blob: 75e6c574d46dc87076a205cceb00c5bdd76618f1 [file] [log] [blame]
/*
* BCM2835 CPRMAN clock manager
*
* Copyright (c) 2020 Luc Michel <luc@lmichel.fr>
*
* SPDX-License-Identifier: GPL-2.0-or-later
*/
/*
* This peripheral is roughly divided into 3 main parts:
* - the PLLs
* - the PLL channels
* - the clock muxes
*
* A main oscillator (xosc) feeds all the PLLs. Each PLLs has one or more
* channels. Those channel are then connected to the clock muxes. Each mux has
* multiples sources (usually the xosc, some of the PLL channels and some "test
* debug" clocks). A mux is configured to select a given source through its
* control register. Each mux has one output clock that also goes out of the
* CPRMAN. This output clock usually connects to another peripheral in the SoC
* (so a given mux is dedicated to a peripheral).
*
* At each level (PLL, channel and mux), the clock can be altered through
* dividers (and multipliers in case of the PLLs), and can be disabled (in this
* case, the next levels see no clock).
*
* This can be sum-up as follows (this is an example and not the actual BCM2835
* clock tree):
*
* /-->[PLL]-|->[PLL channel]--... [mux]--> to peripherals
* | |->[PLL channel] muxes takes [mux]
* | \->[PLL channel] inputs from [mux]
* | some channels [mux]
* [xosc]---|-->[PLL]-|->[PLL channel] and other srcs [mux]
* | \->[PLL channel] ...-->[mux]
* | [mux]
* \-->[PLL]--->[PLL channel] [mux]
*
* The page at https://elinux.org/The_Undocumented_Pi gives the actual clock
* tree configuration.
*
* The CPRMAN exposes clock outputs with the name of the clock mux suffixed
* with "-out" (e.g. "uart-out", "h264-out", ...).
*/
#include "qemu/osdep.h"
#include "qemu/log.h"
#include "migration/vmstate.h"
#include "hw/qdev-properties.h"
#include "hw/misc/bcm2835_cprman.h"
#include "hw/misc/bcm2835_cprman_internals.h"
#include "trace.h"
/* PLL */
static void pll_reset(DeviceState *dev)
{
CprmanPllState *s = CPRMAN_PLL(dev);
const PLLResetInfo *info = &PLL_RESET_INFO[s->id];
*s->reg_cm = info->cm;
*s->reg_a2w_ctrl = info->a2w_ctrl;
memcpy(s->reg_a2w_ana, info->a2w_ana, sizeof(info->a2w_ana));
*s->reg_a2w_frac = info->a2w_frac;
}
static bool pll_is_locked(const CprmanPllState *pll)
{
return !FIELD_EX32(*pll->reg_a2w_ctrl, A2W_PLLx_CTRL, PWRDN)
&& !FIELD_EX32(*pll->reg_cm, CM_PLLx, ANARST);
}
static void pll_update(CprmanPllState *pll)
{
uint64_t freq, ndiv, fdiv, pdiv;
if (!pll_is_locked(pll)) {
clock_update(pll->out, 0);
return;
}
pdiv = FIELD_EX32(*pll->reg_a2w_ctrl, A2W_PLLx_CTRL, PDIV);
if (!pdiv) {
clock_update(pll->out, 0);
return;
}
ndiv = FIELD_EX32(*pll->reg_a2w_ctrl, A2W_PLLx_CTRL, NDIV);
fdiv = FIELD_EX32(*pll->reg_a2w_frac, A2W_PLLx_FRAC, FRAC);
if (pll->reg_a2w_ana[1] & pll->prediv_mask) {
/* The prescaler doubles the parent frequency */
ndiv *= 2;
fdiv *= 2;
}
/*
* We have a multiplier with an integer part (ndiv) and a fractional part
* (fdiv), and a divider (pdiv).
