blob: e609c5017efc9adf693a00c4dc573821fc346212 [file] [log] [blame]
// Copyright 2018 Developers of the Rand project.
// Copyright 2013-2015 The Rust Project Developers.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Interface to the random number generator of the operating system.
use std::fmt;
use rand_core::{CryptoRng, RngCore, Error, impls};
/// A random number generator that retrieves randomness straight from the
/// operating system.
///
/// This is the preferred external source of entropy for most applications.
/// Commonly it is used to initialize a user-space RNG, which can then be used
/// to generate random values with much less overhead than `OsRng`.
///
/// You may prefer to use [`EntropyRng`] instead of `OsRng`. It is unlikely, but
/// not entirely theoretical, for `OsRng` to fail. In such cases [`EntropyRng`]
/// falls back on a good alternative entropy source.
///
/// `OsRng::new()` is guaranteed to be very cheap (after the first successful
/// call), and will never consume more than one file handle per process.
///
/// # Platform sources
///
/// | OS | interface
/// |------------------|---------------------------------------------------------
/// | Linux, Android | [`getrandom`][1] system call if available, otherwise [`/dev/urandom`][2] after reading from `/dev/random` once
/// | Windows | [`RtlGenRandom`][3]
/// | macOS, iOS | [`SecRandomCopyBytes`][4]
/// | FreeBSD | [`kern.arandom`][5]
/// | OpenBSD, Bitrig | [`getentropy`][6]
/// | NetBSD | [`/dev/urandom`][7] after reading from `/dev/random` once
/// | Dragonfly BSD | [`/dev/random`][8]
/// | Solaris, illumos | [`getrandom`][9] system call if available, otherwise [`/dev/random`][10]
/// | Fuchsia OS | [`cprng_draw`][11]
/// | Redox | [`rand:`][12]
/// | CloudABI | [`random_get`][13]
/// | Haiku | `/dev/random` (identical to `/dev/urandom`)
/// | Web browsers | [`Crypto.getRandomValues`][14] (see [Support for WebAssembly and ams.js][14])
/// | Node.js | [`crypto.randomBytes`][15] (see [Support for WebAssembly and ams.js][16])
///
/// Rand doesn't have a blanket implementation for all Unix-like operating
/// systems that reads from `/dev/urandom`. This ensures all supported operating
/// systems are using the recommended interface and respect maximum buffer
/// sizes.
///
/// ## Support for WebAssembly and ams.js
///
/// The three Emscripten targets `asmjs-unknown-emscripten`,
/// `wasm32-unknown-emscripten` and `wasm32-experimental-emscripten` use
/// Emscripten's emulation of `/dev/random` on web browsers and Node.js.
///
/// The bare Wasm target `wasm32-unknown-unknown` tries to call the javascript
/// methods directly, using either `stdweb` in combination with `cargo-web` or
/// `wasm-bindgen` depending on what features are activated for this crate.
///
/// ## Early boot
///
/// It is possible that early in the boot process the OS hasn't had enough time
/// yet to collect entropy to securely seed its RNG, especially on virtual
/// machines.
///
/// Some operating systems always block the thread until the RNG is securely
/// seeded. This can take anywhere from a few seconds to more than a minute.
/// Others make a best effort to use a seed from before the shutdown and don't
/// document much.
///
/// A few, Linux, NetBSD and Solaris, offer a choice between blocking, and
/// getting an error. With `try_fill_bytes` we choose to get the error
/// ([`ErrorKind::NotReady`]), while the other methods use a blocking interface.
///
/// On Linux (when the `genrandom` system call is not available) and on NetBSD
/// reading from `/dev/urandom` never blocks, even when the OS hasn't collected
/// enough entropy yet. As a countermeasure we try to do a single read from
/// `/dev/random` until we know the OS RNG is initialized (and store this in a
/// global static).
///
/// # Panics
///
/// `OsRng` is extremely unlikely to fail if `OsRng::new()`, and one read from
/// it, where succesfull. But in case it does fail, only [`try_fill_bytes`] is
/// able to report the cause. Depending on the error the other [`RngCore`]
/// methods will retry several times, and panic in case the error remains.
