blob: 08ea352f6561d466192ed5c10f6620e16cbfe315 [file] [log] [blame]
// Copyright 2013-2017 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// https://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Utilities for random number generation
//!
//! The key function is `Rng::gen()`. It is polymorphic and so can be used to
//! generate any type supporting the [`Uniform`] distribution (i.e. `T` where
//! `Uniform`: `Distribution<T>`). Type inference means that often a simple call
//! to `rng.gen()` will suffice, but sometimes an annotation is required, e.g.
//! `rng.gen::<f64>()`.
//!
//! See the `distributions` submodule for sampling random numbers from
//! distributions like normal and exponential.
//!
//! # Usage
//!
//! This crate is [on crates.io](https://crates.io/crates/rand) and can be
//! used by adding `rand` to the dependencies in your project's `Cargo.toml`.
//!
//! ```toml
//! [dependencies]
//! rand = "0.4"
//! ```
//!
//! and this to your crate root:
//!
//! ```rust
//! extern crate rand;
//! ```
//!
//! # Thread-local RNG
//!
//! There is built-in support for a RNG associated with each thread stored
//! in thread-local storage. This RNG can be accessed via `thread_rng`, or
//! used implicitly via `random`. This RNG is normally randomly seeded
//! from an operating-system source of randomness, e.g. `/dev/urandom` on
//! Unix systems, and will automatically reseed itself from this source
//! after generating 32 KiB of random data.
//!
//! # Cryptographic security
//!
//! An application that requires an entropy source for cryptographic purposes
//! must use `OsRng`, which reads randomness from the source that the operating
//! system provides (e.g. `/dev/urandom` on Unixes or `CryptGenRandom()` on
//! Windows).
//! The other random number generators provided by this module are not suitable
//! for such purposes.
//!
//! *Note*: many Unix systems provide `/dev/random` as well as `/dev/urandom`.
//! This module uses `/dev/urandom` for the following reasons:
//!
//! - On Linux, `/dev/random` may block if entropy pool is empty;
//! `/dev/urandom` will not block. This does not mean that `/dev/random`
//! provides better output than `/dev/urandom`; the kernel internally runs a
//! cryptographically secure pseudorandom number generator (CSPRNG) based on
//! entropy pool for random number generation, so the "quality" of
//! `/dev/random` is not better than `/dev/urandom` in most cases. However,
//! this means that `/dev/urandom` can yield somewhat predictable randomness
//! if the entropy pool is very small, such as immediately after first
//! booting. Linux 3.17 added the `getrandom(2)` system call which solves
//! the issue: it blocks if entropy pool is not initialized yet, but it does
//! not block once initialized. `OsRng` tries to use `getrandom(2)` if
//! available, and use `/dev/urandom` fallback if not. If an application
//! does not have `getrandom` and likely to be run soon after first booting,
//! or on a system with very few entropy sources, one should consider using
//! `/dev/random` via `ReadRng`.
//! - On some systems (e.g. FreeBSD, OpenBSD and Mac OS X) there is no
//! difference between the two sources. (Also note that, on some systems
//! e.g. FreeBSD, both `/dev/random` and `/dev/urandom` may block once if
//! the CSPRNG has not seeded yet.)
//!
//! # Examples
//!
//! ```rust
//! use rand::Rng;
//!
//! let mut rng = rand::thread_rng();
//! if rng.gen() { // random bool
//! println!("i32: {}, u32: {}", rng.gen::<i32>(), rng.gen::<u32>())
//! }
//! ```
//!
//! ## Monte Carlo estimation of π
//!
//! For this example, imagine we have a square with sides of length 2 and a unit
//! circle, both centered at the origin. Since the area of a unit circle is π,
//! we have:
//!
//! ```text
//! (area of unit circle) / (area of square) = π / 4
//! ```
//!
//! So if we sample many points randomly from the square, roughly π / 4 of them
//! should be inside the circle.
//!
//! We can use the above fact to estimate the value of π: pick many points in
//! the square at random, calculate the fraction that fall within the circle,
//! and multiply this fraction by 4.
//!
//! ```
//! use rand::distributions::{Distribution, Range};
//!
//! fn main() {
//! let between = Range::new(-1f64, 1.);
//! let mut rng = rand::thread_rng();
//!
//! let total = 1_000_000;
//! let mut in_circle = 0;
//!
//! for _ in 0..total {
//! let a = between.sample(&mut rng);
//! let b = between.sample(&mut rng);
//! if a*a + b*b <= 1. {
//! in_circle += 1;
//! }
//! }
//!
//! // prints something close to 3.14159...
//! println!("{}", 4. * (in_circle as f64) / (total as f64));
//! }
//! ```
//!
//! ## Monty Hall Problem
//!
//! This is a simulation of the [Monty Hall Problem][]:
//!
//! > Suppose you're on a game show, and you're given the choice of three doors:
//! > Behind one door is a car; behind the others, goats. You pick a door, say
//! > No. 1, and the host, who knows what's behind the doors, opens another
//! > door, say No. 3, which has a goat. He then says to you, "Do you want to
//! > pick door No. 2?" Is it to your advantage to switch your choice?
//!
//! The rather unintuitive answer is that you will have a 2/3 chance of winning
//! if you switch and a 1/3 chance of winning if you don't, so it's better to
//! switch.
