blob: 17bcc5528d60982b77c1f618efcee7eb21c65bda [file] [log] [blame]
// Copyright 2018 Developers of the Rand project.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! The ChaCha random number generator.
#[cfg(not(feature = "std"))] use core;
#[cfg(feature = "std")] use std as core;
use self::core::fmt;
use crate::guts::ChaCha;
use rand_core::block::{BlockRng, BlockRngCore};
use rand_core::{CryptoRng, Error, RngCore, SeedableRng};
const STREAM_PARAM_NONCE: u32 = 1;
const STREAM_PARAM_BLOCK: u32 = 0;
// NB. this must remain consistent with some currently hard-coded numbers in this module
const BUF_BLOCKS: u8 = 4;
// number of 32-bit words per ChaCha block (fixed by algorithm definition)
const BLOCK_WORDS: u8 = 16;
pub struct Array64<T>([T; 64]);
impl<T> Default for Array64<T>
where T: Default
{
#[rustfmt::skip]
fn default() -> Self {
Self([
T::default(), T::default(), T::default(), T::default(), T::default(), T::default(), T::default(), T::default(),
T::default(), T::default(), T::default(), T::default(), T::default(), T::default(), T::default(), T::default(),
T::default(), T::default(), T::default(), T::default(), T::default(), T::default(), T::default(), T::default(),
T::default(), T::default(), T::default(), T::default(), T::default(), T::default(), T::default(), T::default(),
T::default(), T::default(), T::default(), T::default(), T::default(), T::default(), T::default(), T::default(),
T::default(), T::default(), T::default(), T::default(), T::default(), T::default(), T::default(), T::default(),
T::default(), T::default(), T::default(), T::default(), T::default(), T::default(), T::default(), T::default(),
T::default(), T::default(), T::default(), T::default(), T::default(), T::default(), T::default(), T::default(),
])
}
}
impl<T> AsRef<[T]> for Array64<T> {
fn as_ref(&self) -> &[T] {
&self.0
}
}
impl<T> AsMut<[T]> for Array64<T> {
fn as_mut(&mut self) -> &mut [T] {
&mut self.0
}
}
impl<T> Clone for Array64<T>
where T: Copy + Default
{
fn clone(&self) -> Self {
let mut new = Self::default();
new.0.copy_from_slice(&self.0);
new
}
}
impl<T> fmt::Debug for Array64<T> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "Array64 {{}}")
}
}
macro_rules! chacha_impl {
($ChaChaXCore:ident, $ChaChaXRng:ident, $rounds:expr, $doc:expr) => {
#[doc=$doc]
#[derive(Clone, PartialEq, Eq)]
pub struct $ChaChaXCore {
state: ChaCha,
}
// Custom Debug implementation that does not expose the internal state
impl fmt::Debug for $ChaChaXCore {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "ChaChaXCore {{}}")
}
}
impl BlockRngCore for $ChaChaXCore {
type Item = u32;
type Results = Array64<u32>;
#[inline]
fn generate(&mut self, r: &mut Self::Results) {
// Fill slice of words by writing to equivalent slice of bytes, then fixing endianness.
self.state.refill4($rounds, unsafe {
&mut *(&mut *r as *mut Array64<u32> as *mut [u8; 256])
});
for x in r.as_mut() {
*x = x.to_le();
}
}
}
impl SeedableRng for $ChaChaXCore {
type Seed = [u8; 32];
#[inline]
fn from_seed(seed: Self::Seed) -> Self {
$ChaChaXCore { state: ChaCha::new(&seed, &[0u8; 8]) }
}
}
impl CryptoRng for $ChaChaXCore {}
/// A cryptographically secure random number generator that uses the ChaCha algorithm.
///
/// ChaCha is a stream cipher designed by Daniel J. Bernstein[^1], that we use as an RNG. It is
/// an improved variant of the Salsa20 cipher family, which was selected as one of the "stream
/// ciphers suitable for widespread adoption" by eSTREAM[^2].
///
/// ChaCha uses add-rotate-xor (ARX) operations as its basis. These are safe against timing
/// attacks, although that is mostly a concern for ciphers and not for RNGs. We provide a SIMD
/// implementation to support high throughput on a variety of common hardware platforms.
///
/// With the ChaCha algorithm it is possible to choose the number of rounds the core algorithm
/// should run. The number of rounds is a tradeoff between performance and security, where 8
/// rounds is the minimum potentially secure configuration, and 20 rounds is widely used as a
/// conservative choice.
///
/// We use a 64-bit counter and 64-bit stream identifier as in Bernstein's implementation[^1]
/// except that we use a stream identifier in place of a nonce. A 64-bit counter over 64-byte
/// (16 word) blocks allows 1 ZiB of output before cycling, and the stream identifier allows
/// 2<sup>64</sup> unique streams of output per seed. Both counter and stream are initialized
/// to zero but may be set via the `set_word_pos` and `set_stream` methods.