///
/// [`EntropyRng`]: struct.EntropyRng.html
/// [`RngCore`]: ../trait.RngCore.html
/// [`try_fill_bytes`]: ../trait.RngCore.html#method.tymethod.try_fill_bytes
/// [`ErrorKind::NotReady`]: ../enum.ErrorKind.html#variant.NotReady
///
/// [1]: http://man7.org/linux/man-pages/man2/getrandom.2.html
/// [2]: http://man7.org/linux/man-pages/man4/urandom.4.html
/// [3]: https://msdn.microsoft.com/en-us/library/windows/desktop/aa387694.aspx
/// [4]: https://developer.apple.com/documentation/security/1399291-secrandomcopybytes?language=objc
/// [5]: https://www.freebsd.org/cgi/man.cgi?query=random&sektion=4
/// [6]: https://man.openbsd.org/getentropy.2
/// [7]: http://netbsd.gw.com/cgi-bin/man-cgi?random+4+NetBSD-current
/// [8]: https://leaf.dragonflybsd.org/cgi/web-man?command=random&section=4
/// [9]: https://docs.oracle.com/cd/E88353_01/html/E37841/getrandom-2.html
/// [10]: https://docs.oracle.com/cd/E86824_01/html/E54777/random-7d.html
/// [11]: https://fuchsia.googlesource.com/zircon/+/HEAD/docs/syscalls/cprng_draw.md
/// [12]: https://github.com/redox-os/randd/blob/master/src/main.rs
/// [13]: https://github.com/NuxiNL/cloudabi/blob/v0.20/cloudabi.txt#L1826
/// [14]: https://www.w3.org/TR/WebCryptoAPI/#Crypto-method-getRandomValues
/// [15]: https://nodejs.org/api/crypto.html#crypto_crypto_randombytes_size_callback
/// [16]: #support-for-webassembly-and-amsjs
#[derive(Clone)]
pub struct OsRng(imp::OsRng);
impl fmt::Debug for OsRng {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
self.0.fmt(f)
}
}
impl OsRng {
/// Create a new `OsRng`.
pub fn new() -> Result<OsRng, Error> {
imp::OsRng::new().map(OsRng)
}
}
impl CryptoRng for OsRng {}
impl RngCore for OsRng {
fn next_u32(&mut self) -> u32 {
impls::next_u32_via_fill(self)
}
fn next_u64(&mut self) -> u64 {
impls::next_u64_via_fill(self)
}
fn fill_bytes(&mut self, dest: &mut [u8]) {
use std::{time, thread};
// We cannot return Err(..), so we try to handle before panicking.
const MAX_RETRY_PERIOD: u32 = 10; // max 10s
const WAIT_DUR_MS: u32 = 100; // retry every 100ms
let wait_dur = time::Duration::from_millis(WAIT_DUR_MS as u64);
const RETRY_LIMIT: u32 = (MAX_RETRY_PERIOD * 1000) / WAIT_DUR_MS;
const TRANSIENT_RETRIES: u32 = 8;
let mut err_count = 0;
let mut error_logged = false;
// Maybe block until the OS RNG is initialized
let mut read = 0;
if let Ok(n) = self.0.test_initialized(dest, true) { read = n };
let dest = &mut dest[read..];
loop {
if let Err(e) = self.try_fill_bytes(dest) {
if err_count >= RETRY_LIMIT {
error!("OsRng failed too many times; last error: {}", e);
panic!("OsRng failed too many times; last error: {}", e);
}
if e.kind.should_wait() {
if !error_logged {
warn!("OsRng failed; waiting up to {}s and retrying. Error: {}",
MAX_RETRY_PERIOD, e);
error_logged = true;
}
err_count += 1;
thread::sleep(wait_dur);
continue;
} else if e.kind.should_retry() {
if !error_logged {
warn!("OsRng failed; retrying up to {} times. Error: {}",
TRANSIENT_RETRIES, e);
error_logged = true;
}
err_count += (RETRY_LIMIT + TRANSIENT_RETRIES - 1)
/ TRANSIENT_RETRIES; // round up
continue;
} else {
error!("OsRng failed: {}", e);
panic!("OsRng fatal error: {}", e);
}
}
break;
}
}
fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> {
// Some systems do not support reading 0 random bytes.
// (And why waste a system call?)
if dest.len() == 0 { return Ok(()); }
let read = self.0.test_initialized(dest, false)?;
let dest = &mut dest[read..];
let max = self.0.max_chunk_size();
if dest.len() <= max {
trace!("OsRng: reading {} bytes via {}",
dest.len(), self.0.method_str());
} else {
trace!("OsRng: reading {} bytes via {} in {} chunks of {} bytes",
dest.len(), self.0.method_str(), (dest.len() + max) / max, max);
}
for slice in dest.chunks_mut(max) {
self.0.fill_chunk(slice)?;
}
Ok(())
}
}
trait OsRngImpl where Self: Sized {
// Create a new `OsRng` platform interface.
fn new() -> Result<Self, Error>;
// Fill a chunk with random bytes.
fn fill_chunk(&mut self, dest: &mut [u8]) -> Result<(), Error>;
// Test whether the OS RNG is initialized. This method may not be possible
// to support cheaply (or at all) on all operating systems.
//
// If `blocking` is set, this will cause the OS the block execution until
// its RNG is initialized.
//
// Random values that are read while this are stored in `dest`, the amount
// of read bytes is returned.
fn test_initialized(&mut self, _dest: &mut [u8], _blocking: bool)
-> Result<usize, Error> { Ok(0) }
// Maximum chunk size supported.
fn max_chunk_size(&self) -> usize { ::core::usize::MAX }
// Name of the OS interface (used for logging).
fn method_str(&self) -> &'static str;
}
// Helper functions to read from a random device such as `/dev/urandom`.
//
// All instances use a single internal file handle, to prevent possible
// exhaustion of file descriptors.