//!
//! This program will simulate the game show and with large enough simulation
//! steps it will indeed confirm that it is better to switch.
//!
//! [Monty Hall Problem]: https://en.wikipedia.org/wiki/Monty_Hall_problem
//!
//! ```
//! use rand::Rng;
//! use rand::distributions::{Distribution, Range};
//! use rand::distributions::range::RangeInt;
//!
//! struct SimulationResult {
//! win: bool,
//! switch: bool,
//! }
//!
//! // Run a single simulation of the Monty Hall problem.
//! fn simulate<R: Rng>(random_door: &Range<RangeInt<u32>>, rng: &mut R)
//! -> SimulationResult {
//! let car = random_door.sample(rng);
//!
//! // This is our initial choice
//! let mut choice = random_door.sample(rng);
//!
//! // The game host opens a door
//! let open = game_host_open(car, choice, rng);
//!
//! // Shall we switch?
//! let switch = rng.gen();
//! if switch {
//! choice = switch_door(choice, open);
//! }
//!
//! SimulationResult { win: choice == car, switch: switch }
//! }
//!
//! // Returns the door the game host opens given our choice and knowledge of
//! // where the car is. The game host will never open the door with the car.
//! fn game_host_open<R: Rng>(car: u32, choice: u32, rng: &mut R) -> u32 {
//! let choices = free_doors(&[car, choice]);
//! rand::seq::sample_slice(rng, &choices, 1)[0]
//! }
//!
//! // Returns the door we switch to, given our current choice and
//! // the open door. There will only be one valid door.
//! fn switch_door(choice: u32, open: u32) -> u32 {
//! free_doors(&[choice, open])[0]
//! }
//!
//! fn free_doors(blocked: &[u32]) -> Vec<u32> {
//! (0..3).filter(|x| !blocked.contains(x)).collect()
//! }
//!
//! fn main() {
//! // The estimation will be more accurate with more simulations
//! let num_simulations = 10000;
//!
//! let mut rng = rand::thread_rng();
//! let random_door = Range::new(0u32, 3);
//!
//! let (mut switch_wins, mut switch_losses) = (0, 0);
//! let (mut keep_wins, mut keep_losses) = (0, 0);
//!
//! println!("Running {} simulations...", num_simulations);
//! for _ in 0..num_simulations {
//! let result = simulate(&random_door, &mut rng);
//!
//! match (result.win, result.switch) {
//! (true, true) => switch_wins += 1,
//! (true, false) => keep_wins += 1,
//! (false, true) => switch_losses += 1,
//! (false, false) => keep_losses += 1,
//! }
//! }
//!
//! let total_switches = switch_wins + switch_losses;
//! let total_keeps = keep_wins + keep_losses;
//!
//! println!("Switched door {} times with {} wins and {} losses",
//! total_switches, switch_wins, switch_losses);
//!
//! println!("Kept our choice {} times with {} wins and {} losses",
//! total_keeps, keep_wins, keep_losses);
//!
//! // With a large number of simulations, the values should converge to
//! // 0.667 and 0.333 respectively.
//! println!("Estimated chance to win if we switch: {}",
//! switch_wins as f32 / total_switches as f32);
//! println!("Estimated chance to win if we don't: {}",
//! keep_wins as f32 / total_keeps as f32);
//! }
//! ```
//!
//! [`Uniform`]: distributions/struct.Uniform.html
#![doc(html_logo_url = "https://www.rust-lang.org/logos/rust-logo-128x128-blk.png",
html_favicon_url = "https://www.rust-lang.org/favicon.ico",
html_root_url = "https://docs.rs/rand/0.5")]
#![deny(missing_debug_implementations)]
#![cfg_attr(not(feature="std"), no_std)]
#![cfg_attr(all(feature="alloc", not(feature="std")), feature(alloc))]
#![cfg_attr(feature = "i128_support", feature(i128_type, i128))]
#![cfg_attr(all(target_arch = "wasm32", not(target_os = "emscripten")), recursion_limit="128")]
#[cfg(feature="std")] extern crate std as core;
#[cfg(all(feature = "alloc", not(feature="std")))] extern crate alloc;
#[cfg(test)] #[cfg(feature="serde-1")] extern crate bincode;
#[cfg(feature="serde-1")] extern crate serde;
#[cfg(feature="serde-1")] #[macro_use] extern crate serde_derive;
#[cfg(all(target_arch = "wasm32", not(target_os = "emscripten")))]
#[macro_use]
extern crate stdweb;
extern crate rand_core;
#[cfg(feature = "log")] #[macro_use] extern crate log;
#[cfg(not(feature = "log"))] macro_rules! trace { ($($x:tt)*) => () }
#[cfg(not(feature = "log"))] macro_rules! debug { ($($x:tt)*) => () }
#[cfg(all(feature="std", not(feature = "log")))] macro_rules! info { ($($x:tt)*) => () }
#[cfg(not(feature = "log"))] macro_rules! warn { ($($x:tt)*) => () }
#[cfg(all(feature="std", not(feature = "log")))] macro_rules! error { ($($x:tt)*) => () }
use core::{marker, mem, slice};
// re-exports from rand_core
pub use rand_core::{RngCore, BlockRngCore, CryptoRng, SeedableRng};
pub use rand_core::{ErrorKind, Error};
// external rngs
pub use jitter::JitterRng;
#[cfg(feature="std")] pub use os::OsRng;
// pseudo rngs
pub mod prng;
pub use isaac::{IsaacRng, Isaac64Rng};
pub use chacha::ChaChaRng;
pub use prng::XorShiftRng;
pub use prng::Hc128Rng;
// convenience and derived rngs
#[cfg(feature="std")] pub use entropy_rng::EntropyRng;
#[cfg(feature="std")] pub use thread_rng::{ThreadRng, thread_rng};
#[cfg(feature="std")] #[allow(deprecated)] pub use thread_rng::random;
use distributions::{Distribution, Uniform, Range};
use distributions::range::SampleRange;
// public modules
pub mod distributions;
pub mod jitter;
pub mod mock;
#[cfg(feature="std")] pub mod os;
#[cfg(feature="std")] pub mod read;
pub mod reseeding;
#[cfg(any(feature="std", feature = "alloc"))] pub mod seq;
// These tiny modules are here to avoid API breakage, probably only temporarily
pub mod chacha {
//! The ChaCha random number generator.
