blob: f44bac126f276c4a4752a2caff0b44c347c095ad [file] [log] [blame]
//! The `Visitor` responsible for actually checking a `mir::Body` for invalid operations.
use rustc::hir::{HirId, def_id::DefId};
use rustc::middle::lang_items;
use rustc::mir::visit::{PlaceContext, Visitor, MutatingUseContext, NonMutatingUseContext};
use rustc::mir::*;
use rustc::traits::{self, TraitEngine};
use rustc::ty::cast::CastTy;
use rustc::ty::{self, TyCtxt};
use rustc_index::bit_set::BitSet;
use rustc_error_codes::*;
use syntax::symbol::sym;
use syntax_pos::Span;
use std::borrow::Cow;
use std::ops::Deref;
use crate::dataflow::{self as old_dataflow, generic as dataflow};
use self::old_dataflow::IndirectlyMutableLocals;
use super::ops::{self, NonConstOp};
use super::qualifs::{self, HasMutInterior, NeedsDrop};
use super::resolver::FlowSensitiveAnalysis;
use super::{ConstKind, Item, Qualif, is_lang_panic_fn};
pub type IndirectlyMutableResults<'mir, 'tcx> =
old_dataflow::DataflowResultsCursor<'mir, 'tcx, IndirectlyMutableLocals<'mir, 'tcx>>;
struct QualifCursor<'a, 'mir, 'tcx, Q: Qualif> {
cursor: dataflow::ResultsCursor<'mir, 'tcx, FlowSensitiveAnalysis<'a, 'mir, 'tcx, Q>>,
in_any_value_of_ty: BitSet<Local>,
}
impl<Q: Qualif> QualifCursor<'a, 'mir, 'tcx, Q> {
pub fn new(
q: Q,
item: &'a Item<'mir, 'tcx>,
dead_unwinds: &BitSet<BasicBlock>,
) -> Self {
let analysis = FlowSensitiveAnalysis::new(q, item);
let results =
dataflow::Engine::new(item.tcx, &item.body, item.def_id, dead_unwinds, analysis)
.iterate_to_fixpoint();
let cursor = dataflow::ResultsCursor::new(item.body.body(), results);
let mut in_any_value_of_ty = BitSet::new_empty(item.body.local_decls.len());
for (local, decl) in item.body.local_decls.iter_enumerated() {
if Q::in_any_value_of_ty(item, decl.ty) {
in_any_value_of_ty.insert(local);
}
}
QualifCursor {
cursor,
in_any_value_of_ty,
}
}
}
pub struct Qualifs<'a, 'mir, 'tcx> {
has_mut_interior: QualifCursor<'a, 'mir, 'tcx, HasMutInterior>,
needs_drop: QualifCursor<'a, 'mir, 'tcx, NeedsDrop>,
indirectly_mutable: IndirectlyMutableResults<'mir, 'tcx>,
}
impl Qualifs<'a, 'mir, 'tcx> {
fn indirectly_mutable(&mut self, local: Local, location: Location) -> bool {
self.indirectly_mutable.seek(location);
self.indirectly_mutable.get().contains(local)
}
/// Returns `true` if `local` is `NeedsDrop` at the given `Location`.
///
/// Only updates the cursor if absolutely necessary
fn needs_drop_lazy_seek(&mut self, local: Local, location: Location) -> bool {
if !self.needs_drop.in_any_value_of_ty.contains(local) {
return false;
}
self.needs_drop.cursor.seek_before(location);
self.needs_drop.cursor.get().contains(local)
|| self.indirectly_mutable(local, location)
}
/// Returns `true` if `local` is `HasMutInterior` at the given `Location`.