#[cfg(any(target_os = "linux", target_os = "android",
target_os = "netbsd", target_os = "dragonfly",
target_os = "solaris", target_os = "redox",
target_os = "haiku", target_os = "emscripten"))]
mod random_device {
use {Error, ErrorKind};
use std::fs::File;
use std::io;
use std::io::Read;
use std::sync::{Once, Mutex, ONCE_INIT};
// TODO: remove outer Option when `Mutex::new(None)` is a constant expression
static mut READ_RNG_FILE: Option<Mutex<Option<File>>> = None;
static READ_RNG_ONCE: Once = ONCE_INIT;
#[allow(unused)]
pub fn open<F>(path: &'static str, open_fn: F) -> Result<(), Error>
where F: Fn(&'static str) -> Result<File, io::Error>
{
READ_RNG_ONCE.call_once(|| {
unsafe { READ_RNG_FILE = Some(Mutex::new(None)) }
});
// We try opening the file outside the `call_once` fn because we cannot
// clone the error, thus we must retry on failure.
let mutex = unsafe { READ_RNG_FILE.as_ref().unwrap() };
let mut guard = mutex.lock().unwrap();
if (*guard).is_none() {
info!("OsRng: opening random device {}", path);
let file = open_fn(path).map_err(map_err)?;
*guard = Some(file);
};
Ok(())
}
pub fn read(dest: &mut [u8]) -> Result<(), Error> {
// We expect this function only to be used after `random_device::open`
// was succesful. Therefore we can assume that our memory was set with a
// valid object.
let mutex = unsafe { READ_RNG_FILE.as_ref().unwrap() };
let mut guard = mutex.lock().unwrap();
let file = (*guard).as_mut().unwrap();
// Use `std::io::read_exact`, which retries on `ErrorKind::Interrupted`.
file.read_exact(dest).map_err(|err| {
Error::with_cause(ErrorKind::Unavailable,
"error reading random device", err)
})
}
pub fn map_err(err: io::Error) -> Error {
match err.kind() {
io::ErrorKind::Interrupted =>
Error::new(ErrorKind::Transient, "interrupted"),
io::ErrorKind::WouldBlock =>
Error::with_cause(ErrorKind::NotReady,
"OS RNG not yet seeded", err),
_ => Error::with_cause(ErrorKind::Unavailable,
"error while opening random device", err)
}
}
}
#[cfg(any(target_os = "linux", target_os = "android"))]
mod imp {
extern crate libc;
use {Error, ErrorKind};
use super::random_device;
use super::OsRngImpl;
use std::io;
use std::io::Read;
use std::fs::{File, OpenOptions};
use std::os::unix::fs::OpenOptionsExt;
use std::sync::atomic::{AtomicBool, ATOMIC_BOOL_INIT, Ordering};
use std::sync::{Once, ONCE_INIT};
#[derive(Clone, Debug)]
pub struct OsRng {
method: OsRngMethod,
initialized: bool,
}
#[derive(Clone, Debug)]
enum OsRngMethod {
GetRandom,
RandomDevice,
}
impl OsRngImpl for OsRng {
fn new() -> Result<OsRng, Error> {
if is_getrandom_available() {
return Ok(OsRng { method: OsRngMethod::GetRandom,
initialized: false });
}
random_device::open("/dev/urandom", &|p| File::open(p))?;
Ok(OsRng { method: OsRngMethod::RandomDevice, initialized: false })
}
fn fill_chunk(&mut self, dest: &mut [u8]) -> Result<(), Error> {
match self.method {
OsRngMethod::GetRandom => getrandom_try_fill(dest, false),
OsRngMethod::RandomDevice => random_device::read(dest),
}
}
fn test_initialized(&mut self, dest: &mut [u8], blocking: bool)
-> Result<usize, Error>
{
static OS_RNG_INITIALIZED: AtomicBool = ATOMIC_BOOL_INIT;
if !self.initialized {
self.initialized = OS_RNG_INITIALIZED.load(Ordering::Relaxed);
}
if self.initialized { return Ok(0); }
let result = match self.method {
OsRngMethod::GetRandom => {
getrandom_try_fill(dest, blocking)?;
Ok(dest.len())
}
OsRngMethod::RandomDevice => {
info!("OsRng: testing random device /dev/random");
let mut file = OpenOptions::new()
.read(true)
.custom_flags(if blocking { 0 } else { libc::O_NONBLOCK })
.open("/dev/random")
.map_err(random_device::map_err)?;
file.read(&mut dest[..1]).map_err(random_device::map_err)?;
Ok(1)
}
};
OS_RNG_INITIALIZED.store(true, Ordering::Relaxed);
self.initialized = true;
result
}
fn method_str(&self) -> &'static str {
match self.method {
OsRngMethod::GetRandom => "getrandom",
OsRngMethod::RandomDevice => "/dev/urandom",
}
}
}
#[cfg(target_arch = "x86_64")]
const NR_GETRANDOM: libc::c_long = 318;
#[cfg(target_arch = "x86")]
const NR_GETRANDOM: libc::c_long = 355;
#[cfg(target_arch = "arm")]
const NR_GETRANDOM: libc::c_long = 384;
#[cfg(target_arch = "aarch64")]
const NR_GETRANDOM: libc::c_long = 278;
#[cfg(target_arch = "s390x")]
