blob: c82866621ca3aab80f10b623c87c39af8d2faffa [file] [log] [blame]
use std::borrow::Cow;
use std::fmt;
use std::error::Error as StdError;
use std::io;
use std::mem;
use std::net::{IpAddr, SocketAddr};
use std::time::{Duration, Instant};
use futures::{Async, Future, Poll};
use futures::future::{Executor};
use http::uri::Scheme;
use net2::TcpBuilder;
use tokio_reactor::Handle;
use tokio_tcp::{TcpStream, ConnectFuture};
use tokio_timer::Delay;
use super::{Connect, Connected, Destination};
use super::dns::{self, GaiResolver, Resolve, TokioThreadpoolGaiResolver};
/// A connector for the `http` scheme.
///
/// Performs DNS resolution in a thread pool, and then connects over TCP.
///
/// # Note
///
/// Sets the [`HttpInfo`](HttpInfo) value on responses, which includes
/// transport information such as the remote socket address used.
#[derive(Clone)]
pub struct HttpConnector<R = GaiResolver> {
enforce_http: bool,
handle: Option<Handle>,
happy_eyeballs_timeout: Option<Duration>,
keep_alive_timeout: Option<Duration>,
local_address: Option<IpAddr>,
nodelay: bool,
resolver: R,
reuse_address: bool,
}
/// Extra information about the transport when an HttpConnector is used.
///
/// # Example
///
/// ```rust
/// use hyper::client::{Client, connect::HttpInfo};
/// use hyper::rt::Future;
///
/// let client = Client::new();
///
/// let fut = client.get("http://example.local".parse().unwrap())
/// .inspect(|resp| {
/// resp
/// .extensions()
/// .get::<HttpInfo>()
/// .map(|info| {
/// println!("remote addr = {}", info.remote_addr());
/// });
/// });
/// ```
///
/// # Note
///
/// If a different connector is used besides [`HttpConnector`](HttpConnector),
/// this value will not exist in the extensions. Consult that specific
/// connector to see what "extra" information it might provide to responses.
#[derive(Clone, Debug)]
pub struct HttpInfo {
remote_addr: SocketAddr,
}
impl HttpConnector {
/// Construct a new HttpConnector.
///
/// Takes number of DNS worker threads.
#[inline]
pub fn new(threads: usize) -> HttpConnector {
HttpConnector::new_with_resolver(GaiResolver::new(threads))
}
#[doc(hidden)]
#[deprecated(note = "Use HttpConnector::set_reactor to set a reactor handle")]
pub fn new_with_handle(threads: usize, handle: Handle) -> HttpConnector {
let resolver = GaiResolver::new(threads);
let mut http = HttpConnector::new_with_resolver(resolver);
http.set_reactor(Some(handle));
http
}
/// Construct a new HttpConnector.
///
/// Takes an executor to run blocking `getaddrinfo` tasks on.
pub fn new_with_executor<E: 'static>(executor: E, handle: Option<Handle>) -> HttpConnector
where E: Executor<dns::sealed::GaiTask> + Send + Sync
{
let resolver = GaiResolver::new_with_executor(executor);
let mut http = HttpConnector::new_with_resolver(resolver);
http.set_reactor(handle);
http
}
}
impl HttpConnector<TokioThreadpoolGaiResolver> {
/// Construct a new HttpConnector using the `TokioThreadpoolGaiResolver`.
///
/// This resolver **requires** the threadpool runtime to be used.
pub fn new_with_tokio_threadpool_resolver() -> Self {
HttpConnector::new_with_resolver(TokioThreadpoolGaiResolver::new())
}
}
impl<R> HttpConnector<R> {
/// Construct a new HttpConnector.
///
/// Takes a `Resolve` to handle DNS lookups.
pub fn new_with_resolver(resolver: R) -> HttpConnector<R> {
HttpConnector {
enforce_http: true,
handle: None,
happy_eyeballs_timeout: Some(Duration::from_millis(300)),
keep_alive_timeout: None,
local_address: None,
nodelay: false,
resolver,
reuse_address: false,
}
}
/// Option to enforce all `Uri`s have the `http` scheme.
