blob: 1bb0ea5dae44b4c21676fee9955281a6e7490725 [file] [log] [blame]
use rustc::middle::lang_items;
use rustc::ty::{self, Ty, TypeFoldable, Instance};
use rustc::ty::layout::{self, LayoutOf, HasTyCtxt, FnTypeExt};
use rustc::mir::{self, Place, PlaceBase, Static, StaticKind};
use rustc::mir::interpret::PanicInfo;
use rustc_target::abi::call::{ArgType, FnType, PassMode, IgnoreMode};
use rustc_target::spec::abi::Abi;
use crate::base;
use crate::MemFlags;
use crate::common::{self, IntPredicate};
use crate::meth;
use crate::traits::*;
use std::borrow::Cow;
use syntax::symbol::Symbol;
use syntax_pos::Pos;
use super::{FunctionCx, LocalRef};
use super::place::PlaceRef;
use super::operand::OperandRef;
use super::operand::OperandValue::{Pair, Ref, Immediate};
/// Used by `FunctionCx::codegen_terminator` for emitting common patterns
/// e.g., creating a basic block, calling a function, etc.
struct TerminatorCodegenHelper<'a, 'tcx> {
bb: &'a mir::BasicBlock,
terminator: &'a mir::Terminator<'tcx>,
funclet_bb: Option<mir::BasicBlock>,
}
impl<'a, 'tcx> TerminatorCodegenHelper<'a, 'tcx> {
/// Returns the associated funclet from `FunctionCx::funclets` for the
/// `funclet_bb` member if it is not `None`.
fn funclet<'c, 'b, Bx: BuilderMethods<'b, 'tcx>>(
&self,
fx: &'c mut FunctionCx<'b, 'tcx, Bx>,
) -> Option<&'c Bx::Funclet> {
match self.funclet_bb {
Some(funcl) => fx.funclets[funcl].as_ref(),
None => None,
}
}
fn lltarget<'b, 'c, Bx: BuilderMethods<'b, 'tcx>>(
&self,
fx: &'c mut FunctionCx<'b, 'tcx, Bx>,
target: mir::BasicBlock,
) -> (Bx::BasicBlock, bool) {
let span = self.terminator.source_info.span;
let lltarget = fx.blocks[target];
let target_funclet = fx.cleanup_kinds[target].funclet_bb(target);
match (self.funclet_bb, target_funclet) {
(None, None) => (lltarget, false),
(Some(f), Some(t_f)) if f == t_f || !base::wants_msvc_seh(fx.cx.tcx().sess) =>
(lltarget, false),
// jump *into* cleanup - need a landing pad if GNU
(None, Some(_)) => (fx.landing_pad_to(target), false),
(Some(_), None) => span_bug!(span, "{:?} - jump out of cleanup?", self.terminator),
(Some(_), Some(_)) => (fx.landing_pad_to(target), true),
}
}
/// Create a basic block.
fn llblock<'c, 'b, Bx: BuilderMethods<'b, 'tcx>>(
&self,
fx: &'c mut FunctionCx<'b, 'tcx, Bx>,
target: mir::BasicBlock,
) -> Bx::BasicBlock {
let (lltarget, is_cleanupret) = self.lltarget(fx, target);
if is_cleanupret {
// MSVC cross-funclet jump - need a trampoline
debug!("llblock: creating cleanup trampoline for {:?}", target);
let name = &format!("{:?}_cleanup_trampoline_{:?}", self.bb, target);
let mut trampoline = fx.new_block(name);
trampoline.cleanup_ret(self.funclet(fx).unwrap(),
Some(lltarget));
trampoline.llbb()
} else {
lltarget
}
}
fn funclet_br<'c, 'b, Bx: BuilderMethods<'b, 'tcx>>(
&self,
fx: &'c mut FunctionCx<'b, 'tcx, Bx>,
bx: &mut Bx,
target: mir::BasicBlock,
) {
let (lltarget, is_cleanupret) = self.lltarget(fx, target);
if is_cleanupret {
// micro-optimization: generate a `ret` rather than a jump
// to a trampoline.
bx.cleanup_ret(self.funclet(fx).unwrap(), Some(lltarget));
} else {
bx.br(lltarget);
}
}
/// Call `fn_ptr` of `fn_ty` with the arguments `llargs`, the optional
/// return destination `destination` and the cleanup function `cleanup`.
fn do_call<'c, 'b, Bx: BuilderMethods<'b, 'tcx>>(
&self,
fx: &'c mut FunctionCx<'b, 'tcx, Bx>,
bx: &mut Bx,
fn_ty: FnType<'tcx, Ty<'tcx>>,
fn_ptr: Bx::Value,
llargs: &[Bx::Value],
destination: Option<(ReturnDest<'tcx, Bx::Value>, mir::BasicBlock)>,
cleanup: Option<mir::BasicBlock>,
) {
if let Some(cleanup) = cleanup {
let ret_bx = if let Some((_, target)) = destination {
fx.blocks[target]
} else {
fx.unreachable_block()
};
let invokeret = bx.invoke(fn_ptr,
&llargs,
ret_bx,
self.llblock(fx, cleanup),
self.funclet(fx));
bx.apply_attrs_callsite(&fn_ty, invokeret);
if let Some((ret_dest, target)) = destination {
let mut ret_bx = fx.build_block(target);
fx.set_debug_loc(&mut ret_bx, self.terminator.source_info);
fx.store_return(&mut ret_bx, ret_dest, &fn_ty.ret, invokeret);
}
} else {
let llret = bx.call(fn_ptr, &llargs, self.funclet(fx));
bx.apply_attrs_callsite(&fn_ty, llret);
if fx.mir[*self.bb].is_cleanup {
// Cleanup is always the cold path. Don't inline
// drop glue. Also, when there is a deeply-nested
// struct, there are "symmetry" issues that cause
// exponential inlining - see issue #41696.
