blob: 123bd9f9c37653864cb05c3fcfbe1572f5a72faa [file] [log] [blame]
// Copyright 2012 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use arena::TypedArena;
use back::link;
use llvm::{ValueRef, get_params};
use middle::def_id::DefId;
use middle::infer;
use middle::subst::{Subst, Substs};
use middle::subst::VecPerParamSpace;
use middle::subst;
use middle::traits;
use trans::base::*;
use trans::build::*;
use trans::callee::*;
use trans::callee;
use trans::cleanup;
use trans::closure;
use trans::common::*;
use trans::consts;
use trans::datum::*;
use trans::debuginfo::DebugLoc;
use trans::declare;
use trans::expr::SaveIn;
use trans::expr;
use trans::glue;
use trans::machine;
use trans::monomorphize;
use trans::type_::Type;
use trans::type_of::*;
use middle::ty::{self, Ty, HasTypeFlags};
use middle::ty::MethodCall;
use syntax::ast;
use syntax::attr;
use syntax::codemap::DUMMY_SP;
use rustc_front::hir;
// drop_glue pointer, size, align.
const VTABLE_OFFSET: usize = 3;
/// The main "translation" pass for methods. Generates code
/// for non-monomorphized methods only. Other methods will
/// be generated once they are invoked with specific type parameters,
/// see `trans::base::lval_static_fn()` or `trans::base::monomorphic_fn()`.
pub fn trans_impl(ccx: &CrateContext,
name: ast::Name,
impl_items: &[hir::ImplItem],
generics: &hir::Generics,
id: ast::NodeId) {
let _icx = push_ctxt("meth::trans_impl");
let tcx = ccx.tcx();
debug!("trans_impl(name={}, id={})", name, id);
// Both here and below with generic methods, be sure to recurse and look for
// items that we need to translate.
if !generics.ty_params.is_empty() {
return;
}
for impl_item in impl_items {
match impl_item.node {
hir::ImplItemKind::Method(ref sig, ref body) => {
if sig.generics.ty_params.is_empty() {
let trans_everywhere = attr::requests_inline(&impl_item.attrs);
for (ref ccx, is_origin) in ccx.maybe_iter(trans_everywhere) {
let llfn = get_item_val(ccx, impl_item.id);
let empty_substs = tcx.mk_substs(Substs::trans_empty());
trans_fn(ccx, &sig.decl, body, llfn,
empty_substs, impl_item.id, &[]);
update_linkage(ccx,
llfn,
Some(impl_item.id),
if is_origin { OriginalTranslation } else { InlinedCopy });
}
}
}
_ => {}
}
}
}
pub fn trans_method_callee<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
method_call: MethodCall,
self_expr: Option<&hir::Expr>,
arg_cleanup_scope: cleanup::ScopeId)
-> Callee<'blk, 'tcx> {
let _icx = push_ctxt("meth::trans_method_callee");
let method = bcx.tcx().tables.borrow().method_map[&method_call];
match bcx.tcx().impl_or_trait_item(method.def_id).container() {
ty::ImplContainer(_) => {
debug!("trans_method_callee: static, {:?}", method.def_id);
let datum = callee::trans_fn_ref(bcx.ccx(),
method.def_id,
MethodCallKey(method_call),
bcx.fcx.param_substs);
Callee {
bcx: bcx,
data: Fn(datum.val),
ty: datum.ty
}
}
ty::TraitContainer(trait_def_id) => {
let trait_substs = method.substs.clone().method_to_trait();
let trait_substs = bcx.tcx().mk_substs(trait_substs);
let trait_ref = ty::TraitRef::new(trait_def_id, trait_substs);
let trait_ref = ty::Binder(bcx.monomorphize(&trait_ref));
let span = bcx.tcx().map.span(method_call.expr_id);
debug!("method_call={:?} trait_ref={:?} trait_ref id={:?} substs={:?}",
method_call,
trait_ref,
trait_ref.0.def_id,
trait_ref.0.substs);
let origin = fulfill_obligation(bcx.ccx(),
span,
trait_ref.clone());
debug!("origin = {:?}", origin);
trans_monomorphized_callee(bcx,
method_call,
self_expr,
trait_def_id,
method.def_id,
method.ty,
origin,
arg_cleanup_scope)
}
}
}
pub fn trans_static_method_callee<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>,
method_id: DefId,
trait_id: DefId,
expr_id: ast::NodeId,
param_substs: &'tcx subst::Substs<'tcx>)
-> Datum<'tcx, Rvalue>
{
let _icx = push_ctxt("meth::trans_static_method_callee");
let tcx = ccx.tcx();
debug!("trans_static_method_callee(method_id={:?}, trait_id={}, \
expr_id={})",
method_id,
tcx.item_path_str(trait_id),
expr_id);
let mname = tcx.item_name(method_id);
debug!("trans_static_method_callee: method_id={:?}, expr_id={}, \
name={}", method_id, expr_id, mname);
// Find the substitutions for the fn itself. This includes
// type parameters that belong to the trait but also some that
// belong to the method:
let rcvr_substs = node_id_substs(ccx, ExprId(expr_id), param_substs);
let subst::SeparateVecsPerParamSpace {
types: rcvr_type,
selfs: rcvr_self,
fns: rcvr_method
} = rcvr_substs.types.split();
// Lookup the precise impl being called. To do that, we need to
// create a trait reference identifying the self type and other
// input type parameters. To create that trait reference, we have
// to pick apart the type parameters to identify just those that
// pertain to the trait. This is easiest to explain by example:
//
// trait Convert {
// fn from<U:Foo>(n: U) -> Option<Self>;
// }
// ...
