blob: 0be8713b9871a5e914dd1b3ba9c0b06f8fa195e3 [file] [log] [blame]
// Copyright 2013-2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Interfaces to the operating system provided random number
//! generators.
use std::{io, fmt};
#[cfg(not(target_env = "sgx"))]
use std::mem;
use Rng;
/// A random number generator that retrieves randomness straight from
/// the operating system. Platform sources:
///
/// - Unix-like systems (Linux, Android, Mac OSX): read directly from
/// `/dev/urandom`, or from `getrandom(2)` system call if available.
/// - OpenBSD: calls `getentropy(2)`
/// - FreeBSD: uses the `kern.arandom` `sysctl(2)` mib
/// - Windows: calls `RtlGenRandom`, exported from `advapi32.dll` as
/// `SystemFunction036`.
/// - iOS: calls SecRandomCopyBytes as /dev/(u)random is sandboxed.
/// - PNaCl: calls into the `nacl-irt-random-0.1` IRT interface.
///
/// This usually does not block. On some systems (e.g. FreeBSD, OpenBSD,
/// Max OS X, and modern Linux) this may block very early in the init
/// process, if the CSPRNG has not been seeded yet.[1]
///
/// [1] See <https://www.python.org/dev/peps/pep-0524/> for a more
/// in-depth discussion.
pub struct OsRng(imp::OsRng);
impl OsRng {
/// Create a new `OsRng`.
pub fn new() -> io::Result<OsRng> {
imp::OsRng::new().map(OsRng)
}
}
impl Rng for OsRng {
fn next_u32(&mut self) -> u32 { self.0.next_u32() }
fn next_u64(&mut self) -> u64 { self.0.next_u64() }
fn fill_bytes(&mut self, v: &mut [u8]) { self.0.fill_bytes(v) }
}
impl fmt::Debug for OsRng {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "OsRng {{}}")
}
}
#[cfg(not(target_env = "sgx"))]
fn next_u32(fill_buf: &mut FnMut(&mut [u8])) -> u32 {
let mut buf: [u8; 4] = [0; 4];
fill_buf(&mut buf);
unsafe { mem::transmute::<[u8; 4], u32>(buf) }
}
#[cfg(not(target_env = "sgx"))]
fn next_u64(fill_buf: &mut FnMut(&mut [u8])) -> u64 {
let mut buf: [u8; 8] = [0; 8];
fill_buf(&mut buf);
unsafe { mem::transmute::<[u8; 8], u64>(buf) }
}
#[cfg(all(unix, not(target_os = "ios"),
not(target_os = "nacl"),
not(target_os = "freebsd"),
not(target_os = "fuchsia"),
not(target_os = "openbsd"),
not(target_os = "redox")))]
mod imp {
extern crate libc;
use super::{next_u32, next_u64};
use self::OsRngInner::*;
use std::io;
use std::fs::File;
use Rng;
use read::ReadRng;
#[cfg(all(target_os = "linux",
any(target_arch = "x86_64",
target_arch = "x86",
target_arch = "arm",
target_arch = "aarch64",
target_arch = "powerpc")))]
fn getrandom(buf: &mut [u8]) -> libc::c_long {
extern "C" {
fn syscall(number: libc::c_long, ...) -> libc::c_long;
}
#[cfg(target_arch = "x86_64")]
const NR_GETRANDOM: libc::c_long = 318;
#[cfg(target_arch = "x86")]
const NR_GETRANDOM: libc::c_long = 355;
#[cfg(target_arch = "arm")]
const NR_GETRANDOM: libc::c_long = 384;
#[cfg(target_arch = "aarch64")]
const NR_GETRANDOM: libc::c_long = 278;
#[cfg(target_arch = "powerpc")]
const NR_GETRANDOM: libc::c_long = 359;
unsafe {
syscall(NR_GETRANDOM, buf.as_mut_ptr(), buf.len(), 0)
}
}
#[cfg(not(all(target_os = "linux",
any(target_arch = "x86_64",
target_arch = "x86",
target_arch = "arm",
target_arch = "aarch64",
target_arch = "powerpc"))))]
fn getrandom(_buf: &mut [u8]) -> libc::c_long { -1 }