///
/// Enabled by default.
#[inline]
pub fn enforce_http(&mut self, is_enforced: bool) {
self.enforce_http = is_enforced;
}
/// Set a handle to a `Reactor` to register connections to.
///
/// If `None`, the implicit default reactor will be used.
#[inline]
pub fn set_reactor(&mut self, handle: Option<Handle>) {
self.handle = handle;
}
/// Set that all sockets have `SO_KEEPALIVE` set with the supplied duration.
///
/// If `None`, the option will not be set.
///
/// Default is `None`.
#[inline]
pub fn set_keepalive(&mut self, dur: Option<Duration>) {
self.keep_alive_timeout = dur;
}
/// Set that all sockets have `SO_NODELAY` set to the supplied value `nodelay`.
///
/// Default is `false`.
#[inline]
pub fn set_nodelay(&mut self, nodelay: bool) {
self.nodelay = nodelay;
}
/// Set that all sockets are bound to the configured address before connection.
///
/// If `None`, the sockets will not be bound.
///
/// Default is `None`.
#[inline]
pub fn set_local_address(&mut self, addr: Option<IpAddr>) {
self.local_address = addr;
}
/// Set timeout for [RFC 6555 (Happy Eyeballs)][RFC 6555] algorithm.
///
/// If hostname resolves to both IPv4 and IPv6 addresses and connection
/// cannot be established using preferred address family before timeout
/// elapses, then connector will in parallel attempt connection using other
/// address family.
///
/// If `None`, parallel connection attempts are disabled.
///
/// Default is 300 milliseconds.
///
/// [RFC 6555]: https://tools.ietf.org/html/rfc6555
#[inline]
pub fn set_happy_eyeballs_timeout(&mut self, dur: Option<Duration>) {
self.happy_eyeballs_timeout = dur;
}
/// Set that all socket have `SO_REUSEADDR` set to the supplied value `reuse_address`.
///
/// Default is `false`.
#[inline]
pub fn set_reuse_address(&mut self, reuse_address: bool) -> &mut Self {
self.reuse_address = reuse_address;
self
}
}
// R: Debug required for now to allow adding it to debug output later...
impl<R: fmt::Debug> fmt::Debug for HttpConnector<R> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_struct("HttpConnector")
.finish()
}
}
impl<R> Connect for HttpConnector<R>
where
R: Resolve + Clone + Send + Sync,
R::Future: Send,
{
type Transport = TcpStream;
type Error = io::Error;
type Future = HttpConnecting<R>;
fn connect(&self, dst: Destination) -> Self::Future {
trace!(
"Http::connect; scheme={}, host={}, port={:?}",
dst.scheme(),
dst.host(),
dst.port(),
);
if self.enforce_http {
if dst.uri.scheme_part() != Some(&Scheme::HTTP) {
return invalid_url(InvalidUrl::NotHttp, &self.handle);
}
} else if dst.uri.scheme_part().is_none() {
return invalid_url(InvalidUrl::MissingScheme, &self.handle);
}
let host = match dst.uri.host() {
Some(s) => s,
None => return invalid_url(InvalidUrl::MissingAuthority, &self.handle),
};
let port = match dst.uri.port_part() {
Some(port) => port.as_u16(),
None => if dst.uri.scheme_part() == Some(&Scheme::HTTPS) { 443 } else { 80 },
};
HttpConnecting {
state: State::Lazy(self.resolver.clone(), host.into(), self.local_address),
handle: self.handle.clone(),
happy_eyeballs_timeout: self.happy_eyeballs_timeout,
keep_alive_timeout: self.keep_alive_timeout,
nodelay: self.nodelay,
port,
reuse_address: self.reuse_address,
}
}
}
impl HttpInfo {
/// Get the remote address of the transport used.
