {} hash: `{}` extra filename: `{}`", dep.name, dep.hash,
dep.extra_filename);
if dep.kind == DepKind::UnexportedMacrosOnly {
return krate;
}
let dep_kind = match dep_kind {
DepKind::MacrosOnly => DepKind::MacrosOnly,
_ => dep.kind,
};
self.resolve_crate(dep.name, span, dep_kind, Some((root, &dep)))
})).collect()
}
fn dlsym_proc_macros(&self,
path: &Path,
disambiguator: CrateDisambiguator,
span: Span
) -> &'static [ProcMacro] {
use std::env;
use crate::dynamic_lib::DynamicLibrary;
// Make sure the path contains a / or the linker will search for it.
let path = env::current_dir().unwrap().join(path);
let lib = match DynamicLibrary::open(Some(&path)) {
Ok(lib) => lib,
Err(err) => self.sess.span_fatal(span, &err),
};
let sym = self.sess.generate_proc_macro_decls_symbol(disambiguator);
let decls = unsafe {
let sym = match lib.symbol(&sym) {
Ok(f) => f,
Err(err) => self.sess.span_fatal(span, &err),
};
*(sym as *const &[ProcMacro])
};
// Intentionally leak the dynamic library. We can't ever unload it
// since the library can make things that will live arbitrarily long.
std::mem::forget(lib);
decls
}
fn inject_panic_runtime(&mut self, krate: &ast::Crate) {
// If we're only compiling an rlib, then there's no need to select a
// panic runtime, so we just skip this section entirely.
let any_non_rlib = self.sess.crate_types.borrow().iter().any(|ct| {
*ct != config::CrateType::Rlib
});
if !any_non_rlib {
info!("panic runtime injection skipped, only generating rlib");
return
}
// If we need a panic runtime, we try to find an existing one here. At
// the same time we perform some general validation of the DAG we've got
// going such as ensuring everything has a compatible panic strategy.
//
// The logic for finding the panic runtime here is pretty much the same
// as the allocator case with the only addition that the panic strategy
// compilation mode also comes into play.
let desired_strategy = self.sess.panic_strategy();
let mut runtime_found = false;
let mut needs_panic_runtime = attr::contains_name(&krate.attrs,
sym::needs_panic_runtime);
self.cstore.iter_crate_data(|cnum, data| {
needs_panic_runtime = needs_panic_runtime || data.needs_panic_runtime();
if data.is_panic_runtime() {
// Inject a dependency from all #![needs_panic_runtime] to this
// #![panic_runtime] crate.
self.inject_dependency_if(cnum, "a panic runtime",
&|data| data.needs_panic_runtime());
runtime_found = runtime_found || data.dep_kind() == DepKind::Explicit;
}
});
// If an explicitly linked and matching panic runtime was found, or if
// we just don't need one at all, then we're done here and there's
// nothing else to do.
if !needs_panic_runtime || runtime_found {
return
}
// By this point we know that we (a) need a panic runtime and (b) no
// panic runtime was explicitly linked. Here we just load an appropriate
// default runtime for our panic strategy and then inject the
// dependencies.
//
// We may resolve to an already loaded crate (as the crate may not have
// been explicitly linked prior to this) and we may re-inject
// dependencies again, but both of those situations are fine.
//
// Also note that we have yet to perform validation of the crate graph
// in terms of everyone has a compatible panic runtime format, that's
// performed later as part of the `dependency_format` module.
let name = match desired_strategy {
PanicStrategy::Unwind => Symbol::intern("panic_unwind"),
PanicStrategy::Abort => Symbol::intern("panic_abort"),
};
info!("panic runtime not found -- loading {}", name);
let cnum = self.resolve_crate(name, DUMMY_SP, DepKind::Implicit, None);
let data = self.cstore.get_crate_data(cnum);
// Sanity check the loaded crate to ensure it is indeed a panic runtime
// and the panic strategy is indeed what we thought it was.