bx.do_not_inline(llret);
}
if let Some((ret_dest, target)) = destination {
fx.store_return(bx, ret_dest, &fn_ty.ret, llret);
self.funclet_br(fx, bx, target);
} else {
bx.unreachable();
}
}
}
}
/// Codegen implementations for some terminator variants.
impl<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>> FunctionCx<'a, 'tcx, Bx> {
/// Generates code for a `Resume` terminator.
fn codegen_resume_terminator<'b>(
&mut self,
helper: TerminatorCodegenHelper<'b, 'tcx>,
mut bx: Bx,
) {
if let Some(funclet) = helper.funclet(self) {
bx.cleanup_ret(funclet, None);
} else {
let slot = self.get_personality_slot(&mut bx);
let lp0 = slot.project_field(&mut bx, 0);
let lp0 = bx.load_operand(lp0).immediate();
let lp1 = slot.project_field(&mut bx, 1);
let lp1 = bx.load_operand(lp1).immediate();
slot.storage_dead(&mut bx);
if !bx.sess().target.target.options.custom_unwind_resume {
let mut lp = bx.const_undef(self.landing_pad_type());
lp = bx.insert_value(lp, lp0, 0);
lp = bx.insert_value(lp, lp1, 1);
bx.resume(lp);
} else {
bx.call(bx.eh_unwind_resume(), &[lp0],
helper.funclet(self));
bx.unreachable();
}
}
}
fn codegen_switchint_terminator<'b>(
&mut self,
helper: TerminatorCodegenHelper<'b, 'tcx>,
mut bx: Bx,
discr: &mir::Operand<'tcx>,
switch_ty: Ty<'tcx>,
values: &Cow<'tcx, [u128]>,
targets: &Vec<mir::BasicBlock>,
) {
let discr = self.codegen_operand(&mut bx, &discr);
if targets.len() == 2 {
// If there are two targets, emit br instead of switch
let lltrue = helper.llblock(self, targets[0]);
let llfalse = helper.llblock(self, targets[1]);
if switch_ty == bx.tcx().types.bool {
// Don't generate trivial icmps when switching on bool
if let [0] = values[..] {
bx.cond_br(discr.immediate(), llfalse, lltrue);
} else {
assert_eq!(&values[..], &[1]);
bx.cond_br(discr.immediate(), lltrue, llfalse);
}
} else {
let switch_llty = bx.immediate_backend_type(
bx.layout_of(switch_ty)
);
let llval = bx.const_uint_big(switch_llty, values[0]);
let cmp = bx.icmp(IntPredicate::IntEQ, discr.immediate(), llval);
bx.cond_br(cmp, lltrue, llfalse);
}
} else {
let (otherwise, targets) = targets.split_last().unwrap();
bx.switch(
discr.immediate(),
helper.llblock(self, *otherwise),
values.iter().zip(targets).map(|(&value, target)| {
(value, helper.llblock(self, *target))
})
);
}
}
fn codegen_return_terminator(&mut self, mut bx: Bx) {
if self.fn_ty.c_variadic {
match self.va_list_ref {
Some(va_list) => {
bx.va_end(va_list.llval);
}
None => {
bug!("C-variadic function must have a `va_list_ref`");
}
}
}
if self.fn_ty.ret.layout.abi.is_uninhabited() {
// Functions with uninhabited return values are marked `noreturn`,
// so we should make sure that we never actually do.
bx.abort();
bx.unreachable();
return;
}
let llval = match self.fn_ty.ret.mode {
PassMode::Ignore(IgnoreMode::Zst) | PassMode::Indirect(..) => {
bx.ret_void();
return;
}
PassMode::Ignore(IgnoreMode::CVarArgs) => {
bug!("C-variadic arguments should never be the return type");
}
PassMode::Direct(_) | PassMode::Pair(..) => {
let op =
self.codegen_consume(&mut bx, &mir::Place::return_place().as_ref());
if let Ref(llval, _, align) = op.val {
bx.load(llval, align)
} else {
op.immediate_or_packed_pair(&mut bx)
}
}
PassMode::Cast(cast_ty) => {
let op = match self.locals[mir::RETURN_PLACE] {
LocalRef::Operand(Some(op)) => op,
LocalRef::Operand(None) => bug!("use of return before def"),
LocalRef::Place(cg_place) => {
OperandRef {
val: Ref(cg_place.llval, None, cg_place.align),
layout: cg_place.layout
}
}
LocalRef::UnsizedPlace(_) => bug!("return type must be sized"),
};
let llslot = match op.val {
Immediate(_) | Pair(..) => {
let scratch =
PlaceRef::alloca(&mut bx, self.fn_ty.ret.layout);
op.val.store(&mut bx, scratch);
scratch.llval
}
Ref(llval, _, align) => {
assert_eq!(align, op.layout.align.abi,
"return place is unaligned!");
llval
}
};
let addr = bx.pointercast(llslot, bx.type_ptr_to(
bx.cast_backend_type(&cast_ty)
));
bx.load(addr, self.fn_ty.ret.layout.align.abi)
}
};
bx.ret(llval);
}
fn codegen_drop_terminator<'b>(
&mut self,
helper: TerminatorCodegenHelper<'b, 'tcx>,
mut bx: Bx,
location: &mir::Place<'tcx>,
target: mir::BasicBlock,
unwind: Option<mir::BasicBlock>,
) {
let ty = location.ty(self.mir, bx.tcx()).ty;
let ty = self.monomorphize(&ty);
let drop_fn = Instance::resolve_drop_in_place(bx.tcx(), ty);
if let ty::InstanceDef::DropGlue(_, None) = drop_fn.def {
// we don't actually need to drop anything.