const NR_GETRANDOM: libc::c_long = 349;
#[cfg(target_arch = "powerpc")]
const NR_GETRANDOM: libc::c_long = 359;
#[cfg(target_arch = "powerpc64")]
const NR_GETRANDOM: libc::c_long = 359;
#[cfg(target_arch = "mips")] // old ABI
const NR_GETRANDOM: libc::c_long = 4353;
#[cfg(target_arch = "mips64")]
const NR_GETRANDOM: libc::c_long = 5313;
#[cfg(target_arch = "sparc")]
const NR_GETRANDOM: libc::c_long = 347;
#[cfg(target_arch = "sparc64")]
const NR_GETRANDOM: libc::c_long = 347;
#[cfg(not(any(target_arch = "x86_64", target_arch = "x86",
target_arch = "arm", target_arch = "aarch64",
target_arch = "s390x", target_arch = "powerpc",
target_arch = "powerpc64", target_arch = "mips",
target_arch = "mips64", target_arch = "sparc",
target_arch = "sparc64")))]
const NR_GETRANDOM: libc::c_long = 0;
fn getrandom(buf: &mut [u8], blocking: bool) -> libc::c_long {
const GRND_NONBLOCK: libc::c_uint = 0x0001;
if NR_GETRANDOM == 0 { return -1 };
unsafe {
libc::syscall(NR_GETRANDOM, buf.as_mut_ptr(), buf.len(),
if blocking { 0 } else { GRND_NONBLOCK })
}
}
fn getrandom_try_fill(dest: &mut [u8], blocking: bool) -> Result<(), Error> {
let mut read = 0;
while read < dest.len() {
let result = getrandom(&mut dest[read..], blocking);
if result == -1 {
let err = io::Error::last_os_error();
let kind = err.kind();
if kind == io::ErrorKind::Interrupted {
continue;
} else if kind == io::ErrorKind::WouldBlock {
return Err(Error::with_cause(
ErrorKind::NotReady,
"getrandom not ready",
err,
));
} else {
return Err(Error::with_cause(
ErrorKind::Unavailable,
"unexpected getrandom error",
err,
));
}
} else {
read += result as usize;
}
}
Ok(())
}
fn is_getrandom_available() -> bool {
static CHECKER: Once = ONCE_INIT;
static AVAILABLE: AtomicBool = ATOMIC_BOOL_INIT;
if NR_GETRANDOM == 0 { return false };
CHECKER.call_once(|| {
debug!("OsRng: testing getrandom");
let mut buf: [u8; 0] = [];
let result = getrandom(&mut buf, false);
let available = if result == -1 {
let err = io::Error::last_os_error().raw_os_error();
err != Some(libc::ENOSYS)
} else {
true
};
AVAILABLE.store(available, Ordering::Relaxed);
info!("OsRng: using {}", if available { "getrandom" } else { "/dev/urandom" });
});
AVAILABLE.load(Ordering::Relaxed)
}
}
#[cfg(target_os = "netbsd")]
mod imp {
use Error;
use super::random_device;
use super::OsRngImpl;
use std::fs::File;
use std::io::Read;
use std::sync::atomic::{AtomicBool, ATOMIC_BOOL_INIT, Ordering};
#[derive(Clone, Debug)]
pub struct OsRng { initialized: bool }
impl OsRngImpl for OsRng {
fn new() -> Result<OsRng, Error> {
random_device::open("/dev/urandom", &|p| File::open(p))?;
Ok(OsRng { initialized: false })
}
fn fill_chunk(&mut self, dest: &mut [u8]) -> Result<(), Error> {
random_device::read(dest)
}
// Read a single byte from `/dev/random` to determine if the OS RNG is
// already seeded. NetBSD always blocks if not yet ready.
fn test_initialized(&mut self, dest: &mut [u8], _blocking: bool)
-> Result<usize, Error>
{
static OS_RNG_INITIALIZED: AtomicBool = ATOMIC_BOOL_INIT;
if !self.initialized {
self.initialized = OS_RNG_INITIALIZED.load(Ordering::Relaxed);
}
if self.initialized { return Ok(0); }
info!("OsRng: testing random device /dev/random");
let mut file =
File::open("/dev/random").map_err(random_device::map_err)?;
file.read(&mut dest[..1]).map_err(random_device::map_err)?;
OS_RNG_INITIALIZED.store(true, Ordering::Relaxed);
self.initialized = true;
Ok(1)
}
fn method_str(&self) -> &'static str { "/dev/urandom" }
}
}
#[cfg(any(target_os = "dragonfly",
target_os = "haiku",
target_os = "emscripten"))]
mod imp {
use Error;
use super::random_device;
use super::OsRngImpl;
use std::fs::File;
#[derive(Clone, Debug)]
pub struct OsRng();
impl OsRngImpl for OsRng {
fn new() -> Result<OsRng, Error> {
random_device::open("/dev/random", &|p| File::open(p))?;
Ok(OsRng())
}
fn fill_chunk(&mut self, dest: &mut [u8]) -> Result<(), Error> {
random_device::read(dest)
}
#[cfg(target_os = "emscripten")]
fn max_chunk_size(&self) -> usize {
// `Crypto.getRandomValues` documents `dest` should be at most 65536
// bytes. `crypto.randomBytes` documents: "To minimize threadpool
// task length variation, partition large randomBytes requests when
// doing so as part of fulfilling a client request.