///
/// Only updates the cursor if absolutely necessary.
fn has_mut_interior_lazy_seek(&mut self, local: Local, location: Location) -> bool {
if !self.has_mut_interior.in_any_value_of_ty.contains(local) {
return false;
}
self.has_mut_interior.cursor.seek_before(location);
self.has_mut_interior.cursor.get().contains(local)
|| self.indirectly_mutable(local, location)
}
/// Returns `true` if `local` is `HasMutInterior`, but requires the `has_mut_interior` and
/// `indirectly_mutable` cursors to be updated beforehand.
fn has_mut_interior_eager_seek(&self, local: Local) -> bool {
if !self.has_mut_interior.in_any_value_of_ty.contains(local) {
return false;
}
self.has_mut_interior.cursor.get().contains(local)
|| self.indirectly_mutable.get().contains(local)
}
fn in_return_place(&mut self, item: &Item<'_, 'tcx>) -> ConstQualifs {
// Find the `Return` terminator if one exists.
//
// If no `Return` terminator exists, this MIR is divergent. Just return the conservative
// qualifs for the return type.
let return_block = item.body
.basic_blocks()
.iter_enumerated()
.find(|(_, block)| {
match block.terminator().kind {
TerminatorKind::Return => true,
_ => false,
}
})
.map(|(bb, _)| bb);
let return_block = match return_block {
None => return qualifs::in_any_value_of_ty(item, item.body.return_ty()),
Some(bb) => bb,
};
let return_loc = item.body.terminator_loc(return_block);
ConstQualifs {
needs_drop: self.needs_drop_lazy_seek(RETURN_PLACE, return_loc),
has_mut_interior: self.has_mut_interior_lazy_seek(RETURN_PLACE, return_loc),
}
}
}
pub struct Validator<'a, 'mir, 'tcx> {
item: &'a Item<'mir, 'tcx>,
qualifs: Qualifs<'a, 'mir, 'tcx>,
/// The span of the current statement.
span: Span,
}
impl Deref for Validator<'_, 'mir, 'tcx> {
type Target = Item<'mir, 'tcx>;
fn deref(&self) -> &Self::Target {
&self.item
}
}
impl Validator<'a, 'mir, 'tcx> {
pub fn new(
item: &'a Item<'mir, 'tcx>,
) -> Self {
let dead_unwinds = BitSet::new_empty(item.body.basic_blocks().len());
let needs_drop = QualifCursor::new(
NeedsDrop,
item,
&dead_unwinds,
);
let has_mut_interior = QualifCursor::new(
HasMutInterior,
item,
&dead_unwinds,
);
let indirectly_mutable = old_dataflow::do_dataflow(
item.tcx,
&*item.body,
item.def_id,
&item.tcx.get_attrs(item.def_id),
&dead_unwinds,
old_dataflow::IndirectlyMutableLocals::new(item.tcx, item.body.body(), item.param_env),
|_, local| old_dataflow::DebugFormatted::new(&local),
);
let indirectly_mutable = old_dataflow::DataflowResultsCursor::new(
indirectly_mutable,
item.body.body(),
);
let qualifs = Qualifs {
needs_drop,
has_mut_interior,
indirectly_mutable,
};
Validator {
span: item.body.span,
item,
qualifs,
}
}
pub fn check_body(&mut self) {
let Item { tcx, body, def_id, const_kind, .. } = *self.item;
let use_min_const_fn_checks =
(const_kind == Some(ConstKind::ConstFn) && tcx.is_min_const_fn(def_id))
&& !tcx.sess.opts.debugging_opts.unleash_the_miri_inside_of_you;
if use_min_const_fn_checks {
// Enforce `min_const_fn` for stable `const fn`s.
use crate::transform::qualify_min_const_fn::is_min_const_fn;
if let Err((span, err)) = is_min_const_fn(tcx, def_id, &body) {
error_min_const_fn_violation(tcx, span, err);
return;
}
}
check_short_circuiting_in_const_local(self.item);
if body.is_cfg_cyclic() {
// We can't provide a good span for the error here, but this should be caught by the
// HIR const-checker anyways.
self.check_op_spanned(ops::Loop, body.span);
}
self.visit_body(body);
// Ensure that the end result is `Sync` in a non-thread local `static`.