*/
freq = clock_get_hz(pll->xosc_in) *
((ndiv << R_A2W_PLLx_FRAC_FRAC_LENGTH) + fdiv);
freq /= pdiv;
freq >>= R_A2W_PLLx_FRAC_FRAC_LENGTH;
clock_update_hz(pll->out, freq);
}
static void pll_xosc_update(void *opaque, ClockEvent event)
{
pll_update(CPRMAN_PLL(opaque));
}
static void pll_init(Object *obj)
{
CprmanPllState *s = CPRMAN_PLL(obj);
s->xosc_in = qdev_init_clock_in(DEVICE(s), "xosc-in", pll_xosc_update,
s, ClockUpdate);
s->out = qdev_init_clock_out(DEVICE(s), "out");
}
static const VMStateDescription pll_vmstate = {
.name = TYPE_CPRMAN_PLL,
.version_id = 1,
.minimum_version_id = 1,
.fields = (VMStateField[]) {
VMSTATE_CLOCK(xosc_in, CprmanPllState),
VMSTATE_END_OF_LIST()
}
};
static void pll_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
dc->reset = pll_reset;
dc->vmsd = &pll_vmstate;
}
static const TypeInfo cprman_pll_info = {
.name = TYPE_CPRMAN_PLL,
.parent = TYPE_DEVICE,
.instance_size = sizeof(CprmanPllState),
.class_init = pll_class_init,
.instance_init = pll_init,
};
/* PLL channel */
static void pll_channel_reset(DeviceState *dev)
{
CprmanPllChannelState *s = CPRMAN_PLL_CHANNEL(dev);
const PLLChannelResetInfo *info = &PLL_CHANNEL_RESET_INFO[s->id];
*s->reg_a2w_ctrl = info->a2w_ctrl;
}
static bool pll_channel_is_enabled(CprmanPllChannelState *channel)
{
/*
* XXX I'm not sure of the purpose of the LOAD field. The Linux driver does
* not set it when enabling the channel, but does clear it when disabling
* it.
*/
return !FIELD_EX32(*channel->reg_a2w_ctrl, A2W_PLLx_CHANNELy, DISABLE)
&& !(*channel->reg_cm & channel->hold_mask);
}
static void pll_channel_update(CprmanPllChannelState *channel)
{
uint64_t freq, div;
if (!pll_channel_is_enabled(channel)) {
clock_update(channel->out, 0);
return;
}
div = FIELD_EX32(*channel->reg_a2w_ctrl, A2W_PLLx_CHANNELy, DIV);
if (!div) {
/*
* It seems that when the divider value is 0, it is considered as
* being maximum by the hardware (see the Linux driver).
*/
div = R_A2W_PLLx_CHANNELy_DIV_MASK;
}
/* Some channels have an additional fixed divider */
freq = clock_get_hz(channel->pll_in) / (div * channel->fixed_divider);
clock_update_hz(channel->out, freq);
}
/* Update a PLL and all its channels */
static void pll_update_all_channels(BCM2835CprmanState *s,
CprmanPllState *pll)
{
size_t i;
pll_update(pll);
for (i = 0; i < CPRMAN_NUM_PLL_CHANNEL; i++) {
CprmanPllChannelState *channel = &s->channels[i];
if (channel->parent == pll->id) {
pll_channel_update(channel);
}
}
}
static void pll_channel_pll_in_update(void *opaque, ClockEvent event)
{
pll_channel_update(CPRMAN_PLL_CHANNEL(opaque));
}
static void pll_channel_init(Object *obj)
{
CprmanPllChannelState *s = CPRMAN_PLL_CHANNEL(obj);
s->pll_in = qdev_init_clock_in(DEVICE(s), "pll-in",
pll_channel_pll_in_update, s,
ClockUpdate);
s->out = qdev_init_clock_out(DEVICE(s), "out");