///
/// The word layout is:
///
/// ```text
/// constant constant constant constant
/// seed seed seed seed
/// seed seed seed seed
/// counter counter stream_id stream_id
/// ```
///
/// This implementation uses an output buffer of sixteen `u32` words, and uses
/// [`BlockRng`] to implement the [`RngCore`] methods.
///
/// [^1]: D. J. Bernstein, [*ChaCha, a variant of Salsa20*](
/// https://cr.yp.to/chacha.html)
///
/// [^2]: [eSTREAM: the ECRYPT Stream Cipher Project](
/// http://www.ecrypt.eu.org/stream/)
#[derive(Clone, Debug)]
pub struct $ChaChaXRng {
rng: BlockRng<$ChaChaXCore>,
}
impl SeedableRng for $ChaChaXRng {
type Seed = [u8; 32];
#[inline]
fn from_seed(seed: Self::Seed) -> Self {
let core = $ChaChaXCore::from_seed(seed);
Self {
rng: BlockRng::new(core),
}
}
}
impl RngCore for $ChaChaXRng {
#[inline]
fn next_u32(&mut self) -> u32 {
self.rng.next_u32()
}
#[inline]
fn next_u64(&mut self) -> u64 {
self.rng.next_u64()
}
#[inline]
fn fill_bytes(&mut self, bytes: &mut [u8]) {
self.rng.fill_bytes(bytes)
}
#[inline]
fn try_fill_bytes(&mut self, bytes: &mut [u8]) -> Result<(), Error> {
self.rng.try_fill_bytes(bytes)
}
}
impl $ChaChaXRng {
// The buffer is a 4-block window, i.e. it is always at a block-aligned position in the
// stream but if the stream has been seeked it may not be self-aligned.
/// Get the offset from the start of the stream, in 32-bit words.
///
/// Since the generated blocks are 16 words (2<sup>4</sup>) long and the
/// counter is 64-bits, the offset is a 68-bit number. Sub-word offsets are
/// not supported, hence the result can simply be multiplied by 4 to get a
/// byte-offset.
#[inline]
pub fn get_word_pos(&self) -> u128 {
let buf_start_block = {
let buf_end_block = self.rng.core.state.get_stream_param(STREAM_PARAM_BLOCK);
u64::wrapping_sub(buf_end_block, BUF_BLOCKS.into())
};
let (buf_offset_blocks, block_offset_words) = {
let buf_offset_words = self.rng.index() as u64;
let blocks_part = buf_offset_words / u64::from(BLOCK_WORDS);
let words_part = buf_offset_words % u64::from(BLOCK_WORDS);
(blocks_part, words_part)
};
let pos_block = u64::wrapping_add(buf_start_block, buf_offset_blocks);
let pos_block_words = u128::from(pos_block) * u128::from(BLOCK_WORDS);
pos_block_words + u128::from(block_offset_words)
}
/// Set the offset from the start of the stream, in 32-bit words.
///
/// As with `get_word_pos`, we use a 68-bit number. Since the generator
/// simply cycles at the end of its period (1 ZiB), we ignore the upper
/// 60 bits.
#[inline]
pub fn set_word_pos(&mut self, word_offset: u128) {
let block = (word_offset / u128::from(BLOCK_WORDS)) as u64;
self.rng
.core
.state
.set_stream_param(STREAM_PARAM_BLOCK, block);
self.rng.generate_and_set((word_offset % u128::from(BLOCK_WORDS)) as usize);
}
/// Set the stream number.
///
/// This is initialized to zero; 2<sup>64</sup> unique streams of output
/// are available per seed/key.
///
/// Note that in order to reproduce ChaCha output with a specific 64-bit
/// nonce, one can convert that nonce to a `u64` in little-endian fashion
/// and pass to this function. In theory a 96-bit nonce can be used by
/// passing the last 64-bits to this function and using the first 32-bits as
/// the most significant half of the 64-bit counter (which may be set
/// indirectly via `set_word_pos`), but this is not directly supported.
