blob: d39390c2f2f31e53bfdce71128285a8224489720 [file] [log] [blame]
/*
* QEMU monitor
*
* Copyright (c) 2003-2004 Fabrice Bellard
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "qemu/osdep.h"
#include "qemu/units.h"
#include <dirent.h>
#include "cpu.h"
#include "hw/hw.h"
#include "monitor/qdev.h"
#include "hw/usb.h"
#include "hw/pci/pci.h"
#include "sysemu/watchdog.h"
#include "hw/loader.h"
#include "exec/gdbstub.h"
#include "net/net.h"
#include "net/slirp.h"
#include "chardev/char-fe.h"
#include "chardev/char-io.h"
#include "chardev/char-mux.h"
#include "ui/qemu-spice.h"
#include "sysemu/numa.h"
#include "monitor/monitor.h"
#include "qemu/config-file.h"
#include "qemu/readline.h"
#include "ui/console.h"
#include "ui/input.h"
#include "sysemu/block-backend.h"
#include "audio/audio.h"
#include "disas/disas.h"
#include "sysemu/balloon.h"
#include "qemu/timer.h"
#include "sysemu/hw_accel.h"
#include "qemu/acl.h"
#include "sysemu/tpm.h"
#include "qapi/qmp/qdict.h"
#include "qapi/qmp/qerror.h"
#include "qapi/qmp/qnum.h"
#include "qapi/qmp/qstring.h"
#include "qapi/qmp/qjson.h"
#include "qapi/qmp/json-parser.h"
#include "qapi/qmp/qlist.h"
#include "qom/object_interfaces.h"
#include "trace-root.h"
#include "trace/control.h"
#include "monitor/hmp-target.h"
#ifdef CONFIG_TRACE_SIMPLE
#include "trace/simple.h"
#endif
#include "exec/memory.h"
#include "exec/exec-all.h"
#include "qemu/log.h"
#include "qemu/option.h"
#include "hmp.h"
#include "qemu/thread.h"
#include "block/qapi.h"
#include "qapi/qapi-commands.h"
#include "qapi/qapi-events.h"
#include "qapi/error.h"
#include "qapi/qmp-event.h"
#include "qapi/qapi-introspect.h"
#include "sysemu/qtest.h"
#include "sysemu/cpus.h"
#include "sysemu/iothread.h"
#include "qemu/cutils.h"
#include "tcg/tcg.h"
#if defined(TARGET_S390X)
#include "hw/s390x/storage-keys.h"
#include "hw/s390x/storage-attributes.h"
#endif
/*
* Supported types:
*
* 'F' filename
* 'B' block device name
* 's' string (accept optional quote)
* 'S' it just appends the rest of the string (accept optional quote)
* 'O' option string of the form NAME=VALUE,...
* parsed according to QemuOptsList given by its name
* Example: 'device:O' uses qemu_device_opts.
* Restriction: only lists with empty desc are supported
* TODO lift the restriction
* 'i' 32 bit integer
* 'l' target long (32 or 64 bit)
* 'M' Non-negative target long (32 or 64 bit), in user mode the
* value is multiplied by 2^20 (think Mebibyte)
* 'o' octets (aka bytes)
* user mode accepts an optional E, e, P, p, T, t, G, g, M, m,
* K, k suffix, which multiplies the value by 2^60 for suffixes E
* and e, 2^50 for suffixes P and p, 2^40 for suffixes T and t,
* 2^30 for suffixes G and g, 2^20 for M and m, 2^10 for K and k
* 'T' double
* user mode accepts an optional ms, us, ns suffix,
* which divides the value by 1e3, 1e6, 1e9, respectively
* '/' optional gdb-like print format (like "/10x")
*
* '?' optional type (for all types, except '/')
* '.' other form of optional type (for 'i' and 'l')
* 'b' boolean
* user mode accepts "on" or "off"
* '-' optional parameter (eg. '-f')
*
*/
typedef struct mon_cmd_t {
const char *name;
const char *args_type;
const char *params;
const char *help;
const char *flags; /* p=preconfig */
void (*cmd)(Monitor *mon, const QDict *qdict);
/* @sub_table is a list of 2nd level of commands. If it does not exist,
* cmd should be used. If it exists, sub_table[?].cmd should be
* used, and cmd of 1st level plays the role of help function.