}
static const VMStateDescription pll_channel_vmstate = {
.name = TYPE_CPRMAN_PLL_CHANNEL,
.version_id = 1,
.minimum_version_id = 1,
.fields = (VMStateField[]) {
VMSTATE_CLOCK(pll_in, CprmanPllChannelState),
VMSTATE_END_OF_LIST()
}
};
static void pll_channel_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
dc->reset = pll_channel_reset;
dc->vmsd = &pll_channel_vmstate;
}
static const TypeInfo cprman_pll_channel_info = {
.name = TYPE_CPRMAN_PLL_CHANNEL,
.parent = TYPE_DEVICE,
.instance_size = sizeof(CprmanPllChannelState),
.class_init = pll_channel_class_init,
.instance_init = pll_channel_init,
};
/* clock mux */
static bool clock_mux_is_enabled(CprmanClockMuxState *mux)
{
return FIELD_EX32(*mux->reg_ctl, CM_CLOCKx_CTL, ENABLE);
}
static void clock_mux_update(CprmanClockMuxState *mux)
{
uint64_t freq;
uint32_t div, src = FIELD_EX32(*mux->reg_ctl, CM_CLOCKx_CTL, SRC);
bool enabled = clock_mux_is_enabled(mux);
*mux->reg_ctl = FIELD_DP32(*mux->reg_ctl, CM_CLOCKx_CTL, BUSY, enabled);
if (!enabled) {
clock_update(mux->out, 0);
return;
}
freq = clock_get_hz(mux->srcs[src]);
if (mux->int_bits == 0 && mux->frac_bits == 0) {
clock_update_hz(mux->out, freq);
return;
}
/*
* The divider has an integer and a fractional part. The size of each part
* varies with the muxes (int_bits and frac_bits). Both parts are
* concatenated, with the integer part always starting at bit 12.
*
* 31 12 11 0
* ------------------------------
* CM_DIV | | int | frac | |
* ------------------------------
* <-----> <------>
* int_bits frac_bits
*/
div = extract32(*mux->reg_div,
R_CM_CLOCKx_DIV_FRAC_LENGTH - mux->frac_bits,
mux->int_bits + mux->frac_bits);
if (!div) {
clock_update(mux->out, 0);
return;
}
freq = muldiv64(freq, 1 << mux->frac_bits, div);
clock_update_hz(mux->out, freq);
}
static void clock_mux_src_update(void *opaque, ClockEvent event)
{
CprmanClockMuxState **backref = opaque;
CprmanClockMuxState *s = *backref;
CprmanClockMuxSource src = backref - s->backref;
if (FIELD_EX32(*s->reg_ctl, CM_CLOCKx_CTL, SRC) != src) {
return;
}
clock_mux_update(s);
}
static void clock_mux_reset(DeviceState *dev)
{
CprmanClockMuxState *clock = CPRMAN_CLOCK_MUX(dev);
const ClockMuxResetInfo *info = &CLOCK_MUX_RESET_INFO[clock->id];
*clock->reg_ctl = info->cm_ctl;
*clock->reg_div = info->cm_div;
}
static void clock_mux_init(Object *obj)
{
CprmanClockMuxState *s = CPRMAN_CLOCK_MUX(obj);
size_t i;
for (i = 0; i < CPRMAN_NUM_CLOCK_MUX_SRC; i++) {
char *name = g_strdup_printf("srcs[%zu]", i);
s->backref[i] = s;
s->srcs[i] = qdev_init_clock_in(DEVICE(s), name,
clock_mux_src_update,
&s->backref[i],
ClockUpdate);
g_free(name);
}
s->out = qdev_init_clock_out(DEVICE(s), "out");
}
static const VMStateDescription clock_mux_vmstate = {
.name = TYPE_CPRMAN_CLOCK_MUX,
.version_id = 1,
.minimum_version_id = 1,
