blob: 5ac55bd8be8356dbde1c9a44de66fdd1f915324b [file] [log] [blame]
 // Copyright 2016-2017 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // https://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. //! The Cauchy distribution. use Rng; use distributions::Distribution; use std::f64::consts::PI; /// The Cauchy distribution `Cauchy(median, scale)`. /// /// This distribution has a density function: /// `f(x) = 1 / (pi * scale * (1 + ((x - median) / scale)^2))` /// /// # Example /// /// ``` /// use rand::distributions::{Cauchy, Distribution}; /// /// let cau = Cauchy::new(2.0, 5.0); /// let v = cau.sample(&mut rand::thread_rng()); /// println!("{} is from a Cauchy(2, 5) distribution", v); /// ``` #[derive(Clone, Copy, Debug)] pub struct Cauchy { median: f64, scale: f64 } impl Cauchy { /// Construct a new `Cauchy` with the given shape parameters /// `median` the peak location and `scale` the scale factor. /// Panics if `scale <= 0`. pub fn new(median: f64, scale: f64) -> Cauchy { assert!(scale > 0.0, "Cauchy::new called with scale factor <= 0"); Cauchy { median, scale } } } impl Distribution for Cauchy { fn sample(&self, rng: &mut R) -> f64 { // sample from [0, 1) let x = rng.gen::(); // get standard cauchy random number // note that π/2 is not exactly representable, even if x=0.5 the result is finite let comp_dev = (PI * x).tan(); // shift and scale according to parameters let result = self.median + self.scale * comp_dev; result } } #[cfg(test)] mod test { use distributions::Distribution; use super::Cauchy; fn median(mut numbers: &mut [f64]) -> f64 { sort(&mut numbers); let mid = numbers.len() / 2; numbers[mid] } fn sort(numbers: &mut [f64]) { numbers.sort_by(|a, b| a.partial_cmp(b).unwrap()); } #[test] fn test_cauchy_median() { let cauchy = Cauchy::new(10.0, 5.0); let mut rng = ::test::rng(123); let mut numbers: [f64; 1000] = [0.0; 1000]; for i in 0..1000 { numbers[i] = cauchy.sample(&mut rng); } let median = median(&mut numbers); println!("Cauchy median: {}", median); assert!((median - 10.0).abs() < 0.5); // not 100% certain, but probable enough } #[test] fn test_cauchy_mean() { let cauchy = Cauchy::new(10.0, 5.0); let mut rng = ::test::rng(123); let mut sum = 0.0; for _ in 0..1000 { sum += cauchy.sample(&mut rng); } let mean = sum / 1000.0; println!("Cauchy mean: {}", mean); // for a Cauchy distribution the mean should not converge assert!((mean - 10.0).abs() > 0.5); // not 100% certain, but probable enough } #[test] #[should_panic] fn test_cauchy_invalid_scale_zero() { Cauchy::new(0.0, 0.0); } #[test] #[should_panic] fn test_cauchy_invalid_scale_neg() { Cauchy::new(0.0, -10.0); } }