65536
}
fn method_str(&self) -> &'static str { "/dev/random" }
}
}
// Read from `/dev/random`, with chunks of limited size (1040 bytes).
// `/dev/random` uses the Hash_DRBG with SHA512 algorithm from NIST SP 800-90A.
// `/dev/urandom` uses the FIPS 186-2 algorithm, which is considered less
// secure. We choose to read from `/dev/random`.
//
// Since Solaris 11.3 the `getrandom` syscall is available. To make sure we can
// compile on both Solaris and on OpenSolaris derivatives, that do not have the
// function, we do a direct syscall instead of calling a library function.
//
// We have no way to differentiate between Solaris, illumos, SmartOS, etc.
#[cfg(target_os = "solaris")]
mod imp {
extern crate libc;
use {Error, ErrorKind};
use super::random_device;
use super::OsRngImpl;
use std::io;
use std::io::Read;
use std::fs::{File, OpenOptions};
use std::os::unix::fs::OpenOptionsExt;
use std::sync::atomic::{AtomicBool, ATOMIC_BOOL_INIT, Ordering};
#[derive(Clone, Debug)]
pub struct OsRng {
method: OsRngMethod,
initialized: bool,
}
#[derive(Clone, Debug)]
enum OsRngMethod {
GetRandom,
RandomDevice,
}
impl OsRngImpl for OsRng {
fn new() -> Result<OsRng, Error> {
if is_getrandom_available() {
return Ok(OsRng { method: OsRngMethod::GetRandom,
initialized: false });
}
let open = |p| OpenOptions::new()
.read(true)
.custom_flags(libc::O_NONBLOCK)
.open(p);
random_device::open("/dev/random", &open)?;
Ok(OsRng { method: OsRngMethod::RandomDevice, initialized: false })
}
fn fill_chunk(&mut self, dest: &mut [u8]) -> Result<(), Error> {
match self.method {
OsRngMethod::GetRandom => getrandom_try_fill(dest, false),
OsRngMethod::RandomDevice => random_device::read(dest),
}
}
fn test_initialized(&mut self, dest: &mut [u8], blocking: bool)
-> Result<usize, Error>
{
static OS_RNG_INITIALIZED: AtomicBool = ATOMIC_BOOL_INIT;
if !self.initialized {
self.initialized = OS_RNG_INITIALIZED.load(Ordering::Relaxed);
}
if self.initialized { return Ok(0); }
let chunk_len = ::core::cmp::min(1024, dest.len());
let dest = &mut dest[..chunk_len];
match self.method {
OsRngMethod::GetRandom => getrandom_try_fill(dest, blocking)?,
OsRngMethod::RandomDevice => {
if blocking {
info!("OsRng: testing random device /dev/random");
// We already have a non-blocking handle, but now need a
// blocking one. Not much choice except opening it twice
let mut file = File::open("/dev/random")
.map_err(random_device::map_err)?;
file.read(dest).map_err(random_device::map_err)?;
} else {
self.fill_chunk(dest)?;
}
}
};
OS_RNG_INITIALIZED.store(true, Ordering::Relaxed);
self.initialized = true;
Ok(chunk_len)
}
fn max_chunk_size(&self) -> usize {
// The documentation says 1024 is the maximum for getrandom, but
// 1040 for /dev/random.