// let f = <Vec<i32> as Convert>::from::<String>(...)
//
// Here, in this call, which I've written with explicit UFCS
// notation, the set of type parameters will be:
//
// rcvr_type: [] <-- nothing declared on the trait itself
// rcvr_self: [Vec<i32>] <-- the self type
// rcvr_method: [String] <-- method type parameter
//
// So we create a trait reference using the first two,
// basically corresponding to `<Vec<i32> as Convert>`.
// The remaining type parameters (`rcvr_method`) will be used below.
let trait_substs =
Substs::erased(VecPerParamSpace::new(rcvr_type,
rcvr_self,
Vec::new()));
let trait_substs = tcx.mk_substs(trait_substs);
debug!("trait_substs={:?}", trait_substs);
let trait_ref = ty::Binder(ty::TraitRef::new(trait_id, trait_substs));
let vtbl = fulfill_obligation(ccx,
DUMMY_SP,
trait_ref);
// Now that we know which impl is being used, we can dispatch to
// the actual function:
match vtbl {
traits::VtableImpl(traits::VtableImplData {
impl_def_id: impl_did,
substs: impl_substs,
nested: _ }) =>
{
assert!(!impl_substs.types.needs_infer());
// Create the substitutions that are in scope. This combines
// the type parameters from the impl with those declared earlier.
// To see what I mean, consider a possible impl:
//
// impl<T> Convert for Vec<T> {
// fn from<U:Foo>(n: U) { ... }
// }
//
// Recall that we matched `<Vec<i32> as Convert>`. Trait
// resolution will have given us a substitution
// containing `impl_substs=[[T=i32],[],[]]` (the type
// parameters defined on the impl). We combine
// that with the `rcvr_method` from before, which tells us
// the type parameters from the *method*, to yield
// `callee_substs=[[T=i32],[],[U=String]]`.
let subst::SeparateVecsPerParamSpace {
types: impl_type,
selfs: impl_self,
fns: _
} = impl_substs.types.split();
let callee_substs =
Substs::erased(VecPerParamSpace::new(impl_type,
impl_self,
rcvr_method));
let mth = tcx.get_impl_method(impl_did, callee_substs, mname);
trans_fn_ref_with_substs(ccx, mth.method.def_id, ExprId(expr_id),
param_substs,
mth.substs)
}
traits::VtableObject(ref data) => {
let idx = traits::get_vtable_index_of_object_method(tcx, data, method_id);
trans_object_shim(ccx,
data.upcast_trait_ref.clone(),
method_id,
idx)
}
_ => {
tcx.sess.bug(&format!("static call to invalid vtable: {:?}",
vtbl));
}
}
}
fn trans_monomorphized_callee<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
method_call: MethodCall,
self_expr: Option<&hir::Expr>,
trait_id: DefId,
method_id: DefId,
method_ty: Ty<'tcx>,
vtable: traits::Vtable<'tcx, ()>,
arg_cleanup_scope: cleanup::ScopeId)
-> Callee<'blk, 'tcx> {
let _icx = push_ctxt("meth::trans_monomorphized_callee");
match vtable {
traits::VtableImpl(vtable_impl) => {
let ccx = bcx.ccx();
let impl_did = vtable_impl.impl_def_id;
let mname = match ccx.tcx().impl_or_trait_item(method_id) {
ty::MethodTraitItem(method) => method.name,
_ => {
bcx.tcx().sess.bug("can't monomorphize a non-method trait \
item")
}
};
// create a concatenated set of substitutions which includes
// those from the impl and those from the method:
let callee_substs =
combine_impl_and_methods_tps(
bcx, MethodCallKey(method_call), vtable_impl.substs);
let mth = bcx.tcx().get_impl_method(impl_did, callee_substs, mname);