.fields = (VMStateField[]) {
VMSTATE_ARRAY_CLOCK(srcs, CprmanClockMuxState,
CPRMAN_NUM_CLOCK_MUX_SRC),
VMSTATE_END_OF_LIST()
}
};
static void clock_mux_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
dc->reset = clock_mux_reset;
dc->vmsd = &clock_mux_vmstate;
}
static const TypeInfo cprman_clock_mux_info = {
.name = TYPE_CPRMAN_CLOCK_MUX,
.parent = TYPE_DEVICE,
.instance_size = sizeof(CprmanClockMuxState),
.class_init = clock_mux_class_init,
.instance_init = clock_mux_init,
};
/* DSI0HSCK mux */
static void dsi0hsck_mux_update(CprmanDsi0HsckMuxState *s)
{
bool src_is_plld = FIELD_EX32(*s->reg_cm, CM_DSI0HSCK, SELPLLD);
Clock *src = src_is_plld ? s->plld_in : s->plla_in;
clock_update(s->out, clock_get(src));
}
static void dsi0hsck_mux_in_update(void *opaque, ClockEvent event)
{
dsi0hsck_mux_update(CPRMAN_DSI0HSCK_MUX(opaque));
}
static void dsi0hsck_mux_init(Object *obj)
{
CprmanDsi0HsckMuxState *s = CPRMAN_DSI0HSCK_MUX(obj);
DeviceState *dev = DEVICE(obj);
s->plla_in = qdev_init_clock_in(dev, "plla-in", dsi0hsck_mux_in_update,
s, ClockUpdate);
s->plld_in = qdev_init_clock_in(dev, "plld-in", dsi0hsck_mux_in_update,
s, ClockUpdate);
s->out = qdev_init_clock_out(DEVICE(s), "out");
}
static const VMStateDescription dsi0hsck_mux_vmstate = {
.name = TYPE_CPRMAN_DSI0HSCK_MUX,
.version_id = 1,
.minimum_version_id = 1,
.fields = (VMStateField[]) {
VMSTATE_CLOCK(plla_in, CprmanDsi0HsckMuxState),
VMSTATE_CLOCK(plld_in, CprmanDsi0HsckMuxState),
VMSTATE_END_OF_LIST()
}
};
static void dsi0hsck_mux_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
dc->vmsd = &dsi0hsck_mux_vmstate;
}
static const TypeInfo cprman_dsi0hsck_mux_info = {
.name = TYPE_CPRMAN_DSI0HSCK_MUX,
.parent = TYPE_DEVICE,
.instance_size = sizeof(CprmanDsi0HsckMuxState),
.class_init = dsi0hsck_mux_class_init,
.instance_init = dsi0hsck_mux_init,
};
/* CPRMAN "top level" model */
static uint32_t get_cm_lock(const BCM2835CprmanState *s)
{
static const int CM_LOCK_MAPPING[CPRMAN_NUM_PLL] = {
[CPRMAN_PLLA] = R_CM_LOCK_FLOCKA_SHIFT,
[CPRMAN_PLLC] = R_CM_LOCK_FLOCKC_SHIFT,
[CPRMAN_PLLD] = R_CM_LOCK_FLOCKD_SHIFT,
[CPRMAN_PLLH] = R_CM_LOCK_FLOCKH_SHIFT,
[CPRMAN_PLLB] = R_CM_LOCK_FLOCKB_SHIFT,
};
uint32_t r = 0;
size_t i;
for (i = 0; i < CPRMAN_NUM_PLL; i++) {
r |= pll_is_locked(&s->plls[i]) << CM_LOCK_MAPPING[i];
}
return r;
}
static uint64_t cprman_read(void *opaque, hwaddr offset,
unsigned size)
{
BCM2835CprmanState *s = CPRMAN(opaque);
uint64_t r = 0;
size_t idx = offset / sizeof(uint32_t);
switch (idx) {
case R_CM_LOCK:
r = get_cm_lock(s);
break;
default:
r = s->regs[idx];
}
trace_bcm2835_cprman_read(offset, r);
return r;
}
static inline void update_pll_and_channels_from_cm(BCM2835CprmanState *s,
size_t idx)
{
size_t i;
for (i = 0; i < CPRMAN_NUM_PLL; i++) {
if (PLL_INIT_INFO[i].cm_offset == idx) {
pll_update_all_channels(s, &s->plls[i]);
