blob: 6599da3fd823831b39991b943431a0982f89a907 [file] [log] [blame]
use fallback;
// We only use AVX when we can detect at runtime whether it's available, which
// requires std.
#[cfg(feature = "use_std")]
mod avx;
mod sse2;
// This macro employs a gcc-like "ifunc" trick where by upon first calling
// `memchr` (for example), CPU feature detection will be performed at runtime
// to determine the best implementation to use. After CPU feature detection
// is done, we replace `memchr`'s function pointer with the selection. Upon
// subsequent invocations, the CPU-specific routine is invoked directly, which
// skips the CPU feature detection and subsequent branch that's required.
//
// While this typically doesn't matter for rare occurrences or when used on
// larger haystacks, `memchr` can be called in tight loops where the overhead
// of this branch can actually add up *and is measurable*. This trick was
// necessary to bring this implementation up to glibc's speeds for the 'tiny'
// benchmarks, for example.
//
// At some point, I expect the Rust ecosystem will get a nice macro for doing
// exactly this, at which point, we can replace our hand-jammed version of it.
//
// N.B. The ifunc strategy does prevent function inlining of course, but on
// modern CPUs, you'll probably end up with the AVX2 implementation, which
// probably can't be inlined anyway---unless you've compiled your entire
// program with AVX2 enabled. However, even then, the various memchr
// implementations aren't exactly small, so inlining might not help anyway!
#[cfg(feature = "use_std")]
macro_rules! ifunc {
($fnty:ty, $name:ident, $haystack:ident, $($needle:ident),+) => {{
use std::mem;
use std::sync::atomic::{AtomicPtr, Ordering};
type FnRaw = *mut ();
static FN: AtomicPtr<()> = AtomicPtr::new(detect as FnRaw);
fn detect($($needle: u8),+, haystack: &[u8]) -> Option<usize> {
let fun =
if cfg!(memchr_runtime_avx) && is_x86_feature_detected!("avx2") {
avx::$name as FnRaw
} else if cfg!(memchr_runtime_sse2) {
sse2::$name as FnRaw
} else {
fallback::$name as FnRaw
};
FN.store(fun as FnRaw, Ordering::Relaxed);
unsafe {
mem::transmute::<FnRaw, $fnty>(fun)($($needle),+, haystack)
}
}
unsafe {
let fun = FN.load(Ordering::Relaxed);
mem::transmute::<FnRaw, $fnty>(fun)($($needle),+, $haystack)
}
}}
}
// When std isn't enable (which provides runtime CPU feature detection), or if
// runtime CPU feature detection has been explicitly disabled, then just call
// our optimized SSE2 routine directly. SSE2 is avalbale on all x86_64 targets,
// so no CPU feature detection is necessary.
#[cfg(not(feature = "use_std"))]
macro_rules! ifunc {
($fnty:ty, $name:ident, $haystack:ident, $($needle:ident),+) => {{
if cfg!(memchr_runtime_sse2) {
unsafe { sse2::$name($($needle),+, $haystack) }
} else {
fallback::$name($($needle),+, $haystack)
}
}}
}
#[inline(always)]
pub fn memchr(n1: u8, haystack: &[u8]) -> Option<usize> {
ifunc!(fn(u8, &[u8]) -> Option<usize>, memchr, haystack, n1)
}
#[inline(always)]
pub fn memchr2(n1: u8, n2: u8, haystack: &[u8]) -> Option<usize> {
ifunc!(fn(u8, u8, &[u8]) -> Option<usize>, memchr2, haystack, n1, n2)
}
#[inline(always)]
pub fn memchr3(n1: u8, n2: u8, n3: u8, haystack: &[u8]) -> Option<usize> {
ifunc!(fn(u8, u8, u8, &[u8]) -> Option<usize>, memchr3, haystack, n1, n2, n3)
}
#[inline(always)]
pub fn memrchr(n1: u8, haystack: &[u8]) -> Option<usize> {
ifunc!(fn(u8, &[u8]) -> Option<usize>, memrchr, haystack, n1)
}
#[inline(always)]
pub fn memrchr2(n1: u8, n2: u8, haystack: &[u8]) -> Option<usize> {
ifunc!(fn(u8, u8, &[u8]) -> Option<usize>, memrchr2, haystack, n1, n2)
}
#[inline(always)]
pub fn memrchr3(n1: u8, n2: u8, n3: u8, haystack: &[u8]) -> Option<usize> {
ifunc!(fn(u8, u8, u8, &[u8]) -> Option<usize>, memrchr3, haystack, n1, n2, n3)
}