pub fn remote_addr(&self) -> SocketAddr {
self.remote_addr
}
}
#[inline]
fn invalid_url<R: Resolve>(err: InvalidUrl, handle: &Option<Handle>) -> HttpConnecting<R> {
HttpConnecting {
state: State::Error(Some(io::Error::new(io::ErrorKind::InvalidInput, err))),
handle: handle.clone(),
keep_alive_timeout: None,
nodelay: false,
port: 0,
happy_eyeballs_timeout: None,
reuse_address: false,
}
}
#[derive(Debug, Clone, Copy)]
enum InvalidUrl {
MissingScheme,
NotHttp,
MissingAuthority,
}
impl fmt::Display for InvalidUrl {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.write_str(self.description())
}
}
impl StdError for InvalidUrl {
fn description(&self) -> &str {
match *self {
InvalidUrl::MissingScheme => "invalid URL, missing scheme",
InvalidUrl::NotHttp => "invalid URL, scheme must be http",
InvalidUrl::MissingAuthority => "invalid URL, missing domain",
}
}
}
/// A Future representing work to connect to a URL.
#[must_use = "futures do nothing unless polled"]
pub struct HttpConnecting<R: Resolve = GaiResolver> {
state: State<R>,
handle: Option<Handle>,
happy_eyeballs_timeout: Option<Duration>,
keep_alive_timeout: Option<Duration>,
nodelay: bool,
port: u16,
reuse_address: bool,
}
enum State<R: Resolve> {
Lazy(R, String, Option<IpAddr>),
Resolving(R::Future, Option<IpAddr>),
Connecting(ConnectingTcp),
Error(Option<io::Error>),
}
impl<R: Resolve> Future for HttpConnecting<R> {
type Item = (TcpStream, Connected);
type Error = io::Error;
fn poll(&mut self) -> Poll<Self::Item, Self::Error> {
loop {
let state;
match self.state {
State::Lazy(ref resolver, ref mut host, local_addr) => {
// If the host is already an IP addr (v4 or v6),
// skip resolving the dns and start connecting right away.
if let Some(addrs) = dns::IpAddrs::try_parse(host, self.port) {
state = State::Connecting(ConnectingTcp::new(
local_addr, addrs, self.happy_eyeballs_timeout, self.reuse_address));
} else {
let name = dns::Name::new(mem::replace(host, String::new()));
state = State::Resolving(resolver.resolve(name), local_addr);
}
},
State::Resolving(ref mut future, local_addr) => {
match try!(future.poll()) {
Async::NotReady => return Ok(Async::NotReady),
Async::Ready(addrs) => {
let port = self.port;
let addrs = addrs
.map(|addr| SocketAddr::new(addr, port))
.collect();
let addrs = dns::IpAddrs::new(addrs);
state = State::Connecting(ConnectingTcp::new(
local_addr, addrs, self.happy_eyeballs_timeout, self.reuse_address));
}
};
},
State::Connecting(ref mut c) => {
let sock = try_ready!(c.poll(&self.handle));
if let Some(dur) = self.keep_alive_timeout {
sock.set_keepalive(Some(dur))?;
}
sock.set_nodelay(self.nodelay)?;
let extra = HttpInfo {
remote_addr: sock.peer_addr()?,
};
let connected = Connected::new()
.extra(extra);
return Ok(Async::Ready((sock, connected)));
},
State::Error(ref mut e) => return Err(e.take().expect("polled more than once")),
}
self.state = state;
}
}
}
impl<R: Resolve + fmt::Debug> fmt::Debug for HttpConnecting<R> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.pad("HttpConnecting")
}
}
struct ConnectingTcp {
local_addr: Option<IpAddr>,
preferred: ConnectingTcpRemote,
fallback: Option<ConnectingTcpFallback>,
reuse_address: bool,
}