helper.funclet_br(self, &mut bx, target);
return
}
let place = self.codegen_place(&mut bx, &location.as_ref());
let (args1, args2);
let mut args = if let Some(llextra) = place.llextra {
args2 = [place.llval, llextra];
&args2[..]
} else {
args1 = [place.llval];
&args1[..]
};
let (drop_fn, fn_ty) = match ty.sty {
ty::Dynamic(..) => {
let sig = drop_fn.fn_sig(self.cx.tcx());
let sig = self.cx.tcx().normalize_erasing_late_bound_regions(
ty::ParamEnv::reveal_all(),
&sig,
);
let fn_ty = FnType::new_vtable(&bx, sig, &[]);
let vtable = args[1];
args = &args[..1];
(meth::DESTRUCTOR.get_fn(&mut bx, vtable, &fn_ty), fn_ty)
}
_ => {
(bx.get_fn(drop_fn),
FnType::of_instance(&bx, drop_fn))
}
};
helper.do_call(self, &mut bx, fn_ty, drop_fn, args,
Some((ReturnDest::Nothing, target)),
unwind);
}
fn codegen_assert_terminator<'b>(
&mut self,
helper: TerminatorCodegenHelper<'b, 'tcx>,
mut bx: Bx,
terminator: &mir::Terminator<'tcx>,
cond: &mir::Operand<'tcx>,
expected: bool,
msg: &mir::AssertMessage<'tcx>,
target: mir::BasicBlock,
cleanup: Option<mir::BasicBlock>,
) {
let span = terminator.source_info.span;
let cond = self.codegen_operand(&mut bx, cond).immediate();
let mut const_cond = bx.const_to_opt_u128(cond, false).map(|c| c == 1);
// This case can currently arise only from functions marked
// with #[rustc_inherit_overflow_checks] and inlined from
// another crate (mostly core::num generic/#[inline] fns),
// while the current crate doesn't use overflow checks.
// NOTE: Unlike binops, negation doesn't have its own
// checked operation, just a comparison with the minimum
// value, so we have to check for the assert message.
if !bx.check_overflow() {
if let PanicInfo::OverflowNeg = *msg {
const_cond = Some(expected);
}
}
// Don't codegen the panic block if success if known.
if const_cond == Some(expected) {
helper.funclet_br(self, &mut bx, target);
return;
}
// Pass the condition through llvm.expect for branch hinting.
let cond = bx.expect(cond, expected);
// Create the failure block and the conditional branch to it.
let lltarget = helper.llblock(self, target);
let panic_block = self.new_block("panic");
if expected {
bx.cond_br(cond, lltarget, panic_block.llbb());
} else {
bx.cond_br(cond, panic_block.llbb(), lltarget);
}
// After this point, bx is the block for the call to panic.
bx = panic_block;
self.set_debug_loc(&mut bx, terminator.source_info);
// Get the location information.
let loc = bx.sess().source_map().lookup_char_pos(span.lo());
let filename = Symbol::intern(&loc.file.name.to_string());
let line = bx.const_u32(loc.line as u32);
let col = bx.const_u32(loc.col.to_usize() as u32 + 1);
// Put together the arguments to the panic entry point.
let (lang_item, args) = match msg {
PanicInfo::BoundsCheck { ref len, ref index } => {
let len = self.codegen_operand(&mut bx, len).immediate();
let index = self.codegen_operand(&mut bx, index).immediate();
let file_line_col = bx.static_panic_msg(
None,
filename,
line,
col,
"panic_bounds_check_loc",
);
(lang_items::PanicBoundsCheckFnLangItem,
vec![file_line_col, index, len])
}
_ => {
let msg_str = Symbol::intern(msg.description());
let msg_file_line_col = bx.static_panic_msg(
Some(msg_str),
filename,
line,
col,
"panic_loc",
);
(lang_items::PanicFnLangItem,
vec![msg_file_line_col])
}
};
// Obtain the panic entry point.
let def_id = common::langcall(bx.tcx(), Some(span), "", lang_item);
let instance = ty::Instance::mono(bx.tcx(), def_id);
let fn_ty = FnType::of_instance(&bx, instance);
let llfn = bx.get_fn(instance);
// Codegen the actual panic invoke/call.