if !data.is_panic_runtime() {
self.sess.err(&format!("the crate `{}` is not a panic runtime",
name));
}
if data.panic_strategy() != desired_strategy {
self.sess.err(&format!("the crate `{}` does not have the panic \
strategy `{}`",
name, desired_strategy.desc()));
}
self.cstore.injected_panic_runtime = Some(cnum);
self.inject_dependency_if(cnum, "a panic runtime",
&|data| data.needs_panic_runtime());
}
fn inject_sanitizer_runtime(&mut self) {
if let Some(ref sanitizer) = self.sess.opts.debugging_opts.sanitizer {
// Sanitizers can only be used on some tested platforms with
// executables linked to `std`
const ASAN_SUPPORTED_TARGETS: &[&str] = &["x86_64-unknown-linux-gnu",
"x86_64-apple-darwin"];
const TSAN_SUPPORTED_TARGETS: &[&str] = &["x86_64-unknown-linux-gnu",
"x86_64-apple-darwin"];
const LSAN_SUPPORTED_TARGETS: &[&str] = &["x86_64-unknown-linux-gnu"];
const MSAN_SUPPORTED_TARGETS: &[&str] = &["x86_64-unknown-linux-gnu"];
let supported_targets = match *sanitizer {
Sanitizer::Address => ASAN_SUPPORTED_TARGETS,
Sanitizer::Thread => TSAN_SUPPORTED_TARGETS,
Sanitizer::Leak => LSAN_SUPPORTED_TARGETS,
Sanitizer::Memory => MSAN_SUPPORTED_TARGETS,
};
if !supported_targets.contains(&&*self.sess.opts.target_triple.triple()) {
self.sess.err(&format!("{:?}Sanitizer only works with the `{}` target",
sanitizer,
supported_targets.join("` or `")
));
return
}
// firstyear 2017 - during testing I was unable to access an OSX machine
// to make this work on different crate types. As a result, today I have
// only been able to test and support linux as a target.
if self.sess.opts.target_triple.triple() == "x86_64-unknown-linux-gnu" {
if !self.sess.crate_types.borrow().iter().all(|ct| {
match *ct {
// Link the runtime
config::CrateType::Executable => true,
// This crate will be compiled with the required
// instrumentation pass
config::CrateType::Staticlib |
config::CrateType::Rlib |
config::CrateType::Dylib |
config::CrateType::Cdylib =>
false,
_ => {
self.sess.err(&format!("Only executables, staticlibs, \
cdylibs, dylibs and rlibs can be compiled with \
`-Z sanitizer`"));
false
}
}
}) {
return
}
} else {
if !self.sess.crate_types.borrow().iter().all(|ct| {
match *ct {
// Link the runtime
config::CrateType::Executable => true,
// This crate will be compiled with the required
// instrumentation pass
config::CrateType::Rlib => false,
_ => {
self.sess.err(&format!("Only executables and rlibs can be \
compiled with `-Z sanitizer`"));
false
}
}
}) {
return
}
}
let mut uses_std = false;
self.cstore.iter_crate_data(|_, data| {
if data.name() == sym::std {
uses_std = true;
}
});
if uses_std {
let name = Symbol::intern(match sanitizer {
Sanitizer::Address => "rustc_asan",
Sanitizer::Leak => "rustc_lsan",
Sanitizer::Memory => "rustc_msan",
Sanitizer::Thread => "rustc_tsan",
});
info!("loading sanitizer: {}", name);
let cnum = self.resolve_crate(name, DUMMY_SP, DepKind::Explicit, None);
let data = self.cstore.get_crate_data(cnum);
// Sanity check the loaded crate to ensure it is indeed a sanitizer runtime
if !data.is_sanitizer_runtime() {
self.sess.err(&format!("the crate `{}` is not a sanitizer runtime",
name));
}
} else {
self.sess.err("Must link std to be compiled with `-Z sanitizer`");
}
}
}
fn inject_profiler_runtime(&mut self) {
if self.sess.opts.debugging_opts.profile ||
self.sess.opts.cg.profile_generate.enabled()
{
info!("loading profiler");
let name = Symbol::intern("profiler_builtins");
let cnum = self.resolve_crate(name, DUMMY_SP, DepKind::Implicit, None);
let data = self.cstore.get_crate_data(cnum);
// Sanity check the loaded crate to ensure it is indeed a profiler runtime
if !data.is_profiler_runtime() {
self.sess.err(&format!("the crate `profiler_builtins` is not \
a profiler runtime"));
}
}
}
fn inject_allocator_crate(&mut self, krate: &ast::Crate) {
self.cstore.has_global_allocator = match &*global_allocator_spans(krate) {
[span1, span2, ..] => {
self.sess.struct_span_err(*span2, "cannot define multiple global allocators")
.span_label(*span2, "cannot define a new global allocator")
.span_label(*span1, "previous global allocator is defined here")
.emit();
true
}
spans => !spans.is_empty()
};
// Check to see if we actually need an allocator. This desire comes
// about through the `#![needs_allocator]` attribute and is typically
// written down in liballoc.
let mut needs_allocator = attr::contains_name(&krate.attrs,
sym::needs_allocator);
self.cstore.iter_crate_data(|_, data| {
needs_allocator = needs_allocator || data.needs_allocator();
});
if !needs_allocator {
return
}
// At this point we've determined that we need an allocator. Let's see
// if our compilation session actually needs an allocator based on what
// we're emitting.
let all_rlib = self.sess.crate_types.borrow()
.iter()
.all(|ct| {
match *ct {
config::CrateType::Rlib => true,
_ => false,
}
});
if all_rlib {
return
}
// Ok, we need an allocator. Not only that but we're actually going to
// create an artifact that needs one linked in. Let's go find the one
// that we're going to link in.