impl ConnectingTcp {
fn new(
local_addr: Option<IpAddr>,
remote_addrs: dns::IpAddrs,
fallback_timeout: Option<Duration>,
reuse_address: bool,
) -> ConnectingTcp {
if let Some(fallback_timeout) = fallback_timeout {
let (preferred_addrs, fallback_addrs) = remote_addrs.split_by_preference();
if fallback_addrs.is_empty() {
return ConnectingTcp {
local_addr,
preferred: ConnectingTcpRemote::new(preferred_addrs),
fallback: None,
reuse_address,
};
}
ConnectingTcp {
local_addr,
preferred: ConnectingTcpRemote::new(preferred_addrs),
fallback: Some(ConnectingTcpFallback {
delay: Delay::new(Instant::now() + fallback_timeout),
remote: ConnectingTcpRemote::new(fallback_addrs),
}),
reuse_address,
}
} else {
ConnectingTcp {
local_addr,
preferred: ConnectingTcpRemote::new(remote_addrs),
fallback: None,
reuse_address,
}
}
}
}
struct ConnectingTcpFallback {
delay: Delay,
remote: ConnectingTcpRemote,
}
struct ConnectingTcpRemote {
addrs: dns::IpAddrs,
current: Option<ConnectFuture>,
}
impl ConnectingTcpRemote {
fn new(addrs: dns::IpAddrs) -> Self {
Self {
addrs,
current: None,
}
}
}
impl ConnectingTcpRemote {
// not a Future, since passing a &Handle to poll
fn poll(
&mut self,
local_addr: &Option<IpAddr>,
handle: &Option<Handle>,
reuse_address: bool,
) -> Poll<TcpStream, io::Error> {
let mut err = None;
loop {
if let Some(ref mut current) = self.current {
match current.poll() {
Ok(ok) => return Ok(ok),
Err(e) => {
trace!("connect error {:?}", e);
err = Some(e);
if let Some(addr) = self.addrs.next() {
debug!("connecting to {}", addr);
*current = connect(&addr, local_addr, handle, reuse_address)?;
continue;
}
}
}
} else if let Some(addr) = self.addrs.next() {
debug!("connecting to {}", addr);
self.current = Some(connect(&addr, local_addr, handle, reuse_address)?);
continue;
}
return Err(err.take().expect("missing connect error"));
}
}
}
fn connect(addr: &SocketAddr, local_addr: &Option<IpAddr>, handle: &Option<Handle>, reuse_address: bool) -> io::Result<ConnectFuture> {
let builder = match addr {
&SocketAddr::V4(_) => TcpBuilder::new_v4()?,
&SocketAddr::V6(_) => TcpBuilder::new_v6()?,
};
if reuse_address {
builder.reuse_address(reuse_address)?;
}
if let Some(ref local_addr) = *local_addr {
// Caller has requested this socket be bound before calling connect
builder.bind(SocketAddr::new(local_addr.clone(), 0))?;
}
else if cfg!(windows) {
// Windows requires a socket be bound before calling connect
let any: SocketAddr = match addr {
&SocketAddr::V4(_) => {
([0, 0, 0, 0], 0).into()
},
&SocketAddr::V6(_) => {
([0, 0, 0, 0, 0, 0, 0, 0], 0).into()
}
};
builder.bind(any)?;
}
let handle = match *handle {
Some(ref handle) => Cow::Borrowed(handle),
None => Cow::Owned(Handle::default()),
};
Ok(TcpStream::connect_std(builder.to_tcp_stream()?, addr, &handle))
}
impl ConnectingTcp {
// not a Future, since passing a &Handle to poll
fn poll(&mut self, handle: &Option<Handle>) -> Poll<TcpStream, io::Error> {
match self.fallback.take() {
None => self.preferred.poll(&self.local_addr, handle, self.reuse_address),
Some(mut fallback) => match self.preferred.poll(&self.local_addr, handle, self.reuse_address) {
Ok(Async::Ready(stream)) => {
// Preferred successful - drop fallback.