// translate the function
let datum = trans_fn_ref_with_substs(bcx.ccx(),
mth.method.def_id,
MethodCallKey(method_call),
bcx.fcx.param_substs,
mth.substs);
Callee { bcx: bcx, data: Fn(datum.val), ty: datum.ty }
}
traits::VtableClosure(vtable_closure) => {
// The substitutions should have no type parameters remaining
// after passing through fulfill_obligation
let trait_closure_kind = bcx.tcx().lang_items.fn_trait_kind(trait_id).unwrap();
let llfn = closure::trans_closure_method(bcx.ccx(),
vtable_closure.closure_def_id,
vtable_closure.substs,
trait_closure_kind);
Callee {
bcx: bcx,
data: Fn(llfn),
ty: monomorphize_type(bcx, method_ty)
}
}
traits::VtableFnPointer(fn_ty) => {
let trait_closure_kind = bcx.tcx().lang_items.fn_trait_kind(trait_id).unwrap();
let llfn = trans_fn_pointer_shim(bcx.ccx(), trait_closure_kind, fn_ty);
Callee {
bcx: bcx,
data: Fn(llfn),
ty: monomorphize_type(bcx, method_ty)
}
}
traits::VtableObject(ref data) => {
let idx = traits::get_vtable_index_of_object_method(bcx.tcx(), data, method_id);
if let Some(self_expr) = self_expr {
if let ty::TyBareFn(_, ref fty) = monomorphize_type(bcx, method_ty).sty {
let ty = bcx.tcx().mk_fn(None, opaque_method_ty(bcx.tcx(), fty));
return trans_trait_callee(bcx, ty, idx, self_expr, arg_cleanup_scope);
}
}
let datum = trans_object_shim(bcx.ccx(),
data.upcast_trait_ref.clone(),
method_id,
idx);
Callee { bcx: bcx, data: Fn(datum.val), ty: datum.ty }
}
traits::VtableBuiltin(..) |
traits::VtableDefaultImpl(..) |
traits::VtableParam(..) => {
bcx.sess().bug(
&format!("resolved vtable bad vtable {:?} in trans",
vtable));
}
}
}
/// Creates a concatenated set of substitutions which includes those from the impl and those from
/// the method. This are some subtle complications here. Statically, we have a list of type
/// parameters like `[T0, T1, T2, M1, M2, M3]` where `Tn` are type parameters that appear on the
/// receiver. For example, if the receiver is a method parameter `A` with a bound like
/// `trait<B,C,D>` then `Tn` would be `[B,C,D]`.
///
/// The weird part is that the type `A` might now be bound to any other type, such as `foo<X>`.
/// In that case, the vector we want is: `[X, M1, M2, M3]`. Therefore, what we do now is to slice
/// off the method type parameters and append them to the type parameters from the type that the
/// receiver is mapped to.
fn combine_impl_and_methods_tps<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
node: ExprOrMethodCall,
rcvr_substs: subst::Substs<'tcx>)
-> subst::Substs<'tcx>
{
let ccx = bcx.ccx();
let node_substs = node_id_substs(ccx, node, bcx.fcx.param_substs);
debug!("rcvr_substs={:?}", rcvr_substs);
debug!("node_substs={:?}", node_substs);
// Break apart the type parameters from the node and type
// parameters from the receiver.
let node_method = node_substs.types.split().fns;
let subst::SeparateVecsPerParamSpace {
types: rcvr_type,
selfs: rcvr_self,
fns: rcvr_method
} = rcvr_substs.types.clone().split();
assert!(rcvr_method.is_empty());
subst::Substs {
regions: subst::ErasedRegions,
types: subst::VecPerParamSpace::new(rcvr_type, rcvr_self, node_method)
}
}
/// Create a method callee where the method is coming from a trait object (e.g., Box<Trait> type).