pub use prng::ChaChaRng;
}
pub mod isaac {
//! The ISAAC random number generator.
pub use prng::{IsaacRng, Isaac64Rng};
}
// private modules
#[cfg(feature="std")] mod entropy_rng;
#[cfg(feature="std")] mod thread_rng;
/// A type that can be randomly generated using an `Rng`.
///
/// This is merely an adaptor around the [`Uniform`] distribution for
/// convenience and backwards-compatibility.
///
/// [`Uniform`]: distributions/struct.Uniform.html
#[deprecated(since="0.5.0", note="replaced by distributions::Uniform")]
pub trait Rand : Sized {
/// Generates a random instance of this type using the specified source of
/// randomness.
fn rand<R: Rng>(rng: &mut R) -> Self;
}
/// An automatically-implemented extension trait on [`RngCore`] providing high-level
/// generic methods for sampling values and other convenience methods.
///
/// This is the primary trait to use when generating random values.
///
/// # Generic usage
///
/// The basic pattern is `fn foo<R: Rng + ?Sized>(rng: &mut R)`. Some
/// things are worth noting here:
///
/// - Since `Rng: RngCore` and every `RngCore` implements `Rng`, it makes no
/// difference whether we use `R: Rng` or `R: RngCore`.
/// - The `+ ?Sized` un-bounding allows functions to be called directly on
/// type-erased references; i.e. `foo(r)` where `r: &mut RngCore`. Without
/// this it would be necessary to write `foo(&mut r)`.
///
/// An alternative pattern is possible: `fn foo<R: Rng>(rng: R)`. This has some
/// trade-offs. It allows the argument to be consumed directly without a `&mut`
/// (which is how `from_rng(thread_rng())` works); also it still works directly
/// on references (including type-erased references). Unfortunately within the
/// function `foo` it is not known whether `rng` is a reference type or not,
/// hence many uses of `rng` require an extra reference, either explicitly
/// (`distr.sample(&mut rng)`) or implicitly (`rng.gen()`); one may hope the
/// optimiser can remove redundant references later.
///
/// Example:
///
/// ```rust
/// use rand::Rng;
///
/// fn foo<R: Rng + ?Sized>(rng: &mut R) -> f32 {
/// rng.gen()
/// }
/// ```
///
/// # Iteration
///
/// Iteration over an `Rng` can be achieved using `iter::repeat` as follows:
///
/// ```rust
/// use std::iter;
/// use rand::{Rng, thread_rng};
/// use rand::distributions::{Alphanumeric, Range};
///
/// let mut rng = thread_rng();
///
/// // Vec of 16 x f32:
/// let v: Vec<f32> = iter::repeat(()).map(|()| rng.gen()).take(16).collect();
///
/// // String:
/// let s: String = iter::repeat(())
/// .map(|()| rng.sample(Alphanumeric))
/// .take(7).collect();
///
/// // Dice-rolling:
/// let die_range = Range::new_inclusive(1, 6);
/// let mut roll_die = iter::repeat(()).map(|()| rng.sample(die_range));
/// while roll_die.next().unwrap() != 6 {
/// println!("Not a 6; rolling again!");
/// }
/// ```
///
/// [`RngCore`]: https://docs.rs/rand_core/0.1/rand_core/trait.RngCore.html
pub trait Rng: RngCore {
/// Fill `dest` entirely with random bytes (uniform value distribution),
/// where `dest` is any type supporting [`AsByteSliceMut`], namely slices
/// and arrays over primitive integer types (`i8`, `i16`, `u32`, etc.).
///
/// On big-endian platforms this performs byte-swapping to ensure
/// portability of results from reproducible generators.
///
/// This uses [`fill_bytes`] internally which may handle some RNG errors
/// implicitly (e.g. waiting if the OS generator is not ready), but panics
/// on other errors. See also [`try_fill`] which returns errors.