Ok(Async::Ready(stream))
}
Ok(Async::NotReady) => match fallback.delay.poll() {
Ok(Async::Ready(_)) => match fallback.remote.poll(&self.local_addr, handle, self.reuse_address) {
Ok(Async::Ready(stream)) => {
// Fallback successful - drop current preferred,
// but keep fallback as new preferred.
self.preferred = fallback.remote;
Ok(Async::Ready(stream))
}
Ok(Async::NotReady) => {
// Neither preferred nor fallback are ready.
self.fallback = Some(fallback);
Ok(Async::NotReady)
}
Err(_) => {
// Fallback failed - resume with preferred only.
Ok(Async::NotReady)
}
},
Ok(Async::NotReady) => {
// Too early to attempt fallback.
self.fallback = Some(fallback);
Ok(Async::NotReady)
}
Err(_) => {
// Fallback delay failed - resume with preferred only.
Ok(Async::NotReady)
}
}
Err(_) => {
// Preferred failed - use fallback as new preferred.
self.preferred = fallback.remote;
self.preferred.poll(&self.local_addr, handle, self.reuse_address)
}
}
}
}
}
#[cfg(test)]
mod tests {
use std::io;
use futures::Future;
use super::{Connect, Destination, HttpConnector};
#[test]
fn test_errors_missing_authority() {
let uri = "/foo/bar?baz".parse().unwrap();
let dst = Destination {
uri,
};
let connector = HttpConnector::new(1);
assert_eq!(connector.connect(dst).wait().unwrap_err().kind(), io::ErrorKind::InvalidInput);
}
#[test]
fn test_errors_enforce_http() {
let uri = "https://example.domain/foo/bar?baz".parse().unwrap();
let dst = Destination {
uri,
};
let connector = HttpConnector::new(1);
assert_eq!(connector.connect(dst).wait().unwrap_err().kind(), io::ErrorKind::InvalidInput);
}
#[test]
fn test_errors_missing_scheme() {
let uri = "example.domain".parse().unwrap();
let dst = Destination {
uri,
};
let connector = HttpConnector::new(1);
assert_eq!(connector.connect(dst).wait().unwrap_err().kind(), io::ErrorKind::InvalidInput);
}
#[test]
#[cfg_attr(not(feature = "__internal_happy_eyeballs_tests"), ignore)]
fn client_happy_eyeballs() {
extern crate pretty_env_logger;
use std::net::{IpAddr, Ipv4Addr, Ipv6Addr, TcpListener};
use std::time::{Duration, Instant};
use futures::{Async, Poll};
use tokio::runtime::current_thread::Runtime;
use tokio_reactor::Handle;
use super::dns;
use super::ConnectingTcp;
let _ = pretty_env_logger::try_init();
let server4 = TcpListener::bind("127.0.0.1:0").unwrap();
let addr = server4.local_addr().unwrap();
let _server6 = TcpListener::bind(&format!("[::1]:{}", addr.port())).unwrap();
let mut rt = Runtime::new().unwrap();
let local_timeout = Duration::default();
let unreachable_v4_timeout = measure_connect(unreachable_ipv4_addr()).1;
let unreachable_v6_timeout = measure_connect(unreachable_ipv6_addr()).1;
let fallback_timeout = ::std::cmp::max(unreachable_v4_timeout, unreachable_v6_timeout)
+ Duration::from_millis(250);
let scenarios = &[
// Fast primary, without fallback.
(&[local_ipv4_addr()][..],
4, local_timeout, false),
(&[local_ipv6_addr()][..],
6, local_timeout, false),
// Fast primary, with (unused) fallback.
(&[local_ipv4_addr(), local_ipv6_addr()][..],
4, local_timeout, false),
(&[local_ipv6_addr(), local_ipv4_addr()][..],
6, local_timeout, false),
// Unreachable + fast primary, without fallback.
(&[unreachable_ipv4_addr(), local_ipv4_addr()][..],
4, unreachable_v4_timeout, false),
(&[unreachable_ipv6_addr(), local_ipv6_addr()][..],
6, unreachable_v6_timeout, false),
// Unreachable + fast primary, with (unused) fallback.