fn getrandom_fill_bytes(v: &mut [u8]) {
let mut read = 0;
let len = v.len();
while read < len {
let result = getrandom(&mut v[read..]);
if result == -1 {
let err = io::Error::last_os_error();
if err.kind() == io::ErrorKind::Interrupted {
continue
} else {
panic!("unexpected getrandom error: {}", err);
}
} else {
read += result as usize;
}
}
}
#[cfg(all(target_os = "linux",
any(target_arch = "x86_64",
target_arch = "x86",
target_arch = "arm",
target_arch = "aarch64",
target_arch = "powerpc")))]
fn is_getrandom_available() -> bool {
use std::sync::atomic::{AtomicBool, ATOMIC_BOOL_INIT, Ordering};
use std::sync::{Once, ONCE_INIT};
static CHECKER: Once = ONCE_INIT;
static AVAILABLE: AtomicBool = ATOMIC_BOOL_INIT;
CHECKER.call_once(|| {
let mut buf: [u8; 0] = [];
let result = getrandom(&mut buf);
let available = if result == -1 {
let err = io::Error::last_os_error().raw_os_error();
err != Some(libc::ENOSYS)
} else {
true
};
AVAILABLE.store(available, Ordering::Relaxed);
});
AVAILABLE.load(Ordering::Relaxed)
}
#[cfg(not(all(target_os = "linux",
any(target_arch = "x86_64",
target_arch = "x86",
target_arch = "arm",
target_arch = "aarch64",
target_arch = "powerpc"))))]
fn is_getrandom_available() -> bool { false }
pub struct OsRng {
inner: OsRngInner,
}
enum OsRngInner {
OsGetrandomRng,
OsReadRng(ReadRng<File>),
}
impl OsRng {
pub fn new() -> io::Result<OsRng> {
if is_getrandom_available() {
return Ok(OsRng { inner: OsGetrandomRng });
}
let reader = try!(File::open("/dev/urandom"));
let reader_rng = ReadRng::new(reader);
Ok(OsRng { inner: OsReadRng(reader_rng) })
}
}
impl Rng for OsRng {
fn next_u32(&mut self) -> u32 {
match self.inner {
OsGetrandomRng => next_u32(&mut getrandom_fill_bytes),
OsReadRng(ref mut rng) => rng.next_u32(),
}
}
fn next_u64(&mut self) -> u64 {
match self.inner {
OsGetrandomRng => next_u64(&mut getrandom_fill_bytes),
OsReadRng(ref mut rng) => rng.next_u64(),
}
}
fn fill_bytes(&mut self, v: &mut [u8]) {
match self.inner {
OsGetrandomRng => getrandom_fill_bytes(v),
OsReadRng(ref mut rng) => rng.fill_bytes(v)
}
}
}
}
#[cfg(target_os = "ios")]
mod imp {
extern crate libc;
use super::{next_u32, next_u64};
use std::io;
use Rng;
use self::libc::{c_int, size_t};
#[derive(Debug)]
pub struct OsRng;
enum SecRandom {}
#[allow(non_upper_case_globals)]
const kSecRandomDefault: *const SecRandom = 0 as *const SecRandom;
#[link(name = "Security", kind = "framework")]
extern {
fn SecRandomCopyBytes(rnd: *const SecRandom,
count: size_t, bytes: *mut u8) -> c_int;
}
impl OsRng {
pub fn new() -> io::Result<OsRng> {
Ok(OsRng)
}
}
impl Rng for OsRng {
fn next_u32(&mut self) -> u32 {
next_u32(&mut |v| self.fill_bytes(v))
}
fn next_u64(&mut self) -> u64 {
next_u64(&mut |v| self.fill_bytes(v))
}
fn fill_bytes(&mut self, v: &mut [u8]) {
let ret = unsafe {
SecRandomCopyBytes(kSecRandomDefault, v.len() as size_t, v.as_mut_ptr())
};
if ret == -1 {
panic!("couldn't generate random bytes: {}", io::Error::last_os_error());
}
}
}
}
#[cfg(target_os = "freebsd")]
mod imp {
extern crate libc;
use std::{io, ptr};
use Rng;
use super::{next_u32, next_u64};
#[derive(Debug)]
pub struct OsRng;
impl OsRng {
pub fn new() -> io::Result<OsRng> {