/// In this case, we must pull the fn pointer out of the vtable that is packaged up with the
/// object. Objects are represented as a pair, so we first evaluate the self expression and then
/// extract the self data and vtable out of the pair.
fn trans_trait_callee<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
opaque_fn_ty: Ty<'tcx>,
vtable_index: usize,
self_expr: &hir::Expr,
arg_cleanup_scope: cleanup::ScopeId)
-> Callee<'blk, 'tcx> {
let _icx = push_ctxt("meth::trans_trait_callee");
let mut bcx = bcx;
// Translate self_datum and take ownership of the value by
// converting to an rvalue.
let self_datum = unpack_datum!(
bcx, expr::trans(bcx, self_expr));
let llval = if bcx.fcx.type_needs_drop(self_datum.ty) {
let self_datum = unpack_datum!(
bcx, self_datum.to_rvalue_datum(bcx, "trait_callee"));
// Convert to by-ref since `trans_trait_callee_from_llval` wants it
// that way.
let self_datum = unpack_datum!(
bcx, self_datum.to_ref_datum(bcx));
// Arrange cleanup in case something should go wrong before the
// actual call occurs.
self_datum.add_clean(bcx.fcx, arg_cleanup_scope)
} else {
// We don't have to do anything about cleanups for &Trait and &mut Trait.
assert!(self_datum.kind.is_by_ref());
self_datum.val
};
let llself = Load(bcx, expr::get_dataptr(bcx, llval));
let llvtable = Load(bcx, expr::get_meta(bcx, llval));
trans_trait_callee_from_llval(bcx, opaque_fn_ty, vtable_index, llself, llvtable)
}
/// Same as `trans_trait_callee()` above, except that it is given a by-ref pointer to the object
/// pair.
fn trans_trait_callee_from_llval<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
opaque_fn_ty: Ty<'tcx>,
vtable_index: usize,
llself: ValueRef,
llvtable: ValueRef)
-> Callee<'blk, 'tcx> {
let _icx = push_ctxt("meth::trans_trait_callee");
let ccx = bcx.ccx();
// Load the data pointer from the object.
debug!("trans_trait_callee_from_llval(callee_ty={}, vtable_index={}, llself={}, llvtable={})",
opaque_fn_ty,
vtable_index,
bcx.val_to_string(llself),
bcx.val_to_string(llvtable));
// Replace the self type (&Self or Box<Self>) with an opaque pointer.
let mptr = Load(bcx, GEPi(bcx, llvtable, &[vtable_index + VTABLE_OFFSET]));
let llcallee_ty = type_of_fn_from_ty(ccx, opaque_fn_ty);
Callee {
bcx: bcx,
data: TraitItem(MethodData {
llfn: PointerCast(bcx, mptr, llcallee_ty.ptr_to()),
llself: PointerCast(bcx, llself, Type::i8p(ccx)),
}),
ty: opaque_fn_ty
}
}
/// Generate a shim function that allows an object type like `SomeTrait` to
/// implement the type `SomeTrait`. Imagine a trait definition:
///
/// trait SomeTrait { fn get(&self) -> i32; ... }
///
/// And a generic bit of code:
///
/// fn foo<T:SomeTrait>(t: &T) {
/// let x = SomeTrait::get;
/// x(t)
/// }
///
/// What is the value of `x` when `foo` is invoked with `T=SomeTrait`?
/// The answer is that it is a shim function generated by this routine:
///
/// fn shim(t: &SomeTrait) -> i32 {
/// // ... call t.get() virtually ...
/// }
///
/// In fact, all virtual calls can be thought of as normal trait calls
/// that go through this shim function.
fn trans_object_shim<'a, 'tcx>(
ccx: &'a CrateContext<'a, 'tcx>,
upcast_trait_ref: ty::PolyTraitRef<'tcx>,
method_id: DefId,
vtable_index: usize)
-> Datum<'tcx, Rvalue>
{
let _icx = push_ctxt("trans_object_shim");
let tcx = ccx.tcx();
debug!("trans_object_shim(upcast_trait_ref={:?}, method_id={:?})",
upcast_trait_ref,
method_id);
// Upcast to the trait in question and extract out the substitutions.
let upcast_trait_ref = tcx.erase_late_bound_regions(&upcast_trait_ref);
let object_substs = upcast_trait_ref.substs.clone().erase_regions();
debug!("trans_object_shim: object_substs={:?}", object_substs);
// Lookup the type of this method as declared in the trait and apply substitutions.