///
/// # Example
///
/// ```rust
/// use rand::{thread_rng, Rng};
///
/// let mut arr = [0i8; 20];
/// thread_rng().try_fill(&mut arr[..]);
/// ```
///
/// [`fill_bytes`]: https://docs.rs/rand_core/0.1/rand_core/trait.RngCore.html#method.fill_bytes
/// [`try_fill`]: trait.Rng.html#method.try_fill
/// [`AsByteSliceMut`]: trait.AsByteSliceMut.html
fn fill<T: AsByteSliceMut + ?Sized>(&mut self, dest: &mut T) {
self.fill_bytes(dest.as_byte_slice_mut());
dest.to_le();
}
/// Fill `dest` entirely with random bytes (uniform value distribution),
/// where `dest` is any type supporting [`AsByteSliceMut`], namely slices
/// and arrays over primitive integer types (`i8`, `i16`, `u32`, etc.).
///
/// On big-endian platforms this performs byte-swapping to ensure
/// portability of results from reproducible generators.
///
/// This uses [`try_fill_bytes`] internally and forwards all RNG errors. In
/// some cases errors may be resolvable; see [`ErrorKind`] and
/// documentation for the RNG in use. If you do not plan to handle these
/// errors you may prefer to use [`fill`].
///
/// # Example
///
/// ```rust
/// # use rand::Error;
/// use rand::{thread_rng, Rng};
///
/// # fn try_inner() -> Result<(), Error> {
/// let mut arr = [0u64; 4];
/// thread_rng().try_fill(&mut arr[..])?;
/// # Ok(())
/// # }
///
/// # try_inner().unwrap()
/// ```
///
/// [`ErrorKind`]: https://docs.rs/rand_core/0.1/rand_core/enum.ErrorKind.html
/// [`try_fill_bytes`]: https://docs.rs/rand_core/0.1/rand_core/trait.RngCore.html#method.try_fill_bytes
/// [`fill`]: trait.Rng.html#method.fill
/// [`AsByteSliceMut`]: trait.AsByteSliceMut.html
fn try_fill<T: AsByteSliceMut + ?Sized>(&mut self, dest: &mut T) -> Result<(), Error> {
self.try_fill_bytes(dest.as_byte_slice_mut())?;
dest.to_le();
Ok(())
}
/// Sample a new value, using the given distribution.
///
/// ### Example
///
/// ```rust
/// use rand::{thread_rng, Rng};
/// use rand::distributions::Range;
///
/// let mut rng = thread_rng();
/// let x: i32 = rng.sample(Range::new(10, 15));
/// ```
fn sample<T, D: Distribution<T>>(&mut self, distr: D) -> T {
distr.sample(self)
}
/// Return a random value supporting the [`Uniform`] distribution.
///
/// [`Uniform`]: struct.Uniform.html
///
/// # Example
///
/// ```rust
/// use rand::{thread_rng, Rng};
///
/// let mut rng = thread_rng();
/// let x: u32 = rng.gen();
/// println!("{}", x);
/// println!("{:?}", rng.gen::<(f64, bool)>());
/// ```
#[inline(always)]
fn gen<T>(&mut self) -> T where Uniform: Distribution<T> {
Uniform.sample(self)
}
/// Return an iterator that will yield an infinite number of randomly
/// generated items.
///
/// # Example
///
/// ```
/// use rand::{thread_rng, Rng};
///
/// let mut rng = thread_rng();
/// let x = rng.gen_iter::<u32>().take(10).collect::<Vec<u32>>();
/// println!("{:?}", x);
/// println!("{:?}", rng.gen_iter::<(f64, bool)>().take(5)
/// .collect::<Vec<(f64, bool)>>());
/// ```
#[allow(deprecated)]
#[deprecated(since="0.5.0", note="use iter::repeat instead")]
fn gen_iter<T>(&mut self) -> Generator<T, &mut Self> where Uniform: Distribution<T> {
Generator { rng: self, _marker: marker::PhantomData }
}
/// Generate a random value in the range [`low`, `high`), i.e. inclusive of
/// `low` and exclusive of `high`.
///
/// This is a convenience wrapper around
/// `distributions::Range`. If this function will be called
/// repeatedly with the same arguments, one should use `Range`, as
/// that will amortize the computations that allow for perfect
/// uniformity, as they only happen when constructing the `Range`.
///
/// # Panics
///
/// Panics if `low >= high`.
///
/// # Example
///
/// ```rust
/// use rand::{thread_rng, Rng};
///
/// let mut rng = thread_rng();
/// let n: u32 = rng.gen_range(0, 10);
/// println!("{}", n);
/// let m: f64 = rng.gen_range(-40.0f64, 1.3e5f64);
/// println!("{}", m);
/// ```
fn gen_range<T: PartialOrd + SampleRange>(&mut self, low: T, high: T) -> T {
Range::sample_single(low, high, self)
}
/// Return a bool with a 1 in n chance of true
///
/// # Example
///
/// ```rust
/// #[allow(deprecated)]
/// use rand::{thread_rng, Rng};
///
/// let mut rng = thread_rng();
/// assert_eq!(rng.gen_weighted_bool(0), true);
/// assert_eq!(rng.gen_weighted_bool(1), true);
/// // Just like `rng.gen::<bool>()` a 50-50% chance, but using a slower
/// // method with different results.
/// println!("{}", rng.gen_weighted_bool(2));
/// // First meaningful use of `gen_weighted_bool`.
