blob: 5d14d6e78359f06c6ea9130c18bb568d619a7598 [file] [log] [blame]
// Copyright 2016 Brian Smith.
// Portions Copyright (c) 2016, Google Inc.
//
// Permission to use, copy, modify, and/or distribute this software for any
// purpose with or without fee is hereby granted, provided that the above
// copyright notice and this permission notice appear in all copies.
//
// THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHORS DISCLAIM ALL WARRANTIES
// WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY
// SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
// WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
// OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
// CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
use crate::c;
use core;
use polyfill::slice::u32_from_le_u8;
pub type Key = [u32; KEY_LEN_IN_BYTES / 4];
pub fn key_from_bytes(key_bytes: &[u8; KEY_LEN_IN_BYTES]) -> Key {
let mut key = [0u32; KEY_LEN_IN_BYTES / 4];
for (key_u32, key_u8_4) in key.iter_mut().zip(key_bytes.chunks(4)) {
*key_u32 = u32_from_le_u8(slice_as_array_ref!(key_u8_4, 4).unwrap());
}
key
}
#[inline]
pub fn chacha20_xor_in_place(key: &Key, counter: &Counter, in_out: &mut [u8]) {
chacha20_xor_inner(key, counter, in_out.as_ptr(), in_out.len(),
in_out.as_mut_ptr());
}
pub fn chacha20_xor_overlapping(key: &Key, counter: &Counter,
in_out: &mut [u8], in_prefix_len: usize) {
// XXX: The x86 and at least one branch of the ARM assembly language
// code doesn't allow overlapping input and output unless they are
// exactly overlapping. TODO: Figure out which branch of the ARM code
// has this limitation and come up with a better solution.
//
// https://rt.openssl.org/Ticket/Display.html?id=4362
let len = in_out.len() - in_prefix_len;
if cfg!(any(target_arch = "arm", target_arch = "x86")) &&
in_prefix_len != 0 {
unsafe {
core::ptr::copy(in_out[in_prefix_len..].as_ptr(),
in_out.as_mut_ptr(), len);
}
chacha20_xor_in_place(key, &counter, &mut in_out[..len]);
} else {
chacha20_xor_inner(key, counter, in_out[in_prefix_len..].as_ptr(),
len, in_out.as_mut_ptr());
}
}
#[inline]
pub fn chacha20_xor_inner(key: &Key, counter: &Counter, input: *const u8,
in_out_len: usize, output: *mut u8) {
debug_assert!(core::mem::align_of_val(key) >= 4);
debug_assert!(core::mem::align_of_val(counter) >= 4);
unsafe {
GFp_ChaCha20_ctr32(output, input, in_out_len, key, counter);
}
}
pub type Counter = [u32; 4];
#[inline]
pub fn make_counter(nonce: &[u8; NONCE_LEN], counter: u32) -> Counter {
[counter.to_le(),
u32_from_le_u8(slice_as_array_ref!(&nonce[0..4], 4).unwrap()),
u32_from_le_u8(slice_as_array_ref!(&nonce[4..8], 4).unwrap()),
u32_from_le_u8(slice_as_array_ref!(&nonce[8..12], 4).unwrap())]
}
extern {
fn GFp_ChaCha20_ctr32(out: *mut u8, in_: *const u8, in_len: c::size_t,
key: &Key, counter: &Counter);
}
pub const KEY_LEN_IN_BYTES: usize = 256 / 8;
pub const NONCE_LEN: usize = 12; // 96 bits
#[cfg(test)]
mod tests {
use crate::test;
use super::*;
use super::GFp_ChaCha20_ctr32;
// This verifies the encryption functionality provided by ChaCha20_ctr32
// is successful when either computed on disjoint input/output buffers,
// or on overlapping input/output buffers. On some branches of the 32-bit
// x86 and ARM code the in-place operation fails in some situations where
// the input/output buffers are not exactly overlapping. Such failures are
// dependent not only on the degree of overlapping but also the length of
// the data. `open()` works around that by moving the input data to the
// output location so that the buffers exactly overlap, for those targets.
// This test exists largely as a canary for detecting if/when that type of
// problem spreads to other platforms.
#[test]
pub fn chacha20_tests() {
test::from_file("src/chacha_tests.txt", |section, test_case| {
assert_eq!(section, "");
let key = test_case.consume_bytes("Key");
let key = slice_as_array_ref!(&key, KEY_LEN_IN_BYTES)?;
let key = key_from_bytes(key);
let ctr = test_case.consume_usize("Ctr");
let nonce_bytes = test_case.consume_bytes("Nonce");
let nonce = slice_as_array_ref!(&nonce_bytes, NONCE_LEN).unwrap();
let ctr = make_counter(&nonce, ctr as u32);
let input = test_case.consume_bytes("Input");
let output = test_case.consume_bytes("Output");
// Pre-allocate buffer for use in test_cases.
let mut in_out_buf = vec![0u8; input.len() + 276];
// Run the test case over all prefixes of the input because the
// behavior of ChaCha20 implementation changes dependent on the
// length of the input.
for len in 0..(input.len() + 1) {
chacha20_test_case_inner(&key, &ctr, &input[..len],
&output[..len], len, &mut in_out_buf);
}
Ok(())
});
}
fn chacha20_test_case_inner(key: &Key, ctr: &Counter, input: &[u8],
expected: &[u8], len: usize,
in_out_buf: &mut [u8]) {
// Straightforward encryption into disjoint buffers is computed
// correctly.
unsafe {
GFp_ChaCha20_ctr32(in_out_buf.as_mut_ptr(), input[..len].as_ptr(),
len, key, &ctr);
}
assert_eq!(&in_out_buf[..len], expected);
// Do not test offset buffers for x86 and ARM architectures (see above
// for rationale).
let max_offset =
if cfg!(any(target_arch = "x86", target_arch = "arm")) {
0
} else {
259
};
// Check that in-place encryption works successfully when the pointers
// to the input/output buffers are (partially) overlapping.
for alignment in 0..16 {
for offset in 0..(max_offset + 1) {
in_out_buf[alignment+offset..][..len].copy_from_slice(input);
unsafe {
GFp_ChaCha20_ctr32(in_out_buf[alignment..].as_mut_ptr(),
in_out_buf[alignment + offset..].as_ptr(),
len, key, ctr);
assert_eq!(&in_out_buf[alignment..][..len], expected);
}
}
}
}
}