*/
struct mon_cmd_t *sub_table;
void (*command_completion)(ReadLineState *rs, int nb_args, const char *str);
} mon_cmd_t;
/* file descriptors passed via SCM_RIGHTS */
typedef struct mon_fd_t mon_fd_t;
struct mon_fd_t {
char *name;
int fd;
QLIST_ENTRY(mon_fd_t) next;
};
/* file descriptor associated with a file descriptor set */
typedef struct MonFdsetFd MonFdsetFd;
struct MonFdsetFd {
int fd;
bool removed;
char *opaque;
QLIST_ENTRY(MonFdsetFd) next;
};
/* file descriptor set containing fds passed via SCM_RIGHTS */
typedef struct MonFdset MonFdset;
struct MonFdset {
int64_t id;
QLIST_HEAD(, MonFdsetFd) fds;
QLIST_HEAD(, MonFdsetFd) dup_fds;
QLIST_ENTRY(MonFdset) next;
};
typedef struct {
JSONMessageParser parser;
/*
* When a client connects, we're in capabilities negotiation mode.
* @commands is &qmp_cap_negotiation_commands then. When command
* qmp_capabilities succeeds, we go into command mode, and
* @command becomes &qmp_commands.
*/
QmpCommandList *commands;
bool capab_offered[QMP_CAPABILITY__MAX]; /* capabilities offered */
bool capab[QMP_CAPABILITY__MAX]; /* offered and accepted */
/*
* Protects qmp request/response queue.
* Take monitor_lock first when you need both.
*/
QemuMutex qmp_queue_lock;
/* Input queue that holds all the parsed QMP requests */
GQueue *qmp_requests;
} MonitorQMP;
/*
* To prevent flooding clients, events can be throttled. The
* throttling is calculated globally, rather than per-Monitor
* instance.
*/
typedef struct MonitorQAPIEventState {
QAPIEvent event; /* Throttling state for this event type and... */
QDict *data; /* ... data, see qapi_event_throttle_equal() */
QEMUTimer *timer; /* Timer for handling delayed events */
QDict *qdict; /* Delayed event (if any) */
} MonitorQAPIEventState;
typedef struct {
int64_t rate; /* Minimum time (in ns) between two events */
} MonitorQAPIEventConf;
struct Monitor {
CharBackend chr;
int reset_seen;
int flags;
int suspend_cnt; /* Needs to be accessed atomically */
bool skip_flush;
bool use_io_thread;
/*
* State used only in the thread "owning" the monitor.
* If @use_io_thread, this is @mon_iothread.
* Else, it's the main thread.
* These members can be safely accessed without locks.
*/
ReadLineState *rs;
MonitorQMP qmp;
gchar *mon_cpu_path;
BlockCompletionFunc *password_completion_cb;
void *password_opaque;
mon_cmd_t *cmd_table;
QTAILQ_ENTRY(Monitor) entry;
/*
* The per-monitor lock. We can't access guest memory when holding
* the lock.
*/
QemuMutex mon_lock;
/*
* Members that are protected by the per-monitor lock
*/
QLIST_HEAD(, mon_fd_t) fds;
QString *outbuf;
guint out_watch;
/* Read under either BQL or mon_lock, written with BQL+mon_lock. */
int mux_out;
};
/* Shared monitor I/O thread */
IOThread *mon_iothread;
/* Bottom half to dispatch the requests received from I/O thread */
QEMUBH *qmp_dispatcher_bh;
struct QMPRequest {
/* Owner of the request */
Monitor *mon;
/* "id" field of the request */
QObject *id;
/*
* Request object to be handled or Error to be reported
* (exactly one of them is non-null)
*/
QObject *req;
Error *err;
};
typedef struct QMPRequest QMPRequest;
/* QMP checker flags */
#define QMP_ACCEPT_UNKNOWNS 1
/* Protects mon_list, monitor_qapi_event_state. */
static QemuMutex monitor_lock;
static GHashTable *monitor_qapi_event_state;
static QTAILQ_HEAD(mon_list, Monitor) mon_list;
/* Protects mon_fdsets */
static QemuMutex mon_fdsets_lock;
static QLIST_HEAD(mon_fdsets, MonFdset) mon_fdsets;
static int mon_refcount;
static mon_cmd_t mon_cmds[];
static mon_cmd_t info_cmds[];
QmpCommandList qmp_commands, qmp_cap_negotiation_commands;
__thread Monitor *cur_mon;
static void monitor_command_cb(void *opaque, const char *cmdline,
void *readline_opaque);
/**
* Is @mon a QMP monitor?