1024
}
fn method_str(&self) -> &'static str {
match self.method {
OsRngMethod::GetRandom => "getrandom",
OsRngMethod::RandomDevice => "/dev/random",
}
}
}
fn getrandom(buf: &mut [u8], blocking: bool) -> libc::c_long {
extern "C" {
fn syscall(number: libc::c_long, ...) -> libc::c_long;
}
const SYS_GETRANDOM: libc::c_long = 143;
const GRND_NONBLOCK: libc::c_uint = 0x0001;
const GRND_RANDOM: libc::c_uint = 0x0002;
unsafe {
syscall(SYS_GETRANDOM, buf.as_mut_ptr(), buf.len(),
if blocking { 0 } else { GRND_NONBLOCK } | GRND_RANDOM)
}
}
fn getrandom_try_fill(dest: &mut [u8], blocking: bool) -> Result<(), Error> {
let result = getrandom(dest, blocking);
if result == -1 || result == 0 {
let err = io::Error::last_os_error();
let kind = err.kind();
if kind == io::ErrorKind::WouldBlock {
return Err(Error::with_cause(
ErrorKind::NotReady,
"getrandom not ready",
err,
));
} else {
return Err(Error::with_cause(
ErrorKind::Unavailable,
"unexpected getrandom error",
err,
));
}
} else if result != dest.len() as i64 {
return Err(Error::new(ErrorKind::Unavailable,
"unexpected getrandom error"));
}
Ok(())
}
fn is_getrandom_available() -> bool {
use std::sync::atomic::{AtomicBool, ATOMIC_BOOL_INIT, Ordering};
use std::sync::{Once, ONCE_INIT};
static CHECKER: Once = ONCE_INIT;
static AVAILABLE: AtomicBool = ATOMIC_BOOL_INIT;
CHECKER.call_once(|| {
debug!("OsRng: testing getrandom");
let mut buf: [u8; 0] = [];
let result = getrandom(&mut buf, false);
let available = if result == -1 {
let err = io::Error::last_os_error().raw_os_error();
err != Some(libc::ENOSYS)
} else {
true
};
AVAILABLE.store(available, Ordering::Relaxed);
info!("OsRng: using {}", if available { "getrandom" } else { "/dev/random" });
});
AVAILABLE.load(Ordering::Relaxed)
}
}
#[cfg(target_os = "cloudabi")]
mod imp {
extern crate cloudabi;
use std::io;
use {Error, ErrorKind};
use super::OsRngImpl;
#[derive(Clone, Debug)]
pub struct OsRng;
impl OsRngImpl for OsRng {
fn new() -> Result<OsRng, Error> { Ok(OsRng) }
fn fill_chunk(&mut self, dest: &mut [u8]) -> Result<(), Error> {
let errno = unsafe { cloudabi::random_get(dest) };
if errno == cloudabi::errno::SUCCESS {
Ok(())
} else {
// Cloudlibc provides its own `strerror` implementation so we
// can use `from_raw_os_error` here.
Err(Error::with_cause(
ErrorKind::Unavailable,
"random_get() system call failed",
io::Error::from_raw_os_error(errno as i32),
))
}
}
fn method_str(&self) -> &'static str { "cloudabi::random_get" }
}
}
#[cfg(any(target_os = "macos", target_os = "ios"))]
mod imp {
extern crate libc;
use {Error, ErrorKind};
use super::OsRngImpl;
use std::io;
use self::libc::{c_int, size_t};
#[derive(Clone, Debug)]
pub struct OsRng;
enum SecRandom {}
#[allow(non_upper_case_globals)]
const kSecRandomDefault: *const SecRandom = 0 as *const SecRandom;
#[link(name = "Security", kind = "framework")]
extern {
fn SecRandomCopyBytes(rnd: *const SecRandom,
count: size_t, bytes: *mut u8) -> c_int;
}
impl OsRngImpl for OsRng {
fn new() -> Result<OsRng, Error> { Ok(OsRng) }
fn fill_chunk(&mut self, dest: &mut [u8]) -> Result<(), Error> {
let ret = unsafe {
SecRandomCopyBytes(kSecRandomDefault,
dest.len() as size_t,
dest.as_mut_ptr())
};
if ret == -1 {
Err(Error::with_cause(
ErrorKind::Unavailable,
"couldn't generate random bytes",
io::Error::last_os_error()))
} else {
Ok(())
}
}
fn method_str(&self) -> &'static str { "SecRandomCopyBytes" }
}
}
#[cfg(target_os = "freebsd")]
mod imp {
extern crate libc;
use {Error, ErrorKind};
use super::OsRngImpl;
use std::ptr;
use std::io;
#[derive(Clone, Debug)]
pub struct OsRng;
impl OsRngImpl for OsRng {
fn new() -> Result<OsRng, Error> { Ok(OsRng) }
fn fill_chunk(&mut self, dest: &mut [u8]) -> Result<(), Error> {
let mib = [libc::CTL_KERN, libc::KERN_ARND];
let mut len = dest.len();
let ret = unsafe {
libc::sysctl(mib.as_ptr(), mib.len() as libc::c_uint,
dest.as_mut_ptr() as *mut _, &mut len,
ptr::null(), 0)
};
if ret == -1 || len != dest.len() {
return Err(Error::with_cause(
ErrorKind::Unavailable,
"kern.arandom sysctl failed",
io::Error::last_os_error()));
}
Ok(())
}
fn max_chunk_size(&self) -> usize { 256 }
fn method_str(&self) -> &'static str { "kern.arandom" }
}
}
#[cfg(any(target_os = "openbsd", target_os = "bitrig"))]
mod imp {
extern crate libc;
use {Error, ErrorKind};
use super::OsRngImpl;
use std::io;
#[derive(Clone, Debug)]
pub struct OsRng;
impl OsRngImpl for OsRng {
fn new() -> Result<OsRng, Error> { Ok(OsRng) }
fn fill_chunk(&mut self, dest: &mut [u8]) -> Result<(), Error> {
let ret = unsafe {
libc::getentropy(dest.as_mut_ptr() as *mut libc::c_void, dest.len())
};
if ret == -1 {
return Err(Error::with_cause(
ErrorKind::Unavailable,
"getentropy failed",
io::Error::last_os_error()));
}
Ok(())
}