Ok(OsRng)
}
}
impl Rng for OsRng {
fn next_u32(&mut self) -> u32 {
next_u32(&mut |v| self.fill_bytes(v))
}
fn next_u64(&mut self) -> u64 {
next_u64(&mut |v| self.fill_bytes(v))
}
fn fill_bytes(&mut self, v: &mut [u8]) {
let mib = [libc::CTL_KERN, libc::KERN_ARND];
// kern.arandom permits a maximum buffer size of 256 bytes
for s in v.chunks_mut(256) {
let mut s_len = s.len();
let ret = unsafe {
libc::sysctl(mib.as_ptr(), mib.len() as libc::c_uint,
s.as_mut_ptr() as *mut _, &mut s_len,
ptr::null(), 0)
};
if ret == -1 || s_len != s.len() {
panic!("kern.arandom sysctl failed! (returned {}, s.len() {}, oldlenp {})",
ret, s.len(), s_len);
}
}
}
}
}
#[cfg(target_os = "openbsd")]
mod imp {
extern crate libc;
use std::io;
use Rng;
use super::{next_u32, next_u64};
#[derive(Debug)]
pub struct OsRng;
impl OsRng {
pub fn new() -> io::Result<OsRng> {
Ok(OsRng)
}
}
impl Rng for OsRng {
fn next_u32(&mut self) -> u32 {
next_u32(&mut |v| self.fill_bytes(v))
}
fn next_u64(&mut self) -> u64 {
next_u64(&mut |v| self.fill_bytes(v))
}
fn fill_bytes(&mut self, v: &mut [u8]) {
// getentropy(2) permits a maximum buffer size of 256 bytes
for s in v.chunks_mut(256) {
let ret = unsafe {
libc::getentropy(s.as_mut_ptr() as *mut libc::c_void, s.len())
};
if ret == -1 {
let err = io::Error::last_os_error();
panic!("getentropy failed: {}", err);
}
}
}
}
}
#[cfg(target_os = "redox")]
mod imp {
use std::io;
use std::fs::File;
use Rng;
use read::ReadRng;
#[derive(Debug)]
pub struct OsRng {
inner: ReadRng<File>,
}
impl OsRng {
pub fn new() -> io::Result<OsRng> {
let reader = try!(File::open("rand:"));
let reader_rng = ReadRng::new(reader);
Ok(OsRng { inner: reader_rng })
}
}
impl Rng for OsRng {
fn next_u32(&mut self) -> u32 {
self.inner.next_u32()
}
fn next_u64(&mut self) -> u64 {
self.inner.next_u64()
}
fn fill_bytes(&mut self, v: &mut [u8]) {
self.inner.fill_bytes(v)
}
}
}
#[cfg(target_os = "fuchsia")]
mod imp {
extern crate fuchsia_zircon;
use std::io;
use Rng;
use super::{next_u32, next_u64};
#[derive(Debug)]
pub struct OsRng;
impl OsRng {
pub fn new() -> io::Result<OsRng> {
Ok(OsRng)
}
}
impl Rng for OsRng {
fn next_u32(&mut self) -> u32 {
next_u32(&mut |v| self.fill_bytes(v))
}
fn next_u64(&mut self) -> u64 {
next_u64(&mut |v| self.fill_bytes(v))
}
fn fill_bytes(&mut self, v: &mut [u8]) {
for s in v.chunks_mut(fuchsia_zircon::sys::ZX_CPRNG_DRAW_MAX_LEN) {
let mut filled = 0;
while filled < s.len() {
match fuchsia_zircon::cprng_draw(&mut s[filled..]) {
Ok(actual) => filled += actual,
Err(e) => panic!("cprng_draw failed: {:?}", e),
};
}
}
}
}
}
#[cfg(windows)]
mod imp {
extern crate winapi;
use std::io;
use Rng;
use super::{next_u32, next_u64};
use self::winapi::shared::minwindef::ULONG;
use self::winapi::um::ntsecapi::RtlGenRandom;
use self::winapi::um::winnt::PVOID;
#[derive(Debug)]
pub struct OsRng;
impl OsRng {
pub fn new() -> io::Result<OsRng> {
Ok(OsRng)
}
}
impl Rng for OsRng {
fn next_u32(&mut self) -> u32 {
next_u32(&mut |v| self.fill_bytes(v))
}
fn next_u64(&mut self) -> u64 {
next_u64(&mut |v| self.fill_bytes(v))
}
fn fill_bytes(&mut self, v: &mut [u8]) {
// RtlGenRandom takes an ULONG (u32) for the length so we need to
// split up the buffer.