let should_check_for_sync = const_kind == Some(ConstKind::Static)
&& !tcx.has_attr(def_id, sym::thread_local);
if should_check_for_sync {
let hir_id = tcx.hir().as_local_hir_id(def_id).unwrap();
check_return_ty_is_sync(tcx, &body, hir_id);
}
}
pub fn qualifs_in_return_place(&mut self) -> ConstQualifs {
self.qualifs.in_return_place(self.item)
}
/// Emits an error at the given `span` if an expression cannot be evaluated in the current
/// context.
pub fn check_op_spanned<O>(&mut self, op: O, span: Span)
where
O: NonConstOp
{
trace!("check_op: op={:?}", op);
if op.is_allowed_in_item(self) {
return;
}
// If an operation is supported in miri (and is not already controlled by a feature gate) it
// can be turned on with `-Zunleash-the-miri-inside-of-you`.
let is_unleashable = O::IS_SUPPORTED_IN_MIRI
&& O::feature_gate(self.tcx).is_none();
if is_unleashable && self.tcx.sess.opts.debugging_opts.unleash_the_miri_inside_of_you {
self.tcx.sess.span_warn(span, "skipping const checks");
return;
}
op.emit_error(self, span);
}
/// Emits an error if an expression cannot be evaluated in the current context.
pub fn check_op(&mut self, op: impl NonConstOp) {
let span = self.span;
self.check_op_spanned(op, span)
}
fn check_static(&mut self, def_id: DefId, span: Span) {
let is_thread_local = self.tcx.has_attr(def_id, sym::thread_local);
if is_thread_local {
self.check_op_spanned(ops::ThreadLocalAccess, span)
} else {
self.check_op_spanned(ops::StaticAccess, span)
}
}
}
impl Visitor<'tcx> for Validator<'_, 'mir, 'tcx> {
fn visit_basic_block_data(
&mut self,
bb: BasicBlock,
block: &BasicBlockData<'tcx>,
) {
trace!("visit_basic_block_data: bb={:?} is_cleanup={:?}", bb, block.is_cleanup);
// Just as the old checker did, we skip const-checking basic blocks on the unwind path.
// These blocks often drop locals that would otherwise be returned from the function.
//
// FIXME: This shouldn't be unsound since a panic at compile time will cause a compiler
// error anyway, but maybe we should do more here?
if block.is_cleanup {
return;
}
self.super_basic_block_data(bb, block);
}
fn visit_rvalue(&mut self, rvalue: &Rvalue<'tcx>, location: Location) {
trace!("visit_rvalue: rvalue={:?} location={:?}", rvalue, location);
// Special-case reborrows to be more like a copy of a reference.
if let Rvalue::Ref(_, kind, ref place) = *rvalue {
if let Some(reborrowed_proj) = place_as_reborrow(self.tcx, *self.body, place) {
let ctx = match kind {
BorrowKind::Shared => PlaceContext::NonMutatingUse(
NonMutatingUseContext::SharedBorrow,
),
BorrowKind::Shallow => PlaceContext::NonMutatingUse(
NonMutatingUseContext::ShallowBorrow,
),
BorrowKind::Unique => PlaceContext::NonMutatingUse(
NonMutatingUseContext::UniqueBorrow,
),
BorrowKind::Mut { .. } => PlaceContext::MutatingUse(
MutatingUseContext::Borrow,
),
};
self.visit_place_base(&place.base, ctx, location);
self.visit_projection(&place.base, reborrowed_proj, ctx, location);
return;
}
}
self.super_rvalue(rvalue, location);
match *rvalue {
Rvalue::Use(_) |
Rvalue::Repeat(..) |
Rvalue::UnaryOp(UnOp::Neg, _) |
Rvalue::UnaryOp(UnOp::Not, _) |
Rvalue::NullaryOp(NullOp::SizeOf, _) |
Rvalue::CheckedBinaryOp(..) |
Rvalue::Cast(CastKind::Pointer(_), ..) |
Rvalue::Discriminant(..) |
Rvalue::Len(_) |
Rvalue::Aggregate(..) => {}
| Rvalue::Ref(_, kind @ BorrowKind::Mut { .. }, ref place)
| Rvalue::Ref(_, kind @ BorrowKind::Unique, ref place)
=> {
let ty = place.ty(*self.body, self.tcx).ty;
let is_allowed = match ty.kind {
// Inside a `static mut`, `&mut [...]` is allowed.