*/
static inline bool monitor_is_qmp(const Monitor *mon)
{
return (mon->flags & MONITOR_USE_CONTROL);
}
/**
* Is @mon is using readline?
* Note: not all HMP monitors use readline, e.g., gdbserver has a
* non-interactive HMP monitor, so readline is not used there.
*/
static inline bool monitor_uses_readline(const Monitor *mon)
{
return mon->flags & MONITOR_USE_READLINE;
}
static inline bool monitor_is_hmp_non_interactive(const Monitor *mon)
{
return !monitor_is_qmp(mon) && !monitor_uses_readline(mon);
}
/*
* Return the clock to use for recording an event's time.
* It's QEMU_CLOCK_REALTIME, except for qtests it's
* QEMU_CLOCK_VIRTUAL, to support testing rate limits.
* Beware: result is invalid before configure_accelerator().
*/
static inline QEMUClockType monitor_get_event_clock(void)
{
return qtest_enabled() ? QEMU_CLOCK_VIRTUAL : QEMU_CLOCK_REALTIME;
}
/**
* Is the current monitor, if any, a QMP monitor?
*/
bool monitor_cur_is_qmp(void)
{
return cur_mon && monitor_is_qmp(cur_mon);
}
void monitor_read_command(Monitor *mon, int show_prompt)
{
if (!mon->rs)
return;
readline_start(mon->rs, "(qemu) ", 0, monitor_command_cb, NULL);
if (show_prompt)
readline_show_prompt(mon->rs);
}
int monitor_read_password(Monitor *mon, ReadLineFunc *readline_func,
void *opaque)
{
if (mon->rs) {
readline_start(mon->rs, "Password: ", 1, readline_func, opaque);
/* prompt is printed on return from the command handler */
return 0;
} else {
monitor_printf(mon, "terminal does not support password prompting\n");
return -ENOTTY;
}
}
static void qmp_request_free(QMPRequest *req)
{
qobject_unref(req->id);
qobject_unref(req->req);
error_free(req->err);
g_free(req);
}
/* Caller must hold mon->qmp.qmp_queue_lock */
static void monitor_qmp_cleanup_req_queue_locked(Monitor *mon)
{
while (!g_queue_is_empty(mon->qmp.qmp_requests)) {
qmp_request_free(g_queue_pop_head(mon->qmp.qmp_requests));
}
}
static void monitor_qmp_cleanup_queues(Monitor *mon)
{
qemu_mutex_lock(&mon->qmp.qmp_queue_lock);
monitor_qmp_cleanup_req_queue_locked(mon);
qemu_mutex_unlock(&mon->qmp.qmp_queue_lock);
}
static void monitor_flush_locked(Monitor *mon);
static gboolean monitor_unblocked(GIOChannel *chan, GIOCondition cond,
void *opaque)
{
Monitor *mon = opaque;
qemu_mutex_lock(&mon->mon_lock);
mon->out_watch = 0;
monitor_flush_locked(mon);
qemu_mutex_unlock(&mon->mon_lock);
return FALSE;
}
/* Caller must hold mon->mon_lock */
static void monitor_flush_locked(Monitor *mon)
{
int rc;
size_t len;
const char *buf;
if (mon->skip_flush) {
return;
}
buf = qstring_get_str(mon->outbuf);
len = qstring_get_length(mon->outbuf);
if (len && !mon->mux_out) {
rc = qemu_chr_fe_write(&mon->chr, (const uint8_t *) buf, len);
if ((rc < 0 && errno != EAGAIN) || (rc == len)) {
/* all flushed or error */
qobject_unref(mon->outbuf);
mon->outbuf = qstring_new();
return;
}
if (rc > 0) {
/* partial write */
QString *tmp = qstring_from_str(buf + rc);
qobject_unref(mon->outbuf);
mon->outbuf = tmp;
}
if (mon->out_watch == 0) {
mon->out_watch =
qemu_chr_fe_add_watch(&mon->chr, G_IO_OUT | G_IO_HUP,
monitor_unblocked, mon);
}
}
}
void monitor_flush(Monitor *mon)
{
qemu_mutex_lock(&mon->mon_lock);
monitor_flush_locked(mon);
qemu_mutex_unlock(&mon->mon_lock);
}
/* flush at every end of line */
static void monitor_puts(Monitor *mon, const char *str)
{
char c;
qemu_mutex_lock(&mon->mon_lock);
for(;;) {
c = *str++;
if (c == '\0')
break;
if (c == '\n') {
qstring_append_chr(mon->outbuf, '\r');
}
qstring_append_chr(mon->outbuf, c);
if (c == '\n') {
monitor_flush_locked(mon);
}
}
qemu_mutex_unlock(&mon->mon_lock);
}
void monitor_vprintf(Monitor *mon, const char *fmt, va_list ap)
{
char *buf;
if (!mon)
return;
if (monitor_is_qmp(mon)) {
return;
}
buf = g_strdup_vprintf(fmt, ap);
monitor_puts(mon, buf);
g_free(buf);
}
void monitor_printf(Monitor *mon, const char *fmt, ...)