return;
}
}
}
static inline void update_channel_from_a2w(BCM2835CprmanState *s, size_t idx)
{
size_t i;
for (i = 0; i < CPRMAN_NUM_PLL_CHANNEL; i++) {
if (PLL_CHANNEL_INIT_INFO[i].a2w_ctrl_offset == idx) {
pll_channel_update(&s->channels[i]);
return;
}
}
}
static inline void update_mux_from_cm(BCM2835CprmanState *s, size_t idx)
{
size_t i;
for (i = 0; i < CPRMAN_NUM_CLOCK_MUX; i++) {
if ((CLOCK_MUX_INIT_INFO[i].cm_offset == idx) ||
(CLOCK_MUX_INIT_INFO[i].cm_offset + 4 == idx)) {
/* matches CM_CTL or CM_DIV mux register */
clock_mux_update(&s->clock_muxes[i]);
return;
}
}
}
#define CASE_PLL_A2W_REGS(pll_) \
case R_A2W_ ## pll_ ## _CTRL: \
case R_A2W_ ## pll_ ## _ANA0: \
case R_A2W_ ## pll_ ## _ANA1: \
case R_A2W_ ## pll_ ## _ANA2: \
case R_A2W_ ## pll_ ## _ANA3: \
case R_A2W_ ## pll_ ## _FRAC
static void cprman_write(void *opaque, hwaddr offset,
uint64_t value, unsigned size)
{
BCM2835CprmanState *s = CPRMAN(opaque);
size_t idx = offset / sizeof(uint32_t);
if (FIELD_EX32(value, CPRMAN, PASSWORD) != CPRMAN_PASSWORD) {
trace_bcm2835_cprman_write_invalid_magic(offset, value);
return;
}
value &= ~R_CPRMAN_PASSWORD_MASK;
trace_bcm2835_cprman_write(offset, value);
s->regs[idx] = value;
switch (idx) {
case R_CM_PLLA ... R_CM_PLLH:
case R_CM_PLLB:
/*
* A given CM_PLLx register is shared by both the PLL and the channels
* of this PLL.
*/
update_pll_and_channels_from_cm(s, idx);
break;
CASE_PLL_A2W_REGS(PLLA) :
pll_update(&s->plls[CPRMAN_PLLA]);
break;
CASE_PLL_A2W_REGS(PLLC) :
pll_update(&s->plls[CPRMAN_PLLC]);
break;
CASE_PLL_A2W_REGS(PLLD) :
pll_update(&s->plls[CPRMAN_PLLD]);
break;
CASE_PLL_A2W_REGS(PLLH) :
pll_update(&s->plls[CPRMAN_PLLH]);
break;
CASE_PLL_A2W_REGS(PLLB) :
pll_update(&s->plls[CPRMAN_PLLB]);
break;
case R_A2W_PLLA_DSI0:
case R_A2W_PLLA_CORE:
case R_A2W_PLLA_PER:
case R_A2W_PLLA_CCP2:
case R_A2W_PLLC_CORE2:
case R_A2W_PLLC_CORE1:
case R_A2W_PLLC_PER:
case R_A2W_PLLC_CORE0:
case R_A2W_PLLD_DSI0:
case R_A2W_PLLD_CORE:
case R_A2W_PLLD_PER:
case R_A2W_PLLD_DSI1:
case R_A2W_PLLH_AUX:
case R_A2W_PLLH_RCAL:
case R_A2W_PLLH_PIX:
case R_A2W_PLLB_ARM:
update_channel_from_a2w(s, idx);
break;
case R_CM_GNRICCTL ... R_CM_SMIDIV:
case R_CM_TCNTCNT ... R_CM_VECDIV:
case R_CM_PULSECTL ... R_CM_PULSEDIV:
case R_CM_SDCCTL ... R_CM_ARMCTL:
case R_CM_AVEOCTL ... R_CM_EMMCDIV:
case R_CM_EMMC2CTL ... R_CM_EMMC2DIV:
update_mux_from_cm(s, idx);
break;
case R_CM_DSI0HSCK:
dsi0hsck_mux_update(&s->dsi0hsck_mux);
break;
}
}
#undef CASE_PLL_A2W_REGS
static const MemoryRegionOps cprman_ops = {
.read = cprman_read,
.write = cprman_write,
.endianness = DEVICE_LITTLE_ENDIAN,
.valid = {
/*
* Although this hasn't been checked against real hardware, nor the
* information can be found in a datasheet, it seems reasonable because
* of the "PASSWORD" magic value found in every registers.