helper.do_call(self, &mut bx, fn_ty, llfn, &args, None, cleanup);
}
fn codegen_call_terminator<'b>(
&mut self,
helper: TerminatorCodegenHelper<'b, 'tcx>,
mut bx: Bx,
terminator: &mir::Terminator<'tcx>,
func: &mir::Operand<'tcx>,
args: &Vec<mir::Operand<'tcx>>,
destination: &Option<(mir::Place<'tcx>, mir::BasicBlock)>,
cleanup: Option<mir::BasicBlock>,
) {
let span = terminator.source_info.span;
// Create the callee. This is a fn ptr or zero-sized and hence a kind of scalar.
let callee = self.codegen_operand(&mut bx, func);
let (instance, mut llfn) = match callee.layout.ty.sty {
ty::FnDef(def_id, substs) => {
(Some(ty::Instance::resolve(bx.tcx(),
ty::ParamEnv::reveal_all(),
def_id,
substs).unwrap()),
None)
}
ty::FnPtr(_) => {
(None, Some(callee.immediate()))
}
_ => bug!("{} is not callable", callee.layout.ty),
};
let def = instance.map(|i| i.def);
let sig = callee.layout.ty.fn_sig(bx.tcx());
let sig = bx.tcx().normalize_erasing_late_bound_regions(
ty::ParamEnv::reveal_all(),
&sig,
);
let abi = sig.abi;
// Handle intrinsics old codegen wants Expr's for, ourselves.
let intrinsic = match def {
Some(ty::InstanceDef::Intrinsic(def_id)) =>
Some(bx.tcx().item_name(def_id).as_str()),
_ => None
};
let intrinsic = intrinsic.as_ref().map(|s| &s[..]);
if intrinsic == Some("transmute") {
if let Some(destination_ref) = destination.as_ref() {
let &(ref dest, target) = destination_ref;
self.codegen_transmute(&mut bx, &args[0], dest);
helper.funclet_br(self, &mut bx, target);
} else {
// If we are trying to transmute to an uninhabited type,
// it is likely there is no allotted destination. In fact,
// transmuting to an uninhabited type is UB, which means
// we can do what we like. Here, we declare that transmuting
// into an uninhabited type is impossible, so anything following
// it must be unreachable.
assert_eq!(bx.layout_of(sig.output()).abi, layout::Abi::Uninhabited);
bx.unreachable();
}
return;
}
// The "spoofed" `VaListImpl` added to a C-variadic functions signature
// should not be included in the `extra_args` calculation.
let extra_args_start_idx = sig.inputs().len() - if sig.c_variadic { 1 } else { 0 };
let extra_args = &args[extra_args_start_idx..];
let extra_args = extra_args.iter().map(|op_arg| {
let op_ty = op_arg.ty(self.mir, bx.tcx());
self.monomorphize(&op_ty)
}).collect::<Vec<_>>();
let fn_ty = match def {
Some(ty::InstanceDef::Virtual(..)) => {
FnType::new_vtable(&bx, sig, &extra_args)
}
Some(ty::InstanceDef::DropGlue(_, None)) => {
// Empty drop glue; a no-op.
let &(_, target) = destination.as_ref().unwrap();
helper.funclet_br(self, &mut bx, target);
return;
}
_ => FnType::new(&bx, sig, &extra_args)
};
// Emit a panic or a no-op for `panic_if_uninhabited`.
if intrinsic == Some("panic_if_uninhabited") {
let ty = instance.unwrap().substs.type_at(0);
let layout = bx.layout_of(ty);
if layout.abi.is_uninhabited() {
let loc = bx.sess().source_map().lookup_char_pos(span.lo());
let filename = Symbol::intern(&loc.file.name.to_string());
let line = bx.const_u32(loc.line as u32);
let col = bx.const_u32(loc.col.to_usize() as u32 + 1);
let str = format!(
"Attempted to instantiate uninhabited type {}",
ty
);
let msg_str = Symbol::intern(&str);
let msg_file_line_col = bx.static_panic_msg(
Some(msg_str),
filename,
line,
col,
"panic_loc",
);
// Obtain the panic entry point.
let def_id =
common::langcall(bx.tcx(), Some(span), "", lang_items::PanicFnLangItem);
let instance = ty::Instance::mono(bx.tcx(), def_id);
let fn_ty = FnType::of_instance(&bx, instance);
let llfn = bx.get_fn(instance);
// Codegen the actual panic invoke/call.
helper.do_call(
self,
&mut bx,
fn_ty,
llfn,
&[msg_file_line_col],
destination.as_ref().map(|(_, bb)| (ReturnDest::Nothing, *bb)),
cleanup,
);
} else {
// a NOP
helper.funclet_br(self, &mut bx, destination.as_ref().unwrap().1)
}
return;
}
// The arguments we'll be passing. Plus one to account for outptr, if used.