(&[unreachable_ipv4_addr(), local_ipv4_addr(), local_ipv6_addr()][..],
4, unreachable_v4_timeout, false),
(&[unreachable_ipv6_addr(), local_ipv6_addr(), local_ipv4_addr()][..],
6, unreachable_v6_timeout, true),
// Slow primary, with (used) fallback.
(&[slow_ipv4_addr(), local_ipv4_addr(), local_ipv6_addr()][..],
6, fallback_timeout, false),
(&[slow_ipv6_addr(), local_ipv6_addr(), local_ipv4_addr()][..],
4, fallback_timeout, true),
// Slow primary, with (used) unreachable + fast fallback.
(&[slow_ipv4_addr(), unreachable_ipv6_addr(), local_ipv6_addr()][..],
6, fallback_timeout + unreachable_v6_timeout, false),
(&[slow_ipv6_addr(), unreachable_ipv4_addr(), local_ipv4_addr()][..],
4, fallback_timeout + unreachable_v4_timeout, true),
];
// Scenarios for IPv6 -> IPv4 fallback require that host can access IPv6 network.
// Otherwise, connection to "slow" IPv6 address will error-out immediatelly.
let ipv6_accessible = measure_connect(slow_ipv6_addr()).0;
for &(hosts, family, timeout, needs_ipv6_access) in scenarios {
if needs_ipv6_access && !ipv6_accessible {
continue;
}
let addrs = hosts.iter().map(|host| (host.clone(), addr.port()).into()).collect();
let connecting_tcp = ConnectingTcp::new(None, dns::IpAddrs::new(addrs), Some(fallback_timeout), false);
let fut = ConnectingTcpFuture(connecting_tcp);
let start = Instant::now();
let res = rt.block_on(fut).unwrap();
let duration = start.elapsed();
// Allow actual duration to be +/- 150ms off.
let min_duration = if timeout >= Duration::from_millis(150) {
timeout - Duration::from_millis(150)
} else {
Duration::default()
};
let max_duration = timeout + Duration::from_millis(150);
assert_eq!(res, family);
assert!(duration >= min_duration);
assert!(duration <= max_duration);
}
struct ConnectingTcpFuture(ConnectingTcp);
impl Future for ConnectingTcpFuture {
type Item = u8;
type Error = ::std::io::Error;
fn poll(&mut self) -> Poll<Self::Item, Self::Error> {
match self.0.poll(&Some(Handle::default())) {
Ok(Async::Ready(stream)) => Ok(Async::Ready(
if stream.peer_addr().unwrap().is_ipv4() { 4 } else { 6 }
)),
Ok(Async::NotReady) => Ok(Async::NotReady),
Err(err) => Err(err),
}
}
}
fn local_ipv4_addr() -> IpAddr {
Ipv4Addr::new(127, 0, 0, 1).into()
}
fn local_ipv6_addr() -> IpAddr {
Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 1).into()
}
fn unreachable_ipv4_addr() -> IpAddr {
Ipv4Addr::new(127, 0, 0, 2).into()
}
fn unreachable_ipv6_addr() -> IpAddr {
Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 2).into()
}
fn slow_ipv4_addr() -> IpAddr {
// RFC 6890 reserved IPv4 address.
Ipv4Addr::new(198, 18, 0, 25).into()
}
fn slow_ipv6_addr() -> IpAddr {
// RFC 6890 reserved IPv6 address.
Ipv6Addr::new(2001, 2, 0, 0, 0, 0, 0, 254).into()
}
fn measure_connect(addr: IpAddr) -> (bool, Duration) {
let start = Instant::now();
let result = ::std::net::TcpStream::connect_timeout(
&(addr, 80).into(), Duration::from_secs(1));
let reachable = result.is_ok() || result.unwrap_err().kind() == io::ErrorKind::TimedOut;
let duration = start.elapsed();
(reachable, duration)
}
}
}