blob: c1aaff6c99990c5bdc5f96275d6ca0814f060676 [file] [log] [blame]
// Copyright 2013 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use cryptoutil::{write_u32_le, read_u32v_le, FixedBuffer, FixedBuffer64, StandardPadding};
use digest::Digest;
use step_by::RangeExt;
// A structure that represents that state of a digest computation for the MD5 digest function
struct Md5State {
s0: u32,
s1: u32,
s2: u32,
s3: u32
}
impl Md5State {
fn new() -> Md5State {
Md5State {
s0: 0x67452301,
s1: 0xefcdab89,
s2: 0x98badcfe,
s3: 0x10325476
}
}
fn reset(&mut self) {
self.s0 = 0x67452301;
self.s1 = 0xefcdab89;
self.s2 = 0x98badcfe;
self.s3 = 0x10325476;
}
fn process_block(&mut self, input: &[u8]) {
fn f(u: u32, v: u32, w: u32) -> u32 {
(u & v) | (!u & w)
}
fn g(u: u32, v: u32, w: u32) -> u32 {
(u & w) | (v & !w)
}
fn h(u: u32, v: u32, w: u32) -> u32 {
u ^ v ^ w
}
fn i(u: u32, v: u32, w: u32) -> u32 {
v ^ (u | !w)
}
fn op_f(w: u32, x: u32, y: u32, z: u32, m: u32, s: u32) -> u32 {
w.wrapping_add(f(x, y, z)).wrapping_add(m).rotate_left(s).wrapping_add(x)
}
fn op_g(w: u32, x: u32, y: u32, z: u32, m: u32, s: u32) -> u32 {
w.wrapping_add(g(x, y, z)).wrapping_add(m).rotate_left(s).wrapping_add(x)
}
fn op_h(w: u32, x: u32, y: u32, z: u32, m: u32, s: u32) -> u32 {
w.wrapping_add(h(x, y, z)).wrapping_add(m).rotate_left(s).wrapping_add(x)
}
fn op_i(w: u32, x: u32, y: u32, z: u32, m: u32, s: u32) -> u32 {
w.wrapping_add(i(x, y, z)).wrapping_add(m).rotate_left(s).wrapping_add(x)
}
let mut a = self.s0;
let mut b = self.s1;
let mut c = self.s2;
let mut d = self.s3;
let mut data = [0u32; 16];
read_u32v_le(&mut data, input);
// round 1
for i in (0..16).step_up(4) {
a = op_f(a, b, c, d, data[i].wrapping_add(C1[i]), 7);
d = op_f(d, a, b, c, data[i + 1].wrapping_add(C1[i + 1]), 12);
c = op_f(c, d, a, b, data[i + 2].wrapping_add(C1[i + 2]), 17);
b = op_f(b, c, d, a, data[i + 3].wrapping_add(C1[i + 3]), 22);
}
// round 2
let mut t = 1;
for i in (0..16).step_up(4) {
a = op_g(a, b, c, d, data[t & 0x0f].wrapping_add(C2[i]), 5);
d = op_g(d, a, b, c, data[(t + 5) & 0x0f].wrapping_add(C2[i + 1]), 9);
c = op_g(c, d, a, b, data[(t + 10) & 0x0f].wrapping_add(C2[i + 2]), 14);
b = op_g(b, c, d, a, data[(t + 15) & 0x0f].wrapping_add(C2[i + 3]), 20);
t += 20;
}
// round 3
t = 5;
for i in (0..16).step_up(4) {
a = op_h(a, b, c, d, data[t & 0x0f].wrapping_add(C3[i]), 4);
d = op_h(d, a, b, c, data[(t + 3) & 0x0f].wrapping_add(C3[i + 1]), 11);
c = op_h(c, d, a, b, data[(t + 6) & 0x0f].wrapping_add(C3[i + 2]), 16);
b = op_h(b, c, d, a, data[(t + 9) & 0x0f].wrapping_add(C3[i + 3]), 23);
t += 12;
}
// round 4
t = 0;
for i in (0..16).step_up(4) {
a = op_i(a, b, c, d, data[t & 0x0f].wrapping_add(C4[i]), 6);
d = op_i(d, a, b, c, data[(t + 7) & 0x0f].wrapping_add(C4[i + 1]), 10);
c = op_i(c, d, a, b, data[(t + 14) & 0x0f].wrapping_add(C4[i + 2]), 15);
b = op_i(b, c, d, a, data[(t + 21) & 0x0f].wrapping_add(C4[i + 3]), 21);
t += 28;
}
self.s0 = self.s0.wrapping_add(a);
self.s1 = self.s1.wrapping_add(b);
self.s2 = self.s2.wrapping_add(c);
self.s3 = self.s3.wrapping_add(d);
}
}
// Round 1 constants
static C1: [u32; 16] = [
0xd76aa478, 0xe8c7b756, 0x242070db, 0xc1bdceee, 0xf57c0faf, 0x4787c62a, 0xa8304613, 0xfd469501,
0x698098d8, 0x8b44f7af, 0xffff5bb1, 0x895cd7be, 0x6b901122, 0xfd987193, 0xa679438e, 0x49b40821
];
// Round 2 constants
static C2: [u32; 16] = [
0xf61e2562, 0xc040b340, 0x265e5a51, 0xe9b6c7aa, 0xd62f105d, 0x02441453, 0xd8a1e681, 0xe7d3fbc8,
0x21e1cde6, 0xc33707d6, 0xf4d50d87, 0x455a14ed, 0xa9e3e905, 0xfcefa3f8, 0x676f02d9, 0x8d2a4c8a
];
// Round 3 constants
static C3: [u32; 16] = [
0xfffa3942, 0x8771f681, 0x6d9d6122, 0xfde5380c, 0xa4beea44, 0x4bdecfa9, 0xf6bb4b60, 0xbebfbc70,
0x289b7ec6, 0xeaa127fa, 0xd4ef3085, 0x04881d05, 0xd9d4d039, 0xe6db99e5, 0x1fa27cf8, 0xc4ac5665
];
// Round 4 constants
static C4: [u32; 16] = [
0xf4292244, 0x432aff97, 0xab9423a7, 0xfc93a039, 0x655b59c3, 0x8f0ccc92, 0xffeff47d, 0x85845dd1,
0x6fa87e4f, 0xfe2ce6e0, 0xa3014314, 0x4e0811a1, 0xf7537e82, 0xbd3af235, 0x2ad7d2bb, 0xeb86d391
];
/// The MD5 Digest algorithm
pub struct Md5 {
length_bytes: u64,
buffer: FixedBuffer64,
state: Md5State,
finished: bool,
}
impl Md5 {
/// Construct a new instance of the MD5 Digest.