let arg_count = fn_ty.args.len() + fn_ty.ret.is_indirect() as usize;
let mut llargs = Vec::with_capacity(arg_count);
// Prepare the return value destination
let ret_dest = if let Some((ref dest, _)) = *destination {
let is_intrinsic = intrinsic.is_some();
self.make_return_dest(&mut bx, dest, &fn_ty.ret, &mut llargs,
is_intrinsic)
} else {
ReturnDest::Nothing
};
if intrinsic.is_some() && intrinsic != Some("drop_in_place") {
let dest = match ret_dest {
_ if fn_ty.ret.is_indirect() => llargs[0],
ReturnDest::Nothing =>
bx.const_undef(bx.type_ptr_to(bx.memory_ty(&fn_ty.ret))),
ReturnDest::IndirectOperand(dst, _) | ReturnDest::Store(dst) =>
dst.llval,
ReturnDest::DirectOperand(_) =>
bug!("Cannot use direct operand with an intrinsic call"),
};
let args: Vec<_> = args.iter().enumerate().map(|(i, arg)| {
// The indices passed to simd_shuffle* in the
// third argument must be constant. This is
// checked by const-qualification, which also
// promotes any complex rvalues to constants.
if i == 2 && intrinsic.unwrap().starts_with("simd_shuffle") {
match *arg {
// The shuffle array argument is usually not an explicit constant,
// but specified directly in the code. This means it gets promoted
// and we can then extract the value by evaluating the promoted.
mir::Operand::Copy(
Place {
base: PlaceBase::Static(box Static {
kind: StaticKind::Promoted(promoted, _),
ty,
def_id: _,
}),
projection: box [],
}
) |
mir::Operand::Move(
Place {
base: PlaceBase::Static(box Static {
kind: StaticKind::Promoted(promoted, _),
ty,
def_id: _,
}),
projection: box [],
}
) => {
let param_env = ty::ParamEnv::reveal_all();
let cid = mir::interpret::GlobalId {
instance: self.instance,
promoted: Some(promoted),
};
let c = bx.tcx().const_eval(param_env.and(cid));
let (llval, ty) = self.simd_shuffle_indices(
&bx,
terminator.source_info.span,
ty,
c,
);
return OperandRef {
val: Immediate(llval),
layout: bx.layout_of(ty),
};
}
mir::Operand::Copy(_) |
mir::Operand::Move(_) => {
span_bug!(span, "shuffle indices must be constant");
}
mir::Operand::Constant(ref constant) => {
let c = self.eval_mir_constant(constant);
let (llval, ty) = self.simd_shuffle_indices(
&bx,
constant.span,
constant.literal.ty,
c,
);
return OperandRef {
val: Immediate(llval),
layout: bx.layout_of(ty)
};
}
}
}
self.codegen_operand(&mut bx, arg)
}).collect();
bx.codegen_intrinsic_call(*instance.as_ref().unwrap(), &fn_ty, &args, dest,
terminator.source_info.span);
if let ReturnDest::IndirectOperand(dst, _) = ret_dest {
self.store_return(&mut bx, ret_dest, &fn_ty.ret, dst.llval);
}
if let Some((_, target)) = *destination {
helper.funclet_br(self, &mut bx, target);
} else {
bx.unreachable();
}
return;
}
// Split the rust-call tupled arguments off.
let (first_args, untuple) = if abi == Abi::RustCall && !args.is_empty() {
let (tup, args) = args.split_last().unwrap();
(args, Some(tup))
} else {
(&args[..], None)
};
// Useful determining if the current argument is the "spoofed" `VaListImpl`
let last_arg_idx = if sig.inputs().is_empty() {
None
} else {
Some(sig.inputs().len() - 1)
};
'make_args: for (i, arg) in first_args.iter().enumerate() {
// If this is a C-variadic function the function signature contains
// an "spoofed" `VaListImpl`. This argument is ignored, but we need to
// populate it with a dummy operand so that the users real arguments
// are not overwritten.
let i = if sig.c_variadic && last_arg_idx.map(|x| i >= x).unwrap_or(false) {
if i + 1 < fn_ty.args.len() {
i + 1
} else {
break 'make_args
}
} else {
i
};
let mut op = self.codegen_operand(&mut bx, arg);
if let (0, Some(ty::InstanceDef::Virtual(_, idx))) = (i, def) {
if let Pair(..) = op.val {
// In the case of Rc<Self>, we need to explicitly pass a
// *mut RcBox<Self> with a Scalar (not ScalarPair) ABI. This is a hack
// that is understood elsewhere in the compiler as a method on
// `dyn Trait`.
// To get a `*mut RcBox<Self>`, we just keep unwrapping newtypes until
// we get a value of a built-in pointer type
'descend_newtypes: while !op.layout.ty.is_unsafe_ptr()
&& !op.layout.ty.is_region_ptr()
{
'iter_fields: for i in 0..op.layout.fields.count() {
let field = op.extract_field(&mut bx, i);
if !field.layout.is_zst() {
// we found the one non-zero-sized field that is allowed
// now find *its* non-zero-sized field, or stop if it's a
// pointer
op = field;
continue 'descend_newtypes
}
}
span_bug!(span, "receiver has no non-zero-sized fields {:?}", op);
}
// now that we have `*dyn Trait` or `&dyn Trait`, split it up into its
// data pointer and vtable. Look up the method in the vtable, and pass
// the data pointer as the first argument
match op.val {
Pair(data_ptr, meta) => {
llfn = Some(meth::VirtualIndex::from_index(idx)
.get_fn(&mut bx, meta, &fn_ty));
llargs.push(data_ptr);
continue 'make_args
}
other => bug!("expected a Pair, got {:?}", other),
}
} else if let Ref(data_ptr, Some(meta), _) = op.val {
// by-value dynamic dispatch
llfn = Some(meth::VirtualIndex::from_index(idx)
.get_fn(&mut bx, meta, &fn_ty));
llargs.push(data_ptr);
continue;
} else {
span_bug!(span, "can't codegen a virtual call on {:?}", op);
}
}
// The callee needs to own the argument memory if we pass it
// by-ref, so make a local copy of non-immediate constants.