#[inline]
pub fn set_stream(&mut self, stream: u64) {
self.rng
.core
.state
.set_stream_param(STREAM_PARAM_NONCE, stream);
if self.rng.index() != 64 {
let wp = self.get_word_pos();
self.set_word_pos(wp);
}
}
}
impl CryptoRng for $ChaChaXRng {}
impl From<$ChaChaXCore> for $ChaChaXRng {
fn from(core: $ChaChaXCore) -> Self {
$ChaChaXRng {
rng: BlockRng::new(core),
}
}
}
impl PartialEq<$ChaChaXRng> for $ChaChaXRng {
fn eq(&self, rhs: &$ChaChaXRng) -> bool {
self.rng.core.state.stream64_eq(&rhs.rng.core.state)
&& self.get_word_pos() == rhs.get_word_pos()
}
}
impl Eq for $ChaChaXRng {}
}
}
chacha_impl!(ChaCha20Core, ChaCha20Rng, 10, "ChaCha with 20 rounds");
chacha_impl!(ChaCha12Core, ChaCha12Rng, 6, "ChaCha with 12 rounds");
chacha_impl!(ChaCha8Core, ChaCha8Rng, 4, "ChaCha with 8 rounds");
#[cfg(test)]
mod test {
use rand_core::{RngCore, SeedableRng};
type ChaChaRng = super::ChaCha20Rng;
#[test]
fn test_chacha_construction() {
let seed = [
0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0,
0, 0, 0,
];
let mut rng1 = ChaChaRng::from_seed(seed);
assert_eq!(rng1.next_u32(), 137206642);
let mut rng2 = ChaChaRng::from_rng(rng1).unwrap();
assert_eq!(rng2.next_u32(), 1325750369);
}
#[test]
fn test_chacha_true_values_a() {
// Test vectors 1 and 2 from
// https://tools.ietf.org/html/draft-nir-cfrg-chacha20-poly1305-04
let seed = [0u8; 32];
let mut rng = ChaChaRng::from_seed(seed);
let mut results = [0u32; 16];
for i in results.iter_mut() {
*i = rng.next_u32();
}
let expected = [
0xade0b876, 0x903df1a0, 0xe56a5d40, 0x28bd8653, 0xb819d2bd, 0x1aed8da0, 0xccef36a8,
0xc70d778b, 0x7c5941da, 0x8d485751, 0x3fe02477, 0x374ad8b8, 0xf4b8436a, 0x1ca11815,
0x69b687c3, 0x8665eeb2,
];
assert_eq!(results, expected);
for i in results.iter_mut() {
*i = rng.next_u32();
}
let expected = [
0xbee7079f, 0x7a385155, 0x7c97ba98, 0x0d082d73, 0xa0290fcb, 0x6965e348, 0x3e53c612,
0xed7aee32, 0x7621b729, 0x434ee69c, 0xb03371d5, 0xd539d874, 0x281fed31, 0x45fb0a51,
0x1f0ae1ac, 0x6f4d794b,
];
assert_eq!(results, expected);
}
#[test]
fn test_chacha_true_values_b() {
// Test vector 3 from
// https://tools.ietf.org/html/draft-nir-cfrg-chacha20-poly1305-04
let seed = [
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 1,
];
let mut rng = ChaChaRng::from_seed(seed);
// Skip block 0
for _ in 0..16 {
rng.next_u32();
}
let mut results = [0u32; 16];
for i in results.iter_mut() {
*i = rng.next_u32();
}
let expected = [
0x2452eb3a, 0x9249f8ec, 0x8d829d9b, 0xddd4ceb1, 0xe8252083, 0x60818b01, 0xf38422b8,
0x5aaa49c9, 0xbb00ca8e, 0xda3ba7b4, 0xc4b592d1, 0xfdf2732f, 0x4436274e, 0x2561b3c8,
0xebdd4aa6, 0xa0136c00,
];
assert_eq!(results, expected);
}
#[test]
fn test_chacha_true_values_c() {
// Test vector 4 from
// https://tools.ietf.org/html/draft-nir-cfrg-chacha20-poly1305-04
let seed = [
0, 0xff, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0,
];
let expected = [
0xfb4dd572, 0x4bc42ef1, 0xdf922636, 0x327f1394, 0xa78dea8f, 0x5e269039, 0xa1bebbc1,
0xcaf09aae, 0xa25ab213, 0x48a6b46c, 0x1b9d9bcb, 0x092c5be6, 0x546ca624, 0x1bec45d5,
0x87f47473, 0x96f0992e,
];
let expected_end = 3 * 16;
let mut results = [0u32; 16];
// Test block 2 by skipping block 0 and 1
let mut rng1 = ChaChaRng::from_seed(seed);
for _ in 0..32 {
rng1.next_u32();
}
for i in results.iter_mut() {
*i = rng1.next_u32();
}
assert_eq!(results, expected);
assert_eq!(rng1.get_word_pos(), expected_end);
// Test block 2 by using `set_word_pos`
let mut rng2 = ChaChaRng::from_seed(seed);
rng2.set_word_pos(2 * 16);
for i in results.iter_mut() {
*i = rng2.next_u32();
}
assert_eq!(results, expected);
assert_eq!(rng2.get_word_pos(), expected_end);