ty::Array(..) | ty::Slice(_) if self.const_kind() == ConstKind::StaticMut
=> true,
// FIXME(ecstaticmorse): We could allow `&mut []` inside a const context given
// that this is merely a ZST and it is already eligible for promotion.
// This may require an RFC?
/*
ty::Array(_, len) if len.try_eval_usize(cx.tcx, cx.param_env) == Some(0)
=> true,
*/
_ => false,
};
if !is_allowed {
self.check_op(ops::MutBorrow(kind));
}
}
// At the moment, `PlaceBase::Static` is only used for promoted MIR.
| Rvalue::Ref(_, BorrowKind::Shared, ref place)
| Rvalue::Ref(_, BorrowKind::Shallow, ref place)
if matches!(place.base, PlaceBase::Static(_))
=> bug!("Saw a promoted during const-checking, which must run before promotion"),
| Rvalue::Ref(_, kind @ BorrowKind::Shared, ref place)
| Rvalue::Ref(_, kind @ BorrowKind::Shallow, ref place)
=> {
// FIXME: Change the `in_*` methods to take a `FnMut` so we don't have to manually
// seek the cursors beforehand.
self.qualifs.has_mut_interior.cursor.seek_before(location);
self.qualifs.indirectly_mutable.seek(location);
let borrowed_place_has_mut_interior = HasMutInterior::in_place(
&self.item,
&|local| self.qualifs.has_mut_interior_eager_seek(local),
place.as_ref(),
);
if borrowed_place_has_mut_interior {
self.check_op(ops::MutBorrow(kind));
}
}
Rvalue::Cast(CastKind::Misc, ref operand, cast_ty) => {
let operand_ty = operand.ty(*self.body, self.tcx);
let cast_in = CastTy::from_ty(operand_ty).expect("bad input type for cast");
let cast_out = CastTy::from_ty(cast_ty).expect("bad output type for cast");
if let (CastTy::Ptr(_), CastTy::Int(_))
| (CastTy::FnPtr, CastTy::Int(_)) = (cast_in, cast_out) {
self.check_op(ops::RawPtrToIntCast);
}
}
Rvalue::BinaryOp(op, ref lhs, _) => {
if let ty::RawPtr(_) | ty::FnPtr(..) = lhs.ty(*self.body, self.tcx).kind {
assert!(op == BinOp::Eq || op == BinOp::Ne ||
op == BinOp::Le || op == BinOp::Lt ||
op == BinOp::Ge || op == BinOp::Gt ||
op == BinOp::Offset);
self.check_op(ops::RawPtrComparison);
}
}
Rvalue::NullaryOp(NullOp::Box, _) => {
self.check_op(ops::HeapAllocation);
}
}
}
fn visit_place_base(
&mut self,
place_base: &PlaceBase<'tcx>,
context: PlaceContext,
location: Location,
) {
trace!(
"visit_place_base: place_base={:?} context={:?} location={:?}",
place_base,
context,
location,
);
self.super_place_base(place_base, context, location);
match place_base {
PlaceBase::Local(_) => {}
PlaceBase::Static(_) => {
bug!("Promotion must be run after const validation");
}
}
}
fn visit_operand(
&mut self,
op: &Operand<'tcx>,
location: Location,
) {
self.super_operand(op, location);
if let Operand::Constant(c) = op {
if let Some(def_id) = c.check_static_ptr(self.tcx) {
self.check_static(def_id, self.span);
}
}
}
fn visit_projection_elem(
&mut self,
place_base: &PlaceBase<'tcx>,
proj_base: &[PlaceElem<'tcx>],
elem: &PlaceElem<'tcx>,
context: PlaceContext,
location: Location,
) {
trace!(
"visit_projection_elem: place_base={:?} proj_base={:?} elem={:?} \
context={:?} location={:?}",