let method_ty = match tcx.impl_or_trait_item(method_id) {
ty::MethodTraitItem(method) => method,
_ => {
tcx.sess.bug("can't create a method shim for a non-method item")
}
};
let fty = monomorphize::apply_param_substs(tcx, &object_substs, &method_ty.fty);
let fty = tcx.mk_bare_fn(fty);
let method_ty = opaque_method_ty(tcx, fty);
debug!("trans_object_shim: fty={:?} method_ty={:?}", fty, method_ty);
//
let shim_fn_ty = tcx.mk_fn(None, fty);
let method_bare_fn_ty = tcx.mk_fn(None, method_ty);
let function_name = link::mangle_internal_name_by_type_and_seq(ccx, shim_fn_ty, "object_shim");
let llfn = declare::define_internal_rust_fn(ccx, &function_name, shim_fn_ty);
let sig = ccx.tcx().erase_late_bound_regions(&fty.sig);
let sig = infer::normalize_associated_type(ccx.tcx(), &sig);
let empty_substs = tcx.mk_substs(Substs::trans_empty());
let (block_arena, fcx): (TypedArena<_>, FunctionContext);
block_arena = TypedArena::new();
fcx = new_fn_ctxt(ccx,
llfn,
ast::DUMMY_NODE_ID,
false,
sig.output,
empty_substs,
None,
&block_arena);
let mut bcx = init_function(&fcx, false, sig.output);
let llargs = get_params(fcx.llfn);
let self_idx = fcx.arg_offset();
let llself = llargs[self_idx];
let llvtable = llargs[self_idx + 1];
debug!("trans_object_shim: llself={}, llvtable={}",
bcx.val_to_string(llself), bcx.val_to_string(llvtable));
assert!(!fcx.needs_ret_allocas);
let dest =
fcx.llretslotptr.get().map(
|_| expr::SaveIn(fcx.get_ret_slot(bcx, sig.output, "ret_slot")));
debug!("trans_object_shim: method_offset_in_vtable={}",
vtable_index);
bcx = trans_call_inner(bcx,
DebugLoc::None,
|bcx, _| trans_trait_callee_from_llval(bcx,
method_bare_fn_ty,
vtable_index,
llself, llvtable),
ArgVals(&llargs[(self_idx + 2)..]),
dest).bcx;
finish_fn(&fcx, bcx, sig.output, DebugLoc::None);
immediate_rvalue(llfn, shim_fn_ty)
}
/// Creates a returns a dynamic vtable for the given type and vtable origin.
/// This is used only for objects.
///
/// The `trait_ref` encodes the erased self type. Hence if we are
/// making an object `Foo<Trait>` from a value of type `Foo<T>`, then
/// `trait_ref` would map `T:Trait`.
pub fn get_vtable<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>,
trait_ref: ty::PolyTraitRef<'tcx>,
param_substs: &'tcx subst::Substs<'tcx>)
-> ValueRef
{
let tcx = ccx.tcx();
let _icx = push_ctxt("meth::get_vtable");
debug!("get_vtable(trait_ref={:?})", trait_ref);
// Check the cache.
match ccx.vtables().borrow().get(&trait_ref) {
Some(&val) => { return val }
None => { }
}
// Not in the cache. Build it.
let methods = traits::supertraits(tcx, trait_ref.clone()).flat_map(|trait_ref| {
let vtable = fulfill_obligation(ccx, DUMMY_SP, trait_ref.clone());
match vtable {
// Should default trait error here?
traits::VtableDefaultImpl(_) |
traits::VtableBuiltin(_) => {
Vec::new().into_iter()
}
traits::VtableImpl(
traits::VtableImplData {
impl_def_id: id,
substs,
nested: _ }) => {
emit_vtable_methods(ccx, id, substs, param_substs).into_iter()
}
traits::VtableClosure(
traits::VtableClosureData {
closure_def_id,
substs,
nested: _ }) => {
let trait_closure_kind = tcx.lang_items.fn_trait_kind(trait_ref.def_id()).unwrap();
let llfn = closure::trans_closure_method(ccx,
closure_def_id,
substs,
trait_closure_kind);
vec![llfn].into_iter()
}
traits::VtableFnPointer(bare_fn_ty) => {
let trait_closure_kind = tcx.lang_items.fn_trait_kind(trait_ref.def_id()).unwrap();
vec![trans_fn_pointer_shim(ccx, trait_closure_kind, bare_fn_ty)].into_iter()
}
traits::VtableObject(ref data) => {
// this would imply that the Self type being erased is
// an object type; this cannot happen because we
// cannot cast an unsized type into a trait object
tcx.sess.bug(
&format!("cannot get vtable for an object type: {:?}",
data));
}
traits::VtableParam(..) => {
tcx.sess.bug(
&format!("resolved vtable for {:?} to bad vtable {:?} in trans",
trait_ref,
vtable));
}
}
});
let size_ty = sizing_type_of(ccx, trait_ref.self_ty());
let size = machine::llsize_of_alloc(ccx, size_ty);
let align = align_of(ccx, trait_ref.self_ty());
let components: Vec<_> = vec![
// Generate a destructor for the vtable.