//
// First up we check for global allocators. Look at the crate graph here
// and see what's a global allocator, including if we ourselves are a
// global allocator.
let mut global_allocator = if self.cstore.has_global_allocator {
Some(Symbol::intern("this crate"))
} else {
None
};
self.cstore.iter_crate_data(|_, data| {
if !data.has_global_allocator() {
return
}
match global_allocator {
Some(other_crate) => {
self.sess.err(&format!("the `#[global_allocator]` in {} \
conflicts with global \
allocator in: {}",
other_crate,
data.name()));
}
None => global_allocator = Some(data.name()),
}
});
if global_allocator.is_some() {
self.cstore.allocator_kind = Some(AllocatorKind::Global);
return
}
// Ok we haven't found a global allocator but we still need an
// allocator. At this point our allocator request is typically fulfilled
// by the standard library, denoted by the `#![default_lib_allocator]`
// attribute.
let mut has_default = attr::contains_name(&krate.attrs, sym::default_lib_allocator);
self.cstore.iter_crate_data(|_, data| {
if data.has_default_lib_allocator() {
has_default = true;
}
});
if !has_default {
self.sess.err("no global memory allocator found but one is \
required; link to std or \
add `#[global_allocator]` to a static item \
that implements the GlobalAlloc trait.");
}
self.cstore.allocator_kind = Some(AllocatorKind::Default);
}
fn inject_dependency_if(&self,
krate: CrateNum,
what: &str,
needs_dep: &dyn Fn(&CrateMetadata) -> bool) {
// don't perform this validation if the session has errors, as one of
// those errors may indicate a circular dependency which could cause
// this to stack overflow.
if self.sess.has_errors() {
return
}
// Before we inject any dependencies, make sure we don't inject a
// circular dependency by validating that this crate doesn't
// transitively depend on any crates satisfying `needs_dep`.
for dep in self.cstore.crate_dependencies_in_reverse_postorder(krate) {
let data = self.cstore.get_crate_data(dep);
if needs_dep(&data) {
self.sess.err(&format!("the crate `{}` cannot depend \
on a crate that needs {}, but \
it depends on `{}`",
self.cstore.get_crate_data(krate).name(),
what,
data.name()));
}
}
// All crates satisfying `needs_dep` do not explicitly depend on the
// crate provided for this compile, but in order for this compilation to
// be successfully linked we need to inject a dependency (to order the
// crates on the command line correctly).
self.cstore.iter_crate_data(|cnum, data| {
if !needs_dep(data) {
return
}
info!("injecting a dep from {} to {}", cnum, krate);
data.add_dependency(krate);
});
}
pub fn postprocess(&mut self, krate: &ast::Crate) {
self.inject_sanitizer_runtime();
self.inject_profiler_runtime();
self.inject_allocator_crate(krate);
self.inject_panic_runtime(krate);
if log_enabled!(log::Level::Info) {
dump_crates(&self.cstore);
}
}
pub fn process_extern_crate(
&mut self,
item: &ast::Item,
definitions: &Definitions,
) -> CrateNum {
match item.kind {
ast::ItemKind::ExternCrate(orig_name) => {
debug!("resolving extern crate stmt. ident: {} orig_name: {:?}",
item.ident, orig_name);
let name = match orig_name {
Some(orig_name) => {
crate::validate_crate_name(Some(self.sess), &orig_name.as_str(),
Some(item.span));
orig_name
}
None => item.ident.name,
};
let dep_kind = if attr::contains_name(&item.attrs, sym::no_link) {
DepKind::UnexportedMacrosOnly
} else {
DepKind::Explicit
};
let cnum = self.resolve_crate(name, item.span, dep_kind, None);
let def_id = definitions.opt_local_def_id(item.id).unwrap();
let path_len = definitions.def_path(def_id.index).data.len();
self.update_extern_crate(
cnum,
ExternCrate {
src: ExternCrateSource::Extern(def_id),
span: item.span,
path_len,
dependency_of: LOCAL_CRATE,
},
);
cnum
}
_ => bug!(),
}
}
pub fn process_path_extern(&mut self, name: Symbol, span: Span) -> CrateNum {
let cnum = self.resolve_crate(name, span, DepKind::Explicit, None);
self.update_extern_crate(
cnum,
ExternCrate {
src: ExternCrateSource::Path,
span,
// to have the least priority in `update_extern_crate`
path_len: usize::max_value(),
dependency_of: LOCAL_CRATE,
},
);
cnum
}
pub fn maybe_process_path_extern(&mut self, name: Symbol, span: Span) -> Option<CrateNum> {
self.maybe_resolve_crate(name, span, DepKind::Explicit, None).ok()
}
}