match (arg, op.val) {
(&mir::Operand::Copy(_), Ref(_, None, _)) |
(&mir::Operand::Constant(_), Ref(_, None, _)) => {
let tmp = PlaceRef::alloca(&mut bx, op.layout);
op.val.store(&mut bx, tmp);
op.val = Ref(tmp.llval, None, tmp.align);
}
_ => {}
}
self.codegen_argument(&mut bx, op, &mut llargs, &fn_ty.args[i]);
}
if let Some(tup) = untuple {
self.codegen_arguments_untupled(&mut bx, tup, &mut llargs,
&fn_ty.args[first_args.len()..])
}
let fn_ptr = match (llfn, instance) {
(Some(llfn), _) => llfn,
(None, Some(instance)) => bx.get_fn(instance),
_ => span_bug!(span, "no llfn for call"),
};
helper.do_call(self, &mut bx, fn_ty, fn_ptr, &llargs,
destination.as_ref().map(|&(_, target)| (ret_dest, target)),
cleanup);
}
}
impl<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>> FunctionCx<'a, 'tcx, Bx> {
pub fn codegen_block(
&mut self,
bb: mir::BasicBlock,
) {
let mut bx = self.build_block(bb);
let data = &self.mir[bb];
debug!("codegen_block({:?}={:?})", bb, data);
for statement in &data.statements {
bx = self.codegen_statement(bx, statement);
}
self.codegen_terminator(bx, bb, data.terminator());
}
fn codegen_terminator(
&mut self,
mut bx: Bx,
bb: mir::BasicBlock,
terminator: &mir::Terminator<'tcx>
) {
debug!("codegen_terminator: {:?}", terminator);
// Create the cleanup bundle, if needed.
let funclet_bb = self.cleanup_kinds[bb].funclet_bb(bb);
let helper = TerminatorCodegenHelper {
bb: &bb, terminator, funclet_bb
};
self.set_debug_loc(&mut bx, terminator.source_info);
match terminator.kind {
mir::TerminatorKind::Resume => {
self.codegen_resume_terminator(helper, bx)
}
mir::TerminatorKind::Abort => {
bx.abort();
bx.unreachable();
}
mir::TerminatorKind::Goto { target } => {
helper.funclet_br(self, &mut bx, target);
}
mir::TerminatorKind::SwitchInt {
ref discr, switch_ty, ref values, ref targets
} => {
self.codegen_switchint_terminator(helper, bx, discr, switch_ty,
values, targets);
}
mir::TerminatorKind::Return => {
self.codegen_return_terminator(bx);
}
mir::TerminatorKind::Unreachable => {
bx.unreachable();
}
mir::TerminatorKind::Drop { ref location, target, unwind } => {
self.codegen_drop_terminator(helper, bx, location, target, unwind);
}
mir::TerminatorKind::Assert { ref cond, expected, ref msg, target, cleanup } => {
self.codegen_assert_terminator(helper, bx, terminator, cond,
expected, msg, target, cleanup);
}
mir::TerminatorKind::DropAndReplace { .. } => {
bug!("undesugared DropAndReplace in codegen: {:?}", terminator);
}
mir::TerminatorKind::Call {
ref func,
ref args,
ref destination,
cleanup,
from_hir_call: _
} => {
self.codegen_call_terminator(helper, bx, terminator, func,
args, destination, cleanup);
}
mir::TerminatorKind::GeneratorDrop |
mir::TerminatorKind::Yield { .. } => bug!("generator ops in codegen"),
mir::TerminatorKind::FalseEdges { .. } |
mir::TerminatorKind::FalseUnwind { .. } => bug!("borrowck false edges in codegen"),
}
}
fn codegen_argument(
&mut self,
bx: &mut Bx,
op: OperandRef<'tcx, Bx::Value>,
llargs: &mut Vec<Bx::Value>,
arg: &ArgType<'tcx, Ty<'tcx>>
) {
// Fill padding with undef value, where applicable.
if let Some(ty) = arg.pad {
llargs.push(bx.const_undef(bx.reg_backend_type(&ty)))
}
if arg.is_ignore() {
return;
}
if let PassMode::Pair(..) = arg.mode {
match op.val {
Pair(a, b) => {
llargs.push(a);
llargs.push(b);
return;
}
_ => bug!("codegen_argument: {:?} invalid for pair argument", op)
}
} else if arg.is_unsized_indirect() {
match op.val {
Ref(a, Some(b), _) => {
llargs.push(a);
llargs.push(b);
return;
}
_ => bug!("codegen_argument: {:?} invalid for unsized indirect argument", op)
}
}
// Force by-ref if we have to load through a cast pointer.
let (mut llval, align, by_ref) = match op.val {
Immediate(_) | Pair(..) => {
match arg.mode {
PassMode::Indirect(..) | PassMode::Cast(_) => {
let scratch = PlaceRef::alloca(bx, arg.layout);
op.val.store(bx, scratch);
(scratch.llval, scratch.align, true)
}
_ => {
(op.immediate_or_packed_pair(bx), arg.layout.align.abi, false)
}
}
}
Ref(llval, _, align) => {
if arg.is_indirect() && align < arg.layout.align.abi {
// `foo(packed.large_field)`. We can't pass the (unaligned) field directly. I
// think that ATM (Rust 1.16) we only pass temporaries, but we shouldn't
// have scary latent bugs around.