{
va_list ap;
va_start(ap, fmt);
monitor_vprintf(mon, fmt, ap);
va_end(ap);
}
int monitor_fprintf(FILE *stream, const char *fmt, ...)
{
va_list ap;
va_start(ap, fmt);
monitor_vprintf((Monitor *)stream, fmt, ap);
va_end(ap);
return 0;
}
static void qmp_send_response(Monitor *mon, const QDict *rsp)
{
const QObject *data = QOBJECT(rsp);
QString *json;
json = mon->flags & MONITOR_USE_PRETTY ? qobject_to_json_pretty(data) :
qobject_to_json(data);
assert(json != NULL);
qstring_append_chr(json, '\n');
monitor_puts(mon, qstring_get_str(json));
qobject_unref(json);
}
static MonitorQAPIEventConf monitor_qapi_event_conf[QAPI_EVENT__MAX] = {
/* Limit guest-triggerable events to 1 per second */
[QAPI_EVENT_RTC_CHANGE] = { 1000 * SCALE_MS },
[QAPI_EVENT_WATCHDOG] = { 1000 * SCALE_MS },
[QAPI_EVENT_BALLOON_CHANGE] = { 1000 * SCALE_MS },
[QAPI_EVENT_QUORUM_REPORT_BAD] = { 1000 * SCALE_MS },
[QAPI_EVENT_QUORUM_FAILURE] = { 1000 * SCALE_MS },
[QAPI_EVENT_VSERPORT_CHANGE] = { 1000 * SCALE_MS },
};
/*
* Broadcast an event to all monitors.
* @qdict is the event object. Its member "event" must match @event.
* Caller must hold monitor_lock.
*/
static void monitor_qapi_event_emit(QAPIEvent event, QDict *qdict)
{
Monitor *mon;
trace_monitor_protocol_event_emit(event, qdict);
QTAILQ_FOREACH(mon, &mon_list, entry) {
if (monitor_is_qmp(mon)
&& mon->qmp.commands != &qmp_cap_negotiation_commands) {
qmp_send_response(mon, qdict);
}
}
}
static void monitor_qapi_event_handler(void *opaque);
/*
* Queue a new event for emission to Monitor instances,
* applying any rate limiting if required.
*/
static void
monitor_qapi_event_queue_no_reenter(QAPIEvent event, QDict *qdict)
{
MonitorQAPIEventConf *evconf;
MonitorQAPIEventState *evstate;
assert(event < QAPI_EVENT__MAX);
evconf = &monitor_qapi_event_conf[event];
trace_monitor_protocol_event_queue(event, qdict, evconf->rate);
qemu_mutex_lock(&monitor_lock);
if (!evconf->rate) {
/* Unthrottled event */
monitor_qapi_event_emit(event, qdict);
} else {
QDict *data = qobject_to(QDict, qdict_get(qdict, "data"));
MonitorQAPIEventState key = { .event = event, .data = data };
evstate = g_hash_table_lookup(monitor_qapi_event_state, &key);
assert(!evstate || timer_pending(evstate->timer));
if (evstate) {
/*
* Timer is pending for (at least) evconf->rate ns after
* last send. Store event for sending when timer fires,
* replacing a prior stored event if any.
*/
qobject_unref(evstate->qdict);
evstate->qdict = qobject_ref(qdict);
} else {
/*
* Last send was (at least) evconf->rate ns ago.
* Send immediately, and arm the timer to call
* monitor_qapi_event_handler() in evconf->rate ns. Any
* events arriving before then will be delayed until then.