place_base,
proj_base,
elem,
context,
location,
);
self.super_projection_elem(place_base, proj_base, elem, context, location);
match elem {
ProjectionElem::Deref => {
let base_ty = Place::ty_from(place_base, proj_base, *self.body, self.tcx).ty;
if let ty::RawPtr(_) = base_ty.kind {
if proj_base.is_empty() {
if let (PlaceBase::Local(local), []) = (place_base, proj_base) {
let decl = &self.body.local_decls[*local];
if let LocalInfo::StaticRef { def_id, .. } = decl.local_info {
let span = decl.source_info.span;
self.check_static(def_id, span);
return;
}
}
}
self.check_op(ops::RawPtrDeref);
}
if context.is_mutating_use() {
self.check_op(ops::MutDeref);
}
}
ProjectionElem::ConstantIndex {..} |
ProjectionElem::Subslice {..} |
ProjectionElem::Field(..) |
ProjectionElem::Index(_) => {
let base_ty = Place::ty_from(place_base, proj_base, *self.body, self.tcx).ty;
match base_ty.ty_adt_def() {
Some(def) if def.is_union() => {
self.check_op(ops::UnionAccess);
}
_ => {}
}
}
ProjectionElem::Downcast(..) => {
self.check_op(ops::Downcast);
}
}
}
fn visit_source_info(&mut self, source_info: &SourceInfo) {
trace!("visit_source_info: source_info={:?}", source_info);
self.span = source_info.span;
}
fn visit_statement(&mut self, statement: &Statement<'tcx>, location: Location) {
trace!("visit_statement: statement={:?} location={:?}", statement, location);
match statement.kind {
StatementKind::Assign(..) | StatementKind::SetDiscriminant { .. } => {
self.super_statement(statement, location);
}
StatementKind::FakeRead(FakeReadCause::ForMatchedPlace, _) => {
self.check_op(ops::IfOrMatch);
}
// FIXME(eddyb) should these really do nothing?
StatementKind::FakeRead(..) |
StatementKind::StorageLive(_) |
StatementKind::StorageDead(_) |
StatementKind::InlineAsm {..} |
StatementKind::Retag { .. } |
StatementKind::AscribeUserType(..) |
StatementKind::Nop => {}
}
}
fn visit_terminator_kind(&mut self, kind: &TerminatorKind<'tcx>, location: Location) {
trace!("visit_terminator_kind: kind={:?} location={:?}", kind, location);
self.super_terminator_kind(kind, location);
match kind {
TerminatorKind::Call { func, .. } => {
let fn_ty = func.ty(*self.body, self.tcx);
let def_id = match fn_ty.kind {
ty::FnDef(def_id, _) => def_id,
ty::FnPtr(_) => {
self.check_op(ops::FnCallIndirect);
return;
}
_ => {
self.check_op(ops::FnCallOther);
return;
}
};
// At this point, we are calling a function whose `DefId` is known...
if self.tcx.is_const_fn(def_id) {
return;
}
if is_lang_panic_fn(self.tcx, def_id) {
self.check_op(ops::Panic);
} else if let Some(feature) = self.tcx.is_unstable_const_fn(def_id) {
// Exempt unstable const fns inside of macros with
// `#[allow_internal_unstable]`.
if !self.span.allows_unstable(feature) {
self.check_op(ops::FnCallUnstable(def_id, feature));
}
} else {
self.check_op(ops::FnCallNonConst(def_id));
}
}
// Forbid all `Drop` terminators unless the place being dropped is a local with no
// projections that cannot be `NeedsDrop`.