glue::get_drop_glue(ccx, trait_ref.self_ty()),
C_uint(ccx, size),
C_uint(ccx, align)
].into_iter().chain(methods).collect();
let vtable_const = C_struct(ccx, &components, false);
let align = machine::llalign_of_pref(ccx, val_ty(vtable_const));
let vtable = consts::addr_of(ccx, vtable_const, align, "vtable");
ccx.vtables().borrow_mut().insert(trait_ref, vtable);
vtable
}
fn emit_vtable_methods<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>,
impl_id: DefId,
substs: subst::Substs<'tcx>,
param_substs: &'tcx subst::Substs<'tcx>)
-> Vec<ValueRef>
{
let tcx = ccx.tcx();
debug!("emit_vtable_methods(impl_id={:?}, substs={:?}, param_substs={:?})",
impl_id,
substs,
param_substs);
let trt_id = match tcx.impl_trait_ref(impl_id) {
Some(t_id) => t_id.def_id,
None => ccx.sess().bug("make_impl_vtable: don't know how to \
make a vtable for a type impl!")
};
tcx.populate_implementations_for_trait_if_necessary(trt_id);
let nullptr = C_null(Type::nil(ccx).ptr_to());
let trait_item_def_ids = tcx.trait_item_def_ids(trt_id);
trait_item_def_ids
.iter()
// Filter out non-method items.
.filter_map(|item_def_id| {
match *item_def_id {
ty::MethodTraitItemId(def_id) => Some(def_id),
_ => None,
}
})
// Now produce pointers for each remaining method. If the
// method could never be called from this object, just supply
// null.
.map(|trait_method_def_id| {
debug!("emit_vtable_methods: trait_method_def_id={:?}",
trait_method_def_id);
let trait_method_type = match tcx.impl_or_trait_item(trait_method_def_id) {
ty::MethodTraitItem(m) => m,
_ => ccx.sess().bug("should be a method, not other assoc item"),
};
let name = trait_method_type.name;
// Some methods cannot be called on an object; skip those.
if !traits::is_vtable_safe_method(tcx, trt_id, &trait_method_type) {
debug!("emit_vtable_methods: not vtable safe");
return nullptr;
}
debug!("emit_vtable_methods: trait_method_type={:?}",
trait_method_type);
// The substitutions we have are on the impl, so we grab
// the method type from the impl to substitute into.
let mth = tcx.get_impl_method(impl_id, substs.clone(), name);
debug!("emit_vtable_methods: mth={:?}", mth);
// If this is a default method, it's possible that it
// relies on where clauses that do not hold for this
// particular set of type parameters. Note that this
// method could then never be called, so we do not want to
// try and trans it, in that case. Issue #23435.
if mth.is_provided {
let predicates = mth.method.predicates.predicates.subst(tcx, &mth.substs);
if !normalize_and_test_predicates(ccx, predicates.into_vec()) {
debug!("emit_vtable_methods: predicates do not hold");
return nullptr;
}
}
trans_fn_ref_with_substs(ccx,
mth.method.def_id,
ExprId(0),
param_substs,
mth.substs).val
})
.collect()
}
/// Replace the self type (&Self or Box<Self>) with an opaque pointer.
fn opaque_method_ty<'tcx>(tcx: &ty::ctxt<'tcx>, method_ty: &ty::BareFnTy<'tcx>)
-> &'tcx ty::BareFnTy<'tcx> {
let mut inputs = method_ty.sig.0.inputs.clone();
inputs[0] = tcx.mk_mut_ptr(tcx.mk_mach_int(ast::TyI8));
tcx.mk_bare_fn(ty::BareFnTy {
unsafety: method_ty.unsafety,
abi: method_ty.abi,
sig: ty::Binder(ty::FnSig {
inputs: inputs,
output: method_ty.sig.0.output,
variadic: method_ty.sig.0.variadic,
}),
})
}