fn max_chunk_size(&self) -> usize { 256 }
fn method_str(&self) -> &'static str { "getentropy" }
}
}
#[cfg(target_os = "redox")]
mod imp {
use Error;
use super::random_device;
use super::OsRngImpl;
use std::fs::File;
#[derive(Clone, Debug)]
pub struct OsRng();
impl OsRngImpl for OsRng {
fn new() -> Result<OsRng, Error> {
random_device::open("rand:", &|p| File::open(p))?;
Ok(OsRng())
}
fn fill_chunk(&mut self, dest: &mut [u8]) -> Result<(), Error> {
random_device::read(dest)
}
fn method_str(&self) -> &'static str { "'rand:'" }
}
}
#[cfg(target_os = "fuchsia")]
mod imp {
extern crate fuchsia_zircon;
use {Error, ErrorKind};
use super::OsRngImpl;
#[derive(Clone, Debug)]
pub struct OsRng;
impl OsRngImpl for OsRng {
fn new() -> Result<OsRng, Error> { Ok(OsRng) }
fn fill_chunk(&mut self, dest: &mut [u8]) -> Result<(), Error> {
let mut read = 0;
while read < dest.len() {
match fuchsia_zircon::cprng_draw(&mut dest[read..]) {
Ok(actual) => read += actual,
Err(e) => {
return Err(Error::with_cause(
ErrorKind::Unavailable,
"cprng_draw failed",
e.into_io_error()));
}
};
}
Ok(())
}
fn max_chunk_size(&self) -> usize {
fuchsia_zircon::sys::ZX_CPRNG_DRAW_MAX_LEN
}
fn method_str(&self) -> &'static str { "cprng_draw" }
}
}
#[cfg(windows)]
mod imp {
extern crate winapi;
use {Error, ErrorKind};
use super::OsRngImpl;
use std::io;
use self::winapi::shared::minwindef::ULONG;
use self::winapi::um::ntsecapi::RtlGenRandom;
use self::winapi::um::winnt::PVOID;
#[derive(Clone, Debug)]
pub struct OsRng;
impl OsRngImpl for OsRng {
fn new() -> Result<OsRng, Error> { Ok(OsRng) }
fn fill_chunk(&mut self, dest: &mut [u8]) -> Result<(), Error> {
let ret = unsafe {
RtlGenRandom(dest.as_mut_ptr() as PVOID, dest.len() as ULONG)
};
if ret == 0 {
return Err(Error::with_cause(
ErrorKind::Unavailable,
"couldn't generate random bytes",
io::Error::last_os_error()));
}
Ok(())
}
fn max_chunk_size(&self) -> usize { <ULONG>::max_value() as usize }
fn method_str(&self) -> &'static str { "RtlGenRandom" }
}
}
#[cfg(all(target_arch = "wasm32",
not(target_os = "emscripten"),
feature = "stdweb"))]
mod imp {
use std::mem;
use stdweb::unstable::TryInto;
use stdweb::web::error::Error as WebError;
use {Error, ErrorKind};
use super::OsRngImpl;
#[derive(Clone, Debug)]
enum OsRngMethod {
Browser,
Node
}
#[derive(Clone, Debug)]
pub struct OsRng(OsRngMethod);
impl OsRngImpl for OsRng {
fn new() -> Result<OsRng, Error> {
let result = js! {
try {
if (
typeof self === "object" &&
typeof self.crypto === "object" &&
typeof self.crypto.getRandomValues === "function"
) {
return { success: true, ty: 1 };
}
if (typeof require("crypto").randomBytes === "function") {
return { success: true, ty: 2 };
}
return { success: false, error: new Error("not supported") };
} catch(err) {
return { success: false, error: err };
}
};
if js!{ return @{ result.as_ref() }.success } == true {
let ty = js!{ return @{ result }.ty };
if ty == 1 { Ok(OsRng(OsRngMethod::Browser)) }
else if ty == 2 { Ok(OsRng(OsRngMethod::Node)) }
else { unreachable!() }
} else {
let err: WebError = js!{ return @{ result }.error }.try_into().unwrap();
Err(Error::with_cause(ErrorKind::Unavailable, "WASM Error", err))
}
}
fn fill_chunk(&mut self, dest: &mut [u8]) -> Result<(), Error> {
assert_eq!(mem::size_of::<usize>(), 4);
let len = dest.len() as u32;
let ptr = dest.as_mut_ptr() as i32;
let result = match self.0 {
OsRngMethod::Browser => js! {
try {
let array = new Uint8Array(@{ len });
self.crypto.getRandomValues(array);
HEAPU8.set(array, @{ ptr });
return { success: true };
} catch(err) {
return { success: false, error: err };
}
},
OsRngMethod::Node => js! {
try {
let bytes = require("crypto").randomBytes(@{ len });
HEAPU8.set(new Uint8Array(bytes), @{ ptr });
return { success: true };
} catch(err) {
return { success: false, error: err };
}
}
};
if js!{ return @{ result.as_ref() }.success } == true {
Ok(())
} else {
let err: WebError = js!{ return @{ result }.error }.try_into().unwrap();
Err(Error::with_cause(ErrorKind::Unexpected, "WASM Error", err))
}
}
fn max_chunk_size(&self) -> usize { 65536 }
fn method_str(&self) -> &'static str {
match self.0 {
OsRngMethod::Browser => "Crypto.getRandomValues",
OsRngMethod::Node => "crypto.randomBytes",
}
}
}
}
#[cfg(all(target_arch = "wasm32",
not(target_os = "emscripten"),
not(feature = "stdweb"),
feature = "wasm-bindgen"))]
mod imp {
use __wbg_shims::*;
use {Error, ErrorKind};
use super::OsRngImpl;
#[derive(Clone, Debug)]
pub enum OsRng {
Node(NodeCrypto),
Browser(BrowserCrypto),
}
impl OsRngImpl for OsRng {
fn new() -> Result<OsRng, Error> {
// First up we need to detect if we're running in node.js or a
// browser. To do this we get ahold of the `this` object (in a bit
// of a roundabout fashion).