/// println!("{}", rng.gen_weighted_bool(3));
/// ```
#[deprecated(since="0.5.0", note="use gen_bool instead")]
fn gen_weighted_bool(&mut self, n: u32) -> bool {
// Short-circuit after `n <= 1` to avoid panic in `gen_range`
n <= 1 || self.gen_range(0, n) == 0
}
/// Return a bool with a probability `p` of being true.
///
/// # Example
///
/// ```rust
/// use rand::{thread_rng, Rng};
///
/// let mut rng = thread_rng();
/// println!("{}", rng.gen_bool(1.0 / 3.0));
/// ```
fn gen_bool(&mut self, p: f64) -> bool {
assert!(p >= 0.0 && p <= 1.0);
// If `p` is constant, this will be evaluated at compile-time.
let p_int = (p * core::u32::MAX as f64) as u32;
self.gen::<u32>() <= p_int
}
/// Return an iterator of random characters from the set A-Z,a-z,0-9.
///
/// # Example
///
/// ```rust
/// #[allow(deprecated)]
/// use rand::{thread_rng, Rng};
///
/// let s: String = thread_rng().gen_ascii_chars().take(10).collect();
/// println!("{}", s);
/// ```
#[allow(deprecated)]
#[deprecated(since="0.5.0", note="use distributions::Alphanumeric instead")]
fn gen_ascii_chars(&mut self) -> AsciiGenerator<&mut Self> {
AsciiGenerator { rng: self }
}
/// Return a random element from `values`.
///
/// Return `None` if `values` is empty.
///
/// # Example
///
/// ```
/// use rand::{thread_rng, Rng};
///
/// let choices = [1, 2, 4, 8, 16, 32];
/// let mut rng = thread_rng();
/// println!("{:?}", rng.choose(&choices));
/// assert_eq!(rng.choose(&choices[..0]), None);
/// ```
fn choose<'a, T>(&mut self, values: &'a [T]) -> Option<&'a T> {
if values.is_empty() {
None
} else {
Some(&values[self.gen_range(0, values.len())])
}
}
/// Return a mutable pointer to a random element from `values`.
///
/// Return `None` if `values` is empty.
fn choose_mut<'a, T>(&mut self, values: &'a mut [T]) -> Option<&'a mut T> {
if values.is_empty() {
None
} else {
let len = values.len();
Some(&mut values[self.gen_range(0, len)])
}
}
/// Shuffle a mutable slice in place.
///
/// This applies Durstenfeld's algorithm for the [Fisher–Yates shuffle](https://en.wikipedia.org/wiki/Fisher%E2%80%93Yates_shuffle#The_modern_algorithm)
/// which produces an unbiased permutation.
///
/// # Example
///
/// ```rust
/// use rand::{thread_rng, Rng};
///
/// let mut rng = thread_rng();
/// let mut y = [1, 2, 3];
/// rng.shuffle(&mut y);
/// println!("{:?}", y);
/// rng.shuffle(&mut y);
/// println!("{:?}", y);
/// ```
fn shuffle<T>(&mut self, values: &mut [T]) {
let mut i = values.len();
while i >= 2 {
// invariant: elements with index >= i have been locked in place.
i -= 1;
// lock element i in place.
values.swap(i, self.gen_range(0, i + 1));
}
}
}
impl<R: RngCore + ?Sized> Rng for R {}
/// Trait for casting types to byte slices
///
/// This is used by the [`fill`] and [`try_fill`] methods.
///
/// [`fill`]: trait.Rng.html#method.fill
/// [`try_fill`]: trait.Rng.html#method.try_fill
pub trait AsByteSliceMut {
/// Return a mutable reference to self as a byte slice
fn as_byte_slice_mut<'a>(&'a mut self) -> &'a mut [u8];
/// Call `to_le` on each element (i.e. byte-swap on Big Endian platforms).
fn to_le(&mut self);
}
impl AsByteSliceMut for [u8] {
fn as_byte_slice_mut<'a>(&'a mut self) -> &'a mut [u8] {
self
}
fn to_le(&mut self) {}
}
macro_rules! impl_as_byte_slice {
($t:ty) => {
impl AsByteSliceMut for [$t] {
fn as_byte_slice_mut<'a>(&'a mut self) -> &'a mut [u8] {
unsafe {
slice::from_raw_parts_mut(&mut self[0]
as *mut $t
as *mut u8,
self.len() * mem::size_of::<$t>()
)
}
}
fn to_le(&mut self) {
for x in self {
*x = x.to_le();
}
}
}
}
}
impl_as_byte_slice!(u16);
impl_as_byte_slice!(u32);
impl_as_byte_slice!(u64);
#[cfg(feature="i128_support")] impl_as_byte_slice!(u128);
impl_as_byte_slice!(usize);
impl_as_byte_slice!(i8);
impl_as_byte_slice!(i16);
impl_as_byte_slice!(i32);
impl_as_byte_slice!(i64);
#[cfg(feature="i128_support")] impl_as_byte_slice!(i128);
impl_as_byte_slice!(isize);
macro_rules! impl_as_byte_slice_arrays {
($n:expr,) => {};
($n:expr, $N:ident, $($NN:ident,)*) => {
impl_as_byte_slice_arrays!($n - 1, $($NN,)*);
impl<T> AsByteSliceMut for [T; $n] where [T]: AsByteSliceMut {
fn as_byte_slice_mut<'a>(&'a mut self) -> &'a mut [u8] {
self[..].as_byte_slice_mut()
}
fn to_le(&mut self) {
self[..].to_le()
}
}
};
}
impl_as_byte_slice_arrays!(32, N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,);
/// Iterator which will generate a stream of random items.