*/
.min_access_size = 4,
.max_access_size = 4,
.unaligned = false,
},
.impl = {
.max_access_size = 4,
},
};
static void cprman_reset(DeviceState *dev)
{
BCM2835CprmanState *s = CPRMAN(dev);
size_t i;
memset(s->regs, 0, sizeof(s->regs));
for (i = 0; i < CPRMAN_NUM_PLL; i++) {
device_cold_reset(DEVICE(&s->plls[i]));
}
for (i = 0; i < CPRMAN_NUM_PLL_CHANNEL; i++) {
device_cold_reset(DEVICE(&s->channels[i]));
}
device_cold_reset(DEVICE(&s->dsi0hsck_mux));
for (i = 0; i < CPRMAN_NUM_CLOCK_MUX; i++) {
device_cold_reset(DEVICE(&s->clock_muxes[i]));
}
clock_update_hz(s->xosc, s->xosc_freq);
}
static void cprman_init(Object *obj)
{
BCM2835CprmanState *s = CPRMAN(obj);
size_t i;
for (i = 0; i < CPRMAN_NUM_PLL; i++) {
object_initialize_child(obj, PLL_INIT_INFO[i].name,
&s->plls[i], TYPE_CPRMAN_PLL);
set_pll_init_info(s, &s->plls[i], i);
}
for (i = 0; i < CPRMAN_NUM_PLL_CHANNEL; i++) {
object_initialize_child(obj, PLL_CHANNEL_INIT_INFO[i].name,
&s->channels[i],
TYPE_CPRMAN_PLL_CHANNEL);
set_pll_channel_init_info(s, &s->channels[i], i);
}
object_initialize_child(obj, "dsi0hsck-mux",
&s->dsi0hsck_mux, TYPE_CPRMAN_DSI0HSCK_MUX);
s->dsi0hsck_mux.reg_cm = &s->regs[R_CM_DSI0HSCK];
for (i = 0; i < CPRMAN_NUM_CLOCK_MUX; i++) {
char *alias;
object_initialize_child(obj, CLOCK_MUX_INIT_INFO[i].name,
&s->clock_muxes[i],
TYPE_CPRMAN_CLOCK_MUX);
set_clock_mux_init_info(s, &s->clock_muxes[i], i);
/* Expose muxes output as CPRMAN outputs */
alias = g_strdup_printf("%s-out", CLOCK_MUX_INIT_INFO[i].name);
qdev_alias_clock(DEVICE(&s->clock_muxes[i]), "out", DEVICE(obj), alias);
g_free(alias);
}
s->xosc = clock_new(obj, "xosc");
s->gnd = clock_new(obj, "gnd");
clock_set(s->gnd, 0);
memory_region_init_io(&s->iomem, obj, &cprman_ops,
s, "bcm2835-cprman", 0x2000);
sysbus_init_mmio(SYS_BUS_DEVICE(obj), &s->iomem);
}
static void connect_mux_sources(BCM2835CprmanState *s,
CprmanClockMuxState *mux,
const CprmanPllChannel *clk_mapping)
{
size_t i;
Clock *td0 = s->clock_muxes[CPRMAN_CLOCK_TD0].out;
Clock *td1 = s->clock_muxes[CPRMAN_CLOCK_TD1].out;
/* For sources from 0 to 3. Source 4 to 9 are mux specific */
Clock * const CLK_SRC_MAPPING[] = {
[CPRMAN_CLOCK_SRC_GND] = s->gnd,
[CPRMAN_CLOCK_SRC_XOSC] = s->xosc,
[CPRMAN_CLOCK_SRC_TD0] = td0,
[CPRMAN_CLOCK_SRC_TD1] = td1,
};
for (i = 0; i < CPRMAN_NUM_CLOCK_MUX_SRC; i++) {
CprmanPllChannel mapping = clk_mapping[i];
Clock *src;
if (mapping == CPRMAN_CLOCK_SRC_FORCE_GROUND) {