//
// Once we have `this` we look at its `self` property, which is
// only defined on the web (either a main window or web worker).
let this = Function::new("return this").call(&JsValue::undefined());
assert!(this != JsValue::undefined());
let this = This::from(this);
let is_browser = this.self_() != JsValue::undefined();
if !is_browser {
return Ok(OsRng::Node(node_require("crypto")))
}
// If `self` is defined then we're in a browser somehow (main window
// or web worker). Here we want to try to use
// `crypto.getRandomValues`, but if `crypto` isn't defined we assume
// we're in an older web browser and the OS RNG isn't available.
let crypto = this.crypto();
if crypto.is_undefined() {
let msg = "self.crypto is undefined";
return Err(Error::new(ErrorKind::Unavailable, msg))
}
// Test if `crypto.getRandomValues` is undefined as well
let crypto: BrowserCrypto = crypto.into();
if crypto.get_random_values_fn().is_undefined() {
let msg = "crypto.getRandomValues is undefined";
return Err(Error::new(ErrorKind::Unavailable, msg))
}
// Ok! `self.crypto.getRandomValues` is a defined value, so let's
// assume we can do browser crypto.
Ok(OsRng::Browser(crypto))
}
fn fill_chunk(&mut self, dest: &mut [u8]) -> Result<(), Error> {
match *self {
OsRng::Node(ref n) => n.random_fill_sync(dest),
OsRng::Browser(ref n) => n.get_random_values(dest),
}
Ok(())
}
fn max_chunk_size(&self) -> usize {
match *self {
OsRng::Node(_) => usize::max_value(),
OsRng::Browser(_) => {
// see https://developer.mozilla.org/en-US/docs/Web/API/Crypto/getRandomValues
//
// where it says:
//
// > A QuotaExceededError DOMException is thrown if the
// > requested length is greater than 65536 bytes.
65536
}
}
}
fn method_str(&self) -> &'static str {
match *self {
OsRng::Node(_) => "crypto.randomFillSync",
OsRng::Browser(_) => "crypto.getRandomValues",
}
}
}
}
#[cfg(test)]
mod test {
use RngCore;
use super::OsRng;
#[test]
fn test_os_rng() {
let mut r = OsRng::new().unwrap();
r.next_u32();
r.next_u64();
let mut v1 = [0u8; 1000];
r.fill_bytes(&mut v1);
let mut v2 = [0u8; 1000];
r.fill_bytes(&mut v2);
let mut n_diff_bits = 0;
for i in 0..v1.len() {
n_diff_bits += (v1[i] ^ v2[i]).count_ones();
}
// Check at least 1 bit per byte differs. p(failure) < 1e-1000 with random input.
assert!(n_diff_bits >= v1.len() as u32);
}
#[test]
fn test_os_rng_empty() {
let mut r = OsRng::new().unwrap();
let mut empty = [0u8; 0];
r.fill_bytes(&mut empty);
}
#[test]
fn test_os_rng_huge() {
let mut r = OsRng::new().unwrap();
let mut huge = [0u8; 100_000];
r.fill_bytes(&mut huge);
}
#[cfg(not(any(target_arch = "wasm32", target_arch = "asmjs")))]
#[test]
fn test_os_rng_tasks() {
use std::sync::mpsc::channel;
use std::thread;
let mut txs = vec!();
for _ in 0..20 {
let (tx, rx) = channel();
txs.push(tx);
thread::spawn(move|| {
// wait until all the tasks are ready to go.
rx.recv().unwrap();
// deschedule to attempt to interleave things as much
// as possible (XXX: is this a good test?)
let mut r = OsRng::new().unwrap();
thread::yield_now();
let mut v = [0u8; 1000];
for _ in 0..100 {
r.next_u32();
thread::yield_now();
r.next_u64();
thread::yield_now();
r.fill_bytes(&mut v);
thread::yield_now();
}
});
}
// start all the tasks
for tx in txs.iter() {
tx.send(()).unwrap();
}
}
}