// Test skipping behaviour with other types
let mut buf = [0u8; 32];
rng2.fill_bytes(&mut buf[..]);
assert_eq!(rng2.get_word_pos(), expected_end + 8);
rng2.fill_bytes(&mut buf[0..25]);
assert_eq!(rng2.get_word_pos(), expected_end + 15);
rng2.next_u64();
assert_eq!(rng2.get_word_pos(), expected_end + 17);
rng2.next_u32();
rng2.next_u64();
assert_eq!(rng2.get_word_pos(), expected_end + 20);
rng2.fill_bytes(&mut buf[0..1]);
assert_eq!(rng2.get_word_pos(), expected_end + 21);
}
#[test]
fn test_chacha_multiple_blocks() {
let seed = [
0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 3, 0, 0, 0, 4, 0, 0, 0, 5, 0, 0, 0, 6, 0, 0, 0, 7,
0, 0, 0,
];
let mut rng = ChaChaRng::from_seed(seed);
// Store the 17*i-th 32-bit word,
// i.e., the i-th word of the i-th 16-word block
let mut results = [0u32; 16];
for i in results.iter_mut() {
*i = rng.next_u32();
for _ in 0..16 {
rng.next_u32();
}
}
let expected = [
0xf225c81a, 0x6ab1be57, 0x04d42951, 0x70858036, 0x49884684, 0x64efec72, 0x4be2d186,
0x3615b384, 0x11cfa18e, 0xd3c50049, 0x75c775f6, 0x434c6530, 0x2c5bad8f, 0x898881dc,
0x5f1c86d9, 0xc1f8e7f4,
];
assert_eq!(results, expected);
}
#[test]
fn test_chacha_true_bytes() {
let seed = [0u8; 32];
let mut rng = ChaChaRng::from_seed(seed);
let mut results = [0u8; 32];
rng.fill_bytes(&mut results);
let expected = [
118, 184, 224, 173, 160, 241, 61, 144, 64, 93, 106, 229, 83, 134, 189, 40, 189, 210,
25, 184, 160, 141, 237, 26, 168, 54, 239, 204, 139, 119, 13, 199,
];
assert_eq!(results, expected);
}
#[test]
fn test_chacha_nonce() {
// Test vector 5 from
// https://tools.ietf.org/html/draft-nir-cfrg-chacha20-poly1305-04
// Although we do not support setting a nonce, we try it here anyway so
// we can use this test vector.
let seed = [0u8; 32];
let mut rng = ChaChaRng::from_seed(seed);
// 96-bit nonce in LE order is: 0,0,0,0, 0,0,0,0, 0,0,0,2
rng.set_stream(2u64 << (24 + 32));
let mut results = [0u32; 16];
for i in results.iter_mut() {
*i = rng.next_u32();
}
let expected = [
0x374dc6c2, 0x3736d58c, 0xb904e24a, 0xcd3f93ef, 0x88228b1a, 0x96a4dfb3, 0x5b76ab72,
0xc727ee54, 0x0e0e978a, 0xf3145c95, 0x1b748ea8, 0xf786c297, 0x99c28f5f, 0x628314e8,
0x398a19fa, 0x6ded1b53,
];
assert_eq!(results, expected);
}
#[test]
fn test_chacha_clone_streams() {
let seed = [
0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 3, 0, 0, 0, 4, 0, 0, 0, 5, 0, 0, 0, 6, 0, 0, 0, 7,
0, 0, 0,
];
let mut rng = ChaChaRng::from_seed(seed);
let mut clone = rng.clone();
for _ in 0..16 {
assert_eq!(rng.next_u64(), clone.next_u64());
}
rng.set_stream(51);
for _ in 0..7 {
assert!(rng.next_u32() != clone.next_u32());
}
clone.set_stream(51); // switch part way through block
for _ in 7..16 {
assert_eq!(rng.next_u32(), clone.next_u32());
}
}
#[test]
fn test_chacha_word_pos_wrap_exact() {
use super::{BUF_BLOCKS, BLOCK_WORDS};
let mut rng = ChaChaRng::from_seed(Default::default());
// refilling the buffer in set_word_pos will wrap the block counter to 0
let last_block = (1 << 68) - u128::from(BUF_BLOCKS * BLOCK_WORDS);
rng.set_word_pos(last_block);
assert_eq!(rng.get_word_pos(), last_block);
}
#[test]
fn test_chacha_word_pos_wrap_excess() {
use super::BLOCK_WORDS;
let mut rng = ChaChaRng::from_seed(Default::default());
// refilling the buffer in set_word_pos will wrap the block counter past 0
let last_block = (1 << 68) - u128::from(BLOCK_WORDS);
rng.set_word_pos(last_block);
assert_eq!(rng.get_word_pos(), last_block);
}
#[test]
fn test_chacha_word_pos_zero() {
let mut rng = ChaChaRng::from_seed(Default::default());
assert_eq!(rng.get_word_pos(), 0);
rng.set_word_pos(0);
assert_eq!(rng.get_word_pos(), 0);
}
}