*/
int64_t now = qemu_clock_get_ns(monitor_get_event_clock());
monitor_qapi_event_emit(event, qdict);
evstate = g_new(MonitorQAPIEventState, 1);
evstate->event = event;
evstate->data = qobject_ref(data);
evstate->qdict = NULL;
evstate->timer = timer_new_ns(monitor_get_event_clock(),
monitor_qapi_event_handler,
evstate);
g_hash_table_add(monitor_qapi_event_state, evstate);
timer_mod_ns(evstate->timer, now + evconf->rate);
}
}
qemu_mutex_unlock(&monitor_lock);
}
static void
monitor_qapi_event_queue(QAPIEvent event, QDict *qdict)
{
/*
* monitor_qapi_event_queue_no_reenter() is not reentrant: it
* would deadlock on monitor_lock. Work around by queueing
* events in thread-local storage.
* TODO: remove this, make it re-enter safe.
*/
typedef struct MonitorQapiEvent {
QAPIEvent event;
QDict *qdict;
QSIMPLEQ_ENTRY(MonitorQapiEvent) entry;
} MonitorQapiEvent;
static __thread QSIMPLEQ_HEAD(, MonitorQapiEvent) event_queue;
static __thread bool reentered;
MonitorQapiEvent *ev;
if (!reentered) {
QSIMPLEQ_INIT(&event_queue);
}
ev = g_new(MonitorQapiEvent, 1);
ev->qdict = qobject_ref(qdict);
ev->event = event;
QSIMPLEQ_INSERT_TAIL(&event_queue, ev, entry);
if (reentered) {
return;
}
reentered = true;
while ((ev = QSIMPLEQ_FIRST(&event_queue)) != NULL) {
QSIMPLEQ_REMOVE_HEAD(&event_queue, entry);
monitor_qapi_event_queue_no_reenter(ev->event, ev->qdict);
qobject_unref(ev->qdict);
g_free(ev);
}
reentered = false;
}
/*
* This function runs evconf->rate ns after sending a throttled
* event.
* If another event has since been stored, send it.
*/
static void monitor_qapi_event_handler(void *opaque)
{
MonitorQAPIEventState *evstate = opaque;
MonitorQAPIEventConf *evconf = &monitor_qapi_event_conf[evstate->event];
trace_monitor_protocol_event_handler(evstate->event, evstate->qdict);
qemu_mutex_lock(&monitor_lock);
if (evstate->qdict) {
int64_t now = qemu_clock_get_ns(monitor_get_event_clock());
monitor_qapi_event_emit(evstate->event, evstate->qdict);
qobject_unref(evstate->qdict);
evstate->qdict = NULL;
timer_mod_ns(evstate->timer, now + evconf->rate);
} else {
g_hash_table_remove(monitor_qapi_event_state, evstate);
qobject_unref(evstate->data);
timer_free(evstate->timer);
g_free(evstate);
}
qemu_mutex_unlock(&monitor_lock);
}
static unsigned int qapi_event_throttle_hash(const void *key)
{
const MonitorQAPIEventState *evstate = key;
unsigned int hash = evstate->event * 255;
if (evstate->event == QAPI_EVENT_VSERPORT_CHANGE) {
hash += g_str_hash(qdict_get_str(evstate->data, "id"));
}
if (evstate->event == QAPI_EVENT_QUORUM_REPORT_BAD) {
hash += g_str_hash(qdict_get_str(evstate->data, "node-name"));
}
return hash;
}
static gboolean qapi_event_throttle_equal(const void *a, const void *b)
{
const MonitorQAPIEventState *eva = a;
const MonitorQAPIEventState *evb = b;
if (eva->event != evb->event) {
return FALSE;
}
if (eva->event == QAPI_EVENT_VSERPORT_CHANGE) {
return !strcmp(qdict_get_str(eva->data, "id"),
qdict_get_str(evb->data, "id"));
}
if (eva->event == QAPI_EVENT_QUORUM_REPORT_BAD) {
return !strcmp(qdict_get_str(eva->data, "node-name"),
qdict_get_str(evb->data, "node-name"));
}
return TRUE;
}
static void monitor_qapi_event_init(void)
{
monitor_qapi_event_state = g_hash_table_new(qapi_event_throttle_hash,
qapi_event_throttle_equal);
qmp_event_set_func_emit(monitor_qapi_event_queue);
}
static void handle_hmp_command(Monitor *mon, const char *cmdline);