///
/// This iterator is created via the [`gen_iter`] method on [`Rng`].
///
/// [`gen_iter`]: trait.Rng.html#method.gen_iter
/// [`Rng`]: trait.Rng.html
#[derive(Debug)]
#[allow(deprecated)]
#[deprecated(since="0.5.0", note="use iter::repeat instead")]
pub struct Generator<T, R: RngCore> {
rng: R,
_marker: marker::PhantomData<fn() -> T>,
}
#[allow(deprecated)]
impl<T, R: RngCore> Iterator for Generator<T, R> where Uniform: Distribution<T> {
type Item = T;
fn next(&mut self) -> Option<T> {
Some(self.rng.gen())
}
}
/// Iterator which will continuously generate random ascii characters.
///
/// This iterator is created via the [`gen_ascii_chars`] method on [`Rng`].
///
/// [`gen_ascii_chars`]: trait.Rng.html#method.gen_ascii_chars
/// [`Rng`]: trait.Rng.html
#[derive(Debug)]
#[allow(deprecated)]
#[deprecated(since="0.5.0", note="use distributions::Alphanumeric instead")]
pub struct AsciiGenerator<R: RngCore> {
rng: R,
}
#[allow(deprecated)]
impl<R: RngCore> Iterator for AsciiGenerator<R> {
type Item = char;
fn next(&mut self) -> Option<char> {
const GEN_ASCII_STR_CHARSET: &'static [u8] =
b"ABCDEFGHIJKLMNOPQRSTUVWXYZ\
abcdefghijklmnopqrstuvwxyz\
0123456789";
Some(*self.rng.choose(GEN_ASCII_STR_CHARSET).unwrap() as char)
}
}
/// A convenient way to seed new algorithmic generators, otherwise known as
/// pseudo-random number generators (PRNGs).
///
/// This is the recommended way to create PRNGs, unless a deterministic seed is
/// desired (in which case [`SeedableRng::from_seed`] should be used).
///
/// Note: this trait is automatically implemented for any PRNG implementing
/// [`SeedableRng`] and is not intended to be implemented by users.
///
/// ## Example
///
/// ```
/// use rand::{StdRng, Rng, NewRng};
///
/// let mut rng = StdRng::new();
/// println!("Random die roll: {}", rng.gen_range(1, 7));
/// ```
///
/// [`SeedableRng`]: https://docs.rs/rand_core/0.1/rand_core/trait.SeedableRng.html
/// [`SeedableRng::from_seed`]: https://docs.rs/rand_core/0.1/rand_core/trait.SeedableRng.html#tymethod.from_seed
#[cfg(feature="std")]
pub trait NewRng: SeedableRng {
/// Creates a new instance, automatically seeded with fresh entropy.
///
/// Normally this will use `OsRng`, but if that fails `JitterRng` will be
/// used instead. Both should be suitable for cryptography. It is possible
/// that both entropy sources will fail though unlikely; failures would
/// almost certainly be platform limitations or build issues, i.e. most
/// applications targetting PC/mobile platforms should not need to worry
/// about this failing.
///
/// If all entropy sources fail this will panic. If you need to handle
/// errors, use the following code, equivalent aside from error handling:
///
/// ```rust
/// use rand::{Rng, StdRng, EntropyRng, SeedableRng, Error};
///
/// fn foo() -> Result<(), Error> {
/// // This uses StdRng, but is valid for any R: SeedableRng
/// let mut rng = StdRng::from_rng(EntropyRng::new())?;
///
/// println!("random number: {}", rng.gen_range(1, 10));
/// Ok(())
/// }
/// ```
fn new() -> Self;
}
#[cfg(feature="std")]
impl<R: SeedableRng> NewRng for R {
fn new() -> R {
R::from_rng(EntropyRng::new()).unwrap_or_else(|err|
panic!("NewRng::new() failed: {}", err))
}
}
/// The standard RNG. The PRNG algorithm in `StdRng` is chosen to be efficient
/// on the current platform, to be statistically strong and unpredictable
/// (meaning a cryptographically secure PRNG).
///
/// The current algorithm used on all platforms is [HC-128].
///
/// Reproducibility of output from this generator is however not required, thus
/// future library versions may use a different internal generator with
/// different output. Further, this generator may not be portable and can
/// produce different output depending on the architecture. If you require
/// reproducible output, use a named RNG, for example `ChaChaRng`.
///
/// [HC-128]: struct.Hc128Rng.html
#[derive(Clone, Debug)]
pub struct StdRng(Hc128Rng);
impl RngCore for StdRng {
#[inline(always)]
fn next_u32(&mut self) -> u32 {
self.0.next_u32()
}
#[inline(always)]
fn next_u64(&mut self) -> u64 {
self.0.next_u64()
}
fn fill_bytes(&mut self, dest: &mut [u8]) {
self.0.fill_bytes(dest);
}
fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> {
self.0.try_fill_bytes(dest)
}
}
impl SeedableRng for StdRng {
type Seed = <Hc128Rng as SeedableRng>::Seed;
fn from_seed(seed: Self::Seed) -> Self {
StdRng(Hc128Rng::from_seed(seed))
}
fn from_rng<R: RngCore>(rng: R) -> Result<Self, Error> {
Hc128Rng::from_rng(rng).map(|result| StdRng(result))
}
}
impl CryptoRng for StdRng {}
/// An RNG recommended when small state, cheap initialization and good
/// performance are required. The PRNG algorithm in `SmallRng` is chosen to be
/// efficient on the current platform, **without consideration for cryptography
/// or security**. The size of its state is much smaller than for `StdRng`.