let scratch = PlaceRef::alloca(bx, arg.layout);
base::memcpy_ty(bx, scratch.llval, scratch.align, llval, align,
op.layout, MemFlags::empty());
(scratch.llval, scratch.align, true)
} else {
(llval, align, true)
}
}
};
if by_ref && !arg.is_indirect() {
// Have to load the argument, maybe while casting it.
if let PassMode::Cast(ty) = arg.mode {
let addr = bx.pointercast(llval, bx.type_ptr_to(
bx.cast_backend_type(&ty))
);
llval = bx.load(addr, align.min(arg.layout.align.abi));
} else {
// We can't use `PlaceRef::load` here because the argument
// may have a type we don't treat as immediate, but the ABI
// used for this call is passing it by-value. In that case,
// the load would just produce `OperandValue::Ref` instead
// of the `OperandValue::Immediate` we need for the call.
llval = bx.load(llval, align);
if let layout::Abi::Scalar(ref scalar) = arg.layout.abi {
if scalar.is_bool() {
bx.range_metadata(llval, 0..2);
}
}
// We store bools as `i8` so we need to truncate to `i1`.
llval = base::to_immediate(bx, llval, arg.layout);
}
}
llargs.push(llval);
}
fn codegen_arguments_untupled(
&mut self,
bx: &mut Bx,
operand: &mir::Operand<'tcx>,
llargs: &mut Vec<Bx::Value>,
args: &[ArgType<'tcx, Ty<'tcx>>]
) {
let tuple = self.codegen_operand(bx, operand);
// Handle both by-ref and immediate tuples.
if let Ref(llval, None, align) = tuple.val {
let tuple_ptr = PlaceRef::new_sized_aligned(llval, tuple.layout, align);
for i in 0..tuple.layout.fields.count() {
let field_ptr = tuple_ptr.project_field(bx, i);
let field = bx.load_operand(field_ptr);
self.codegen_argument(bx, field, llargs, &args[i]);
}
} else if let Ref(_, Some(_), _) = tuple.val {
bug!("closure arguments must be sized")
} else {
// If the tuple is immediate, the elements are as well.
for i in 0..tuple.layout.fields.count() {
let op = tuple.extract_field(bx, i);
self.codegen_argument(bx, op, llargs, &args[i]);
}
}
}
fn get_personality_slot(
&mut self,
bx: &mut Bx
) -> PlaceRef<'tcx, Bx::Value> {
let cx = bx.cx();
if let Some(slot) = self.personality_slot {
slot
} else {
let layout = cx.layout_of(cx.tcx().intern_tup(&[
cx.tcx().mk_mut_ptr(cx.tcx().types.u8),
cx.tcx().types.i32
]));
let slot = PlaceRef::alloca(bx, layout);
self.personality_slot = Some(slot);
slot
}
}
/// Returns the landing-pad wrapper around the given basic block.
///
/// No-op in MSVC SEH scheme.
fn landing_pad_to(
&mut self,
target_bb: mir::BasicBlock
) -> Bx::BasicBlock {
if let Some(block) = self.landing_pads[target_bb] {
return block;
}
let block = self.blocks[target_bb];
let landing_pad = self.landing_pad_uncached(block);
self.landing_pads[target_bb] = Some(landing_pad);
landing_pad
}
fn landing_pad_uncached(
&mut self,
target_bb: Bx::BasicBlock
) -> Bx::BasicBlock {
if base::wants_msvc_seh(self.cx.sess()) {
span_bug!(self.mir.span, "landing pad was not inserted?")
}
let mut bx = self.new_block("cleanup");
let llpersonality = self.cx.eh_personality();
let llretty = self.landing_pad_type();
let lp = bx.landing_pad(llretty, llpersonality, 1);
bx.set_cleanup(lp);
let slot = self.get_personality_slot(&mut bx);
slot.storage_live(&mut bx);
Pair(bx.extract_value(lp, 0), bx.extract_value(lp, 1)).store(&mut bx, slot);
bx.br(target_bb);
bx.llbb()
}
fn landing_pad_type(&self) -> Bx::Type {
let cx = self.cx;
cx.type_struct(&[cx.type_i8p(), cx.type_i32()], false)
}
fn unreachable_block(
&mut self
) -> Bx::BasicBlock {
self.unreachable_block.unwrap_or_else(|| {
let mut bx = self.new_block("unreachable");
bx.unreachable();
self.unreachable_block = Some(bx.llbb());
bx.llbb()
})
}
pub fn new_block(&self, name: &str) -> Bx {
Bx::new_block(self.cx, self.llfn, name)
}
pub fn build_block(
&self,
bb: mir::BasicBlock
) -> Bx {
let mut bx = Bx::with_cx(self.cx);
bx.position_at_end(self.blocks[bb]);
bx
}
fn make_return_dest(
&mut self,
bx: &mut Bx,
dest: &mir::Place<'tcx>,
fn_ret: &ArgType<'tcx, Ty<'tcx>>,
llargs: &mut Vec<Bx::Value>, is_intrinsic: bool
) -> ReturnDest<'tcx, Bx::Value> {
// If the return is ignored, we can just return a do-nothing `ReturnDest`.