src = s->gnd;
} else if (mapping == CPRMAN_CLOCK_SRC_DSI0HSCK) {
src = s->dsi0hsck_mux.out;
} else if (i < CPRMAN_CLOCK_SRC_PLLA) {
src = CLK_SRC_MAPPING[i];
} else {
src = s->channels[mapping].out;
}
clock_set_source(mux->srcs[i], src);
}
}
static void cprman_realize(DeviceState *dev, Error **errp)
{
BCM2835CprmanState *s = CPRMAN(dev);
size_t i;
for (i = 0; i < CPRMAN_NUM_PLL; i++) {
CprmanPllState *pll = &s->plls[i];
clock_set_source(pll->xosc_in, s->xosc);
if (!qdev_realize(DEVICE(pll), NULL, errp)) {
return;
}
}
for (i = 0; i < CPRMAN_NUM_PLL_CHANNEL; i++) {
CprmanPllChannelState *channel = &s->channels[i];
CprmanPll parent = PLL_CHANNEL_INIT_INFO[i].parent;
Clock *parent_clk = s->plls[parent].out;
clock_set_source(channel->pll_in, parent_clk);
if (!qdev_realize(DEVICE(channel), NULL, errp)) {
return;
}
}
clock_set_source(s->dsi0hsck_mux.plla_in,
s->channels[CPRMAN_PLLA_CHANNEL_DSI0].out);
clock_set_source(s->dsi0hsck_mux.plld_in,
s->channels[CPRMAN_PLLD_CHANNEL_DSI0].out);
if (!qdev_realize(DEVICE(&s->dsi0hsck_mux), NULL, errp)) {
return;
}
for (i = 0; i < CPRMAN_NUM_CLOCK_MUX; i++) {
CprmanClockMuxState *clock_mux = &s->clock_muxes[i];
connect_mux_sources(s, clock_mux, CLOCK_MUX_INIT_INFO[i].src_mapping);
if (!qdev_realize(DEVICE(clock_mux), NULL, errp)) {
return;
}
}
}
static const VMStateDescription cprman_vmstate = {
.name = TYPE_BCM2835_CPRMAN,
.version_id = 1,
.minimum_version_id = 1,
.fields = (VMStateField[]) {
VMSTATE_UINT32_ARRAY(regs, BCM2835CprmanState, CPRMAN_NUM_REGS),
VMSTATE_END_OF_LIST()
}
};
static Property cprman_properties[] = {
DEFINE_PROP_UINT32("xosc-freq-hz", BCM2835CprmanState, xosc_freq, 19200000),
DEFINE_PROP_END_OF_LIST()
};
static void cprman_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
dc->realize = cprman_realize;
dc->reset = cprman_reset;
dc->vmsd = &cprman_vmstate;
device_class_set_props(dc, cprman_properties);
}
static const TypeInfo cprman_info = {
.name = TYPE_BCM2835_CPRMAN,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(BCM2835CprmanState),
.class_init = cprman_class_init,
.instance_init = cprman_init,
};
static void cprman_register_types(void)
{
type_register_static(&cprman_info);
type_register_static(&cprman_pll_info);
type_register_static(&cprman_pll_channel_info);
type_register_static(&cprman_clock_mux_info);
type_register_static(&cprman_dsi0hsck_mux_info);
}
type_init(cprman_register_types);