///
/// Reproducibility of output from this generator is however not required, thus
/// future library versions may use a different internal generator with
/// different output. Further, this generator may not be portable and can
/// produce different output depending on the architecture. If you require
/// reproducible output, use a named RNG, for example `XorShiftRng`.
///
/// The current algorithm used on all platforms is [Xorshift].
///
/// # Examples
///
/// Initializing `StdRng` with a random seed can be done using `NewRng`:
///
/// ```
/// use rand::{NewRng, SmallRng};
///
/// // Create small, cheap to initialize and fast RNG with a random seed.
/// // The randomness is supplied by the operating system.
/// let mut small_rng = SmallRng::new();
/// ```
///
/// When initializing a lot of `SmallRng`, using `thread_rng` can be more
/// efficient:
///
/// ```
/// use std::iter;
/// use rand::{SeedableRng, SmallRng, thread_rng};
///
/// // Create a big, expensive to initialize and slower, but unpredictable RNG.
/// // This is cached and done only once per thread.
/// let mut thread_rng = thread_rng();
/// // Create small, cheap to initialize and fast RNGs with random seeds.
/// // One can generally assume this won't fail.
/// let rngs: Vec<SmallRng> = iter::repeat(())
/// .map(|()| SmallRng::from_rng(&mut thread_rng).unwrap())
/// .take(10)
/// .collect();
/// ```
///
/// [Xorshift]: struct.XorShiftRng.html
#[derive(Clone, Debug)]
pub struct SmallRng(XorShiftRng);
impl RngCore for SmallRng {
#[inline(always)]
fn next_u32(&mut self) -> u32 {
self.0.next_u32()
}
#[inline(always)]
fn next_u64(&mut self) -> u64 {
self.0.next_u64()
}
fn fill_bytes(&mut self, dest: &mut [u8]) {
self.0.fill_bytes(dest);
}
fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> {
self.0.try_fill_bytes(dest)
}
}
impl SeedableRng for SmallRng {
type Seed = <XorShiftRng as SeedableRng>::Seed;
fn from_seed(seed: Self::Seed) -> Self {
SmallRng(XorShiftRng::from_seed(seed))
}
fn from_rng<R: RngCore>(rng: R) -> Result<Self, Error> {
XorShiftRng::from_rng(rng).map(|result| SmallRng(result))
}
}
/// DEPRECATED: use `SmallRng` instead.
///
/// Create a weak random number generator with a default algorithm and seed.
///
/// It returns the fastest `Rng` algorithm currently available in Rust without
/// consideration for cryptography or security. If you require a specifically
/// seeded `Rng` for consistency over time you should pick one algorithm and
/// create the `Rng` yourself.
///
/// This will seed the generator with randomness from thread_rng.
#[deprecated(since="0.5.0", note="removed in favor of SmallRng")]
#[cfg(feature="std")]
pub fn weak_rng() -> XorShiftRng {
XorShiftRng::from_rng(thread_rng()).unwrap_or_else(|err|
panic!("weak_rng failed: {:?}", err))
}
/// DEPRECATED: use `seq::sample_iter` instead.
///
/// Randomly sample up to `amount` elements from a finite iterator.
/// The order of elements in the sample is not random.
///
/// # Example
///
/// ```rust
/// use rand::{thread_rng, sample};
///
/// let mut rng = thread_rng();
/// let sample = sample(&mut rng, 1..100, 5);
/// println!("{:?}", sample);
/// ```
#[cfg(feature="std")]
#[inline(always)]
#[deprecated(since="0.4.0", note="renamed to seq::sample_iter")]
pub fn sample<T, I, R>(rng: &mut R, iterable: I, amount: usize) -> Vec<T>
where I: IntoIterator<Item=T>,
R: Rng,
{
// the legacy sample didn't care whether amount was met
seq::sample_iter(rng, iterable, amount)
.unwrap_or_else(|e| e)
}
#[cfg(test)]
mod test {
use mock::StepRng;
use super::*;
#[cfg(all(not(feature="std"), feature="alloc"))] use alloc::boxed::Box;
pub struct TestRng<R> { inner: R }
impl<R: RngCore> RngCore for TestRng<R> {
fn next_u32(&mut self) -> u32 {
self.inner.next_u32()
}
fn next_u64(&mut self) -> u64 {
self.inner.next_u64()
}
fn fill_bytes(&mut self, dest: &mut [u8]) {
self.inner.fill_bytes(dest)
}
fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> {
self.inner.try_fill_bytes(dest)
}
}
pub fn rng(seed: u64) -> TestRng<StdRng> {
// TODO: use from_hashable
let mut state = seed;
let mut seed = <StdRng as SeedableRng>::Seed::default();
for x in seed.iter_mut() {
// PCG algorithm
const MUL: u64 = 6364136223846793005;
const INC: u64 = 11634580027462260723;
let oldstate = state;
state = oldstate.wrapping_mul(MUL).wrapping_add(INC);
let xorshifted = (((oldstate >> 18) ^ oldstate) >> 27) as u32;
let rot = (oldstate >> 59) as u32;
*x = xorshifted.rotate_right(rot) as u8;
}
TestRng { inner: StdRng::from_seed(seed) }
}
#[test]
fn test_fill_bytes_default() {
let mut r = StepRng::new(0x11_22_33_44_55_66_77_88, 0);
// check every remainder mod 8, both in small and big vectors.