pub fn new() -> Md5 {
Md5 {
length_bytes: 0,
buffer: FixedBuffer64::new(),
state: Md5State::new(),
finished: false
}
}
}
impl Digest for Md5 {
fn input(&mut self, input: &[u8]) {
assert!(!self.finished);
// Unlike Sha1 and Sha2, the length value in MD5 is defined as the length of the message mod
// 2^64 - ie: integer overflow is OK.
self.length_bytes += input.len() as u64;
let self_state = &mut self.state;
self.buffer.input(input, |d: &[u8]| { self_state.process_block(d);}
);
}
fn reset(&mut self) {
self.length_bytes = 0;
self.buffer.reset();
self.state.reset();
self.finished = false;
}
fn result(&mut self, out: &mut [u8]) {
if !self.finished {
let self_state = &mut self.state;
self.buffer.standard_padding(8, |d: &[u8]| { self_state.process_block(d); });
write_u32_le(self.buffer.next(4), (self.length_bytes << 3) as u32);
write_u32_le(self.buffer.next(4), (self.length_bytes >> 29) as u32);
self_state.process_block(self.buffer.full_buffer());
self.finished = true;
}
write_u32_le(&mut out[0..4], self.state.s0);
write_u32_le(&mut out[4..8], self.state.s1);
write_u32_le(&mut out[8..12], self.state.s2);
write_u32_le(&mut out[12..16], self.state.s3);
}
fn output_bits(&self) -> usize { 128 }
fn block_size(&self) -> usize { 64 }
}
#[cfg(test)]
mod tests {
use cryptoutil::test::test_digest_1million_random;
use digest::Digest;
use md5::Md5;
struct Test {
input: &'static str,
output_str: &'static str,
}
fn test_hash<D: Digest>(sh: &mut D, tests: &[Test]) {
// Test that it works when accepting the message all at once
for t in tests.iter() {
sh.input_str(t.input);
let out_str = sh.result_str();
assert_eq!(out_str, t.output_str);
sh.reset();
}
// Test that it works when accepting the message in pieces
for t in tests.iter() {
let len = t.input.len();
let mut left = len;
while left > 0 {
let take = (left + 1) / 2;
sh.input_str(&t.input[len - left..take + len - left]);
left = left - take;
}
let out_str = sh.result_str();
assert_eq!(out_str, t.output_str);
sh.reset();
}
}
#[test]
fn test_md5() {
// Examples from wikipedia
let wikipedia_tests = vec![
Test {
input: "",
output_str: "d41d8cd98f00b204e9800998ecf8427e"
},
Test {
input: "The quick brown fox jumps over the lazy dog",
output_str: "9e107d9d372bb6826bd81d3542a419d6"
},
Test {
input: "The quick brown fox jumps over the lazy dog.",
output_str: "e4d909c290d0fb1ca068ffaddf22cbd0"
},
];
let tests = wikipedia_tests;
let mut sh = Md5::new();
test_hash(&mut sh, &tests[..]);
}
#[test]
fn test_1million_random_md5() {
let mut sh = Md5::new();
test_digest_1million_random(
&mut sh,
64,
"7707d6ae4e027c70eea2a935c2296f21");
}
}
#[cfg(all(test, feature = "with-bench"))]
mod bench {
use test::Bencher;
use digest::Digest;
use md5::Md5;
#[bench]
pub fn md5_10(bh: & mut Bencher) {
let mut sh = Md5::new();
let bytes = [1u8; 10];
bh.iter( || {
sh.input(&bytes);
});
bh.bytes = bytes.len() as u64;
}
#[bench]
pub fn md5_1k(bh: & mut Bencher) {
let mut sh = Md5::new();
let bytes = [1u8; 1024];
bh.iter( || {
sh.input(&bytes);
});
bh.bytes = bytes.len() as u64;
}
#[bench]
pub fn md5_64k(bh: & mut Bencher) {
let mut sh = Md5::new();
let bytes = [1u8; 65536];
bh.iter( || {
sh.input(&bytes);
});
bh.bytes = bytes.len() as u64;
}
}