if fn_ret.is_ignore() {
return ReturnDest::Nothing;
}
let dest = if let mir::Place {
base: mir::PlaceBase::Local(index),
projection: box [],
} = *dest {
match self.locals[index] {
LocalRef::Place(dest) => dest,
LocalRef::UnsizedPlace(_) => bug!("return type must be sized"),
LocalRef::Operand(None) => {
// Handle temporary places, specifically `Operand` ones, as
// they don't have `alloca`s.
return if fn_ret.is_indirect() {
// Odd, but possible, case, we have an operand temporary,
// but the calling convention has an indirect return.
let tmp = PlaceRef::alloca(bx, fn_ret.layout);
tmp.storage_live(bx);
llargs.push(tmp.llval);
ReturnDest::IndirectOperand(tmp, index)
} else if is_intrinsic {
// Currently, intrinsics always need a location to store
// the result, so we create a temporary `alloca` for the
// result.
let tmp = PlaceRef::alloca(bx, fn_ret.layout);
tmp.storage_live(bx);
ReturnDest::IndirectOperand(tmp, index)
} else {
ReturnDest::DirectOperand(index)
};
}
LocalRef::Operand(Some(_)) => {
bug!("place local already assigned to");
}
}
} else {
self.codegen_place(bx, &mir::PlaceRef {
base: &dest.base,
projection: &dest.projection,
})
};
if fn_ret.is_indirect() {
if dest.align < dest.layout.align.abi {
// Currently, MIR code generation does not create calls
// that store directly to fields of packed structs (in
// fact, the calls it creates write only to temps).
//
// If someone changes that, please update this code path
// to create a temporary.
span_bug!(self.mir.span, "can't directly store to unaligned value");
}
llargs.push(dest.llval);
ReturnDest::Nothing
} else {
ReturnDest::Store(dest)
}
}
fn codegen_transmute(
&mut self,
bx: &mut Bx,
src: &mir::Operand<'tcx>,
dst: &mir::Place<'tcx>
) {
if let mir::Place {
base: mir::PlaceBase::Local(index),
projection: box [],
} = *dst {
match self.locals[index] {
LocalRef::Place(place) => self.codegen_transmute_into(bx, src, place),
LocalRef::UnsizedPlace(_) => bug!("transmute must not involve unsized locals"),
LocalRef::Operand(None) => {
let dst_layout = bx.layout_of(self.monomorphized_place_ty(&dst.as_ref()));
assert!(!dst_layout.ty.has_erasable_regions());
let place = PlaceRef::alloca(bx, dst_layout);
place.storage_live(bx);
self.codegen_transmute_into(bx, src, place);
let op = bx.load_operand(place);
place.storage_dead(bx);
self.locals[index] = LocalRef::Operand(Some(op));
}
LocalRef::Operand(Some(op)) => {
assert!(op.layout.is_zst(),
"assigning to initialized SSAtemp");
}
}
} else {
let dst = self.codegen_place(bx, &dst.as_ref());
self.codegen_transmute_into(bx, src, dst);
}
}
fn codegen_transmute_into(
&mut self,
bx: &mut Bx,
src: &mir::Operand<'tcx>,
dst: PlaceRef<'tcx, Bx::Value>
) {
let src = self.codegen_operand(bx, src);
let llty = bx.backend_type(src.layout);
let cast_ptr = bx.pointercast(dst.llval, bx.type_ptr_to(llty));
let align = src.layout.align.abi.min(dst.align);
src.val.store(bx, PlaceRef::new_sized_aligned(cast_ptr, src.layout, align));
}
// Stores the return value of a function call into it's final location.
fn store_return(
&mut self,
bx: &mut Bx,
dest: ReturnDest<'tcx, Bx::Value>,
ret_ty: &ArgType<'tcx, Ty<'tcx>>,
llval: Bx::Value
) {
use self::ReturnDest::*;
match dest {
Nothing => (),
Store(dst) => bx.store_arg_ty(&ret_ty, llval, dst),
IndirectOperand(tmp, index) => {
let op = bx.load_operand(tmp);
tmp.storage_dead(bx);
self.locals[index] = LocalRef::Operand(Some(op));
}
DirectOperand(index) => {
// If there is a cast, we have to store and reload.
let op = if let PassMode::Cast(_) = ret_ty.mode {
let tmp = PlaceRef::alloca(bx, ret_ty.layout);
tmp.storage_live(bx);
bx.store_arg_ty(&ret_ty, llval, tmp);
let op = bx.load_operand(tmp);
tmp.storage_dead(bx);
op
} else {
OperandRef::from_immediate_or_packed_pair(bx, llval, ret_ty.layout)
};
self.locals[index] = LocalRef::Operand(Some(op));
}
}
}
}
enum ReturnDest<'tcx, V> {
// Do nothing; the return value is indirect or ignored.
Nothing,
// Store the return value to the pointer.
Store(PlaceRef<'tcx, V>),
// Store an indirect return value to an operand local place.
IndirectOperand(PlaceRef<'tcx, V>, mir::Local),
// Store a direct return value to an operand local place.
DirectOperand(mir::Local)
}