for slice in v.chunks_mut(<ULONG>::max_value() as usize) {
let ret = unsafe {
RtlGenRandom(slice.as_mut_ptr() as PVOID, slice.len() as ULONG)
};
if ret == 0 {
panic!("couldn't generate random bytes: {}",
io::Error::last_os_error());
}
}
}
}
}
#[cfg(target_os = "nacl")]
mod imp {
extern crate libc;
use std::io;
use std::mem;
use Rng;
use super::{next_u32, next_u64};
#[derive(Debug)]
pub struct OsRng(extern fn(dest: *mut libc::c_void,
bytes: libc::size_t,
read: *mut libc::size_t) -> libc::c_int);
extern {
fn nacl_interface_query(name: *const libc::c_char,
table: *mut libc::c_void,
table_size: libc::size_t) -> libc::size_t;
}
const INTERFACE: &'static [u8] = b"nacl-irt-random-0.1\0";
#[repr(C)]
struct NaClIRTRandom {
get_random_bytes: Option<extern fn(dest: *mut libc::c_void,
bytes: libc::size_t,
read: *mut libc::size_t) -> libc::c_int>,
}
impl OsRng {
pub fn new() -> io::Result<OsRng> {
let mut iface = NaClIRTRandom {
get_random_bytes: None,
};
let result = unsafe {
nacl_interface_query(INTERFACE.as_ptr() as *const _,
mem::transmute(&mut iface),
mem::size_of::<NaClIRTRandom>() as libc::size_t)
};
if result != 0 {
assert!(iface.get_random_bytes.is_some());
let result = OsRng(iface.get_random_bytes.take().unwrap());
Ok(result)
} else {
let error = io::ErrorKind::NotFound;
let error = io::Error::new(error, "IRT random interface missing");
Err(error)
}
}
}
impl Rng for OsRng {
fn next_u32(&mut self) -> u32 {
next_u32(&mut |v| self.fill_bytes(v))
}
fn next_u64(&mut self) -> u64 {
next_u64(&mut |v| self.fill_bytes(v))
}
fn fill_bytes(&mut self, v: &mut [u8]) {
let mut read = 0;
loop {
let mut r: libc::size_t = 0;
let len = v.len();
let error = (self.0)(v[read..].as_mut_ptr() as *mut _,
(len - read) as libc::size_t,
&mut r as *mut _);
assert!(error == 0, "`get_random_bytes` failed!");
read += r as usize;
if read >= v.len() { break; }
}
}
}
}
#[cfg(all(target_arch = "wasm32", not(target_os = "emscripten")))]
mod imp {
use std::io;
use Rng;
#[derive(Debug)]
pub struct OsRng;
impl OsRng {
pub fn new() -> io::Result<OsRng> {
Err(io::Error::new(io::ErrorKind::Other, "Not supported"))
}
}
impl Rng for OsRng {
fn next_u32(&mut self) -> u32 {
panic!("Not supported")
}
}
}
#[cfg(target_env = "sgx")]
mod imp {
use rdrand::RdRand;
use std::io;
use rand_core::RngCore;
pub struct OsRng{
gen: RdRand
}
impl OsRng {
pub fn new() -> io::Result<OsRng> {
match RdRand::new() {
Ok(rng) => Ok(OsRng { gen: rng }),
Err(_) => Err(io::Error::new(io::ErrorKind::Other, "Not supported"))
}
}
pub(crate) fn next_u32(&mut self) -> u32 {
match self.gen.try_next_u32() {
Some(n) => n,
None => panic!("Non-recoverable hardware failure has occured")
}
}
pub(crate) fn next_u64(&mut self) -> u64 {
match self.gen.try_next_u64() {
Some(n) => n,
None => panic!("Non-recoverable hardware failure has occured")
}
}
pub(crate) fn fill_bytes(&mut self, v: &mut [u8]) {
match self.gen.try_fill_bytes(v) {
Ok(_) => {},
Err(_) => panic!("Non-recoverable hardware failure has occured")
}
}
}
}
#[cfg(test)]
mod test {
use std::sync::mpsc::channel;
use Rng;
use OsRng;
use std::thread;
#[test]
fn test_os_rng() {
let mut r = OsRng::new().unwrap();
r.next_u32();
r.next_u64();
let mut v = [0u8; 1000];
r.fill_bytes(&mut v);
}
#[test]
fn test_os_rng_tasks() {
let mut txs = vec!();
for _ in 0..20 {
let (tx, rx) = channel();
txs.push(tx);
thread::spawn(move|| {
// wait until all the tasks are ready to go.
rx.recv().unwrap();
// deschedule to attempt to interleave things as much
// as possible (XXX: is this a good test?)
let mut r = OsRng::new().unwrap();
thread::yield_now();
let mut v = [0u8; 1000];
for _ in 0..100 {
r.next_u32();
thread::yield_now();
r.next_u64();
thread::yield_now();
r.fill_bytes(&mut v);
thread::yield_now();
}
});
}
// start all the tasks
for tx in txs.iter() {
tx.send(()).unwrap();
}
}
}