| TerminatorKind::Drop { location: dropped_place, .. }
| TerminatorKind::DropAndReplace { location: dropped_place, .. }
=> {
let mut err_span = self.span;
// Check to see if the type of this place can ever have a drop impl. If not, this
// `Drop` terminator is frivolous.
let ty_needs_drop = dropped_place
.ty(*self.body, self.tcx)
.ty
.needs_drop(self.tcx, self.param_env);
if !ty_needs_drop {
return;
}
let needs_drop = if let Some(local) = dropped_place.as_local() {
// Use the span where the local was declared as the span of the drop error.
err_span = self.body.local_decls[local].source_info.span;
self.qualifs.needs_drop_lazy_seek(local, location)
} else {
true
};
if needs_drop {
self.check_op_spanned(ops::LiveDrop, err_span);
}
}
_ => {}
}
}
}
fn error_min_const_fn_violation(tcx: TyCtxt<'_>, span: Span, msg: Cow<'_, str>) {
struct_span_err!(tcx.sess, span, E0723, "{}", msg)
.note("for more information, see issue https://github.com/rust-lang/rust/issues/57563")
.help("add `#![feature(const_fn)]` to the crate attributes to enable")
.emit();
}
fn check_short_circuiting_in_const_local(item: &Item<'_, 'tcx>) {
let body = item.body;
if body.control_flow_destroyed.is_empty() {
return;
}
let mut locals = body.vars_iter();
if let Some(local) = locals.next() {
let span = body.local_decls[local].source_info.span;
let mut error = item.tcx.sess.struct_span_err(
span,
&format!(
"new features like let bindings are not permitted in {}s \
which also use short circuiting operators",
item.const_kind(),
),
);
for (span, kind) in body.control_flow_destroyed.iter() {
error.span_note(
*span,
&format!("use of {} here does not actually short circuit due to \
the const evaluator presently not being able to do control flow. \
See https://github.com/rust-lang/rust/issues/49146 for more \
information.", kind),
);
}
for local in locals {
let span = body.local_decls[local].source_info.span;
error.span_note(span, "more locals defined here");
}
error.emit();
}
}
fn check_return_ty_is_sync(tcx: TyCtxt<'tcx>, body: &Body<'tcx>, hir_id: HirId) {
let ty = body.return_ty();
tcx.infer_ctxt().enter(|infcx| {
let cause = traits::ObligationCause::new(body.span, hir_id, traits::SharedStatic);
let mut fulfillment_cx = traits::FulfillmentContext::new();
let sync_def_id = tcx.require_lang_item(lang_items::SyncTraitLangItem, Some(body.span));
fulfillment_cx.register_bound(&infcx, ty::ParamEnv::empty(), ty, sync_def_id, cause);
if let Err(err) = fulfillment_cx.select_all_or_error(&infcx) {
infcx.report_fulfillment_errors(&err, None, false);
}
});
}
fn place_as_reborrow(
tcx: TyCtxt<'tcx>,
body: &Body<'tcx>,
place: &'a Place<'tcx>,
) -> Option<&'a [PlaceElem<'tcx>]> {
place
.projection
.split_last()
.and_then(|(outermost, inner)| {
if outermost != &ProjectionElem::Deref {
return None;
}
// A borrow of a `static` also looks like `&(*_1)` in the MIR, but `_1` is a `const`
// that points to the allocation for the static. Don't treat these as reborrows.
if let PlaceBase::Local(local) = place.base {
if body.local_decls[local].is_ref_to_static() {
return None;
}
}
// Ensure the type being derefed is a reference and not a raw pointer.
//
// This is sufficient to prevent an access to a `static mut` from being marked as a
// reborrow, even if the check above were to disappear.
let inner_ty = Place::ty_from(&place.base, inner, body, tcx).ty;
match inner_ty.kind {
ty::Ref(..) => Some(inner),
_ => None,
}
})
}