let lengths = [0, 1, 2, 3, 4, 5, 6, 7,
80, 81, 82, 83, 84, 85, 86, 87];
for &n in lengths.iter() {
let mut buffer = [0u8; 87];
let v = &mut buffer[0..n];
r.fill_bytes(v);
// use this to get nicer error messages.
for (i, &byte) in v.iter().enumerate() {
if byte == 0 {
panic!("byte {} of {} is zero", i, n)
}
}
}
}
#[test]
fn test_fill() {
let x = 9041086907909331047; // a random u64
let mut rng = StepRng::new(x, 0);
// Convert to byte sequence and back to u64; byte-swap twice if BE.
let mut array = [0u64; 2];
rng.fill(&mut array[..]);
assert_eq!(array, [x, x]);
assert_eq!(rng.next_u64(), x);
// Convert to bytes then u32 in LE order
let mut array = [0u32; 2];
rng.fill(&mut array[..]);
assert_eq!(array, [x as u32, (x >> 32) as u32]);
assert_eq!(rng.next_u32(), x as u32);
}
#[test]
fn test_gen_range() {
let mut r = rng(101);
for _ in 0..1000 {
let a = r.gen_range(-3, 42);
assert!(a >= -3 && a < 42);
assert_eq!(r.gen_range(0, 1), 0);
assert_eq!(r.gen_range(-12, -11), -12);
}
for _ in 0..1000 {
let a = r.gen_range(10, 42);
assert!(a >= 10 && a < 42);
assert_eq!(r.gen_range(0, 1), 0);
assert_eq!(r.gen_range(3_000_000, 3_000_001), 3_000_000);
}
}
#[test]
#[should_panic]
fn test_gen_range_panic_int() {
let mut r = rng(102);
r.gen_range(5, -2);
}
#[test]
#[should_panic]
fn test_gen_range_panic_usize() {
let mut r = rng(103);
r.gen_range(5, 2);
}
#[test]
#[allow(deprecated)]
fn test_gen_weighted_bool() {
let mut r = rng(104);
assert_eq!(r.gen_weighted_bool(0), true);
assert_eq!(r.gen_weighted_bool(1), true);
}
#[test]
fn test_gen_bool() {
let mut r = rng(105);
for _ in 0..5 {
assert_eq!(r.gen_bool(0.0), false);
assert_eq!(r.gen_bool(1.0), true);
}
}
#[test]
fn test_choose() {
let mut r = rng(107);
assert_eq!(r.choose(&[1, 1, 1]).map(|&x|x), Some(1));
let v: &[isize] = &[];
assert_eq!(r.choose(v), None);
}
#[test]
fn test_shuffle() {
let mut r = rng(108);
let empty: &mut [isize] = &mut [];
r.shuffle(empty);
let mut one = [1];
r.shuffle(&mut one);
let b: &[_] = &[1];
assert_eq!(one, b);
let mut two = [1, 2];
r.shuffle(&mut two);
assert!(two == [1, 2] || two == [2, 1]);
let mut x = [1, 1, 1];
r.shuffle(&mut x);
let b: &[_] = &[1, 1, 1];
assert_eq!(x, b);
}
#[test]
fn test_rng_trait_object() {
use distributions::{Distribution, Uniform};
let mut rng = rng(109);
let mut r = &mut rng as &mut RngCore;
r.next_u32();
r.gen::<i32>();
let mut v = [1, 1, 1];
r.shuffle(&mut v);
let b: &[_] = &[1, 1, 1];
assert_eq!(v, b);
assert_eq!(r.gen_range(0, 1), 0);
let _c: u8 = Uniform.sample(&mut r);
}
#[test]
#[cfg(any(feature="std", feature="alloc"))]
fn test_rng_boxed_trait() {
use distributions::{Distribution, Uniform};
let rng = rng(110);
let mut r = Box::new(rng) as Box<RngCore>;
r.next_u32();
r.gen::<i32>();
let mut v = [1, 1, 1];
r.shuffle(&mut v);
let b: &[_] = &[1, 1, 1];
assert_eq!(v, b);
assert_eq!(r.gen_range(0, 1), 0);
let _c: u8 = Uniform.sample(&mut r);
}
#[test]
fn test_stdrng_construction() {
let seed = [1,0,0,0, 23,0,0,0, 200,1,0,0, 210,30,0,0,
0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0];
let mut rng1 = StdRng::from_seed(seed);
assert_eq!(rng1.next_u64(), 15759097995037006553);
let mut rng2 = StdRng::from_rng(rng1).unwrap();
assert_eq!(rng2.next_u64(), 6766915756997287454);
}
}