static void monitor_iothread_init(void);
static void monitor_data_init(Monitor *mon, bool skip_flush,
bool use_io_thread)
{
if (use_io_thread && !mon_iothread) {
monitor_iothread_init();
}
memset(mon, 0, sizeof(Monitor));
qemu_mutex_init(&mon->mon_lock);
qemu_mutex_init(&mon->qmp.qmp_queue_lock);
mon->outbuf = qstring_new();
/* Use *mon_cmds by default. */
mon->cmd_table = mon_cmds;
mon->skip_flush = skip_flush;
mon->use_io_thread = use_io_thread;
mon->qmp.qmp_requests = g_queue_new();
}
static void monitor_data_destroy(Monitor *mon)
{
g_free(mon->mon_cpu_path);
qemu_chr_fe_deinit(&mon->chr, false);
if (monitor_is_qmp(mon)) {
json_message_parser_destroy(&mon->qmp.parser);
}
readline_free(mon->rs);
qobject_unref(mon->outbuf);
qemu_mutex_destroy(&mon->mon_lock);
qemu_mutex_destroy(&mon->qmp.qmp_queue_lock);
monitor_qmp_cleanup_req_queue_locked(mon);
g_queue_free(mon->qmp.qmp_requests);
}
char *qmp_human_monitor_command(const char *command_line, bool has_cpu_index,
int64_t cpu_index, Error **errp)
{
char *output = NULL;
Monitor *old_mon, hmp;
monitor_data_init(&hmp, true, false);
old_mon = cur_mon;
cur_mon = &hmp;
if (has_cpu_index) {
int ret = monitor_set_cpu(cpu_index);
if (ret < 0) {
cur_mon = old_mon;
error_setg(errp, QERR_INVALID_PARAMETER_VALUE, "cpu-index",
"a CPU number");
goto out;
}
}
handle_hmp_command(&hmp, command_line);
cur_mon = old_mon;
qemu_mutex_lock(&hmp.mon_lock);
if (qstring_get_length(hmp.outbuf) > 0) {
output = g_strdup(qstring_get_str(hmp.outbuf));
} else {
output = g_strdup("");
}
qemu_mutex_unlock(&hmp.mon_lock);
out:
monitor_data_destroy(&hmp);
return output;
}
static int compare_cmd(const char *name, const char *list)
{
const char *p, *pstart;
int len;
len = strlen(name);
p = list;
for(;;) {
pstart = p;
p = qemu_strchrnul(p, '|');
if ((p - pstart) == len && !memcmp(pstart, name, len))
return 1;
if (*p == '\0')
break;
p++;
}
return 0;
}
static int get_str(char *buf, int buf_size, const char **pp)
{
const char *p;
char *q;
int c;
q = buf;
p = *pp;
while (qemu_isspace(*p)) {
p++;
}
if (*p == '\0') {
fail:
*q = '\0';
*pp = p;
return -1;
}
if (*p == '\"') {
p++;
while (*p != '\0' && *p != '\"') {
if (*p == '\\') {
p++;
c = *p++;
switch (c) {
case 'n':
c = '\n';
break;
case 'r':
c = '\r';
break;
case '\\':
case '\'':
case '\"':
break;
default:
printf("unsupported escape code: '\\%c'\n", c);
goto fail;
}
if ((q - buf) < buf_size - 1) {
*q++ = c;
}
} else {
if ((q - buf) < buf_size - 1) {
*q++ = *p;
}
p++;
}
}
if (*p != '\"') {
printf("unterminated string\n");
goto fail;
}
p++;
} else {
while (*p != '\0' && !qemu_isspace(*p)) {
if ((q - buf) < buf_size - 1) {
*q++ = *p;
}
p++;
}
}
*q = '\0';
*pp = p;
return 0;
}
#define MAX_ARGS 16
static void free_cmdline_args(char **args, int nb_args)
{
int i;
assert(nb_args <= MAX_ARGS);
for (i = 0; i < nb_args; i++) {
g_free(args[i]);
}
}
/*
* Parse the command line to get valid args.
* @cmdline: command line to be parsed.
* @pnb_args: location to store the number of args, must NOT be NULL.
* @args: location to store the args, which should be freed by caller, must
* NOT be NULL.
*
* Returns 0 on success, negative on failure.
*
* NOTE: this parser is an approximate form of the real command parser. Number
* of args have a limit of MAX_ARGS. If cmdline contains more, it will
* return with failure.
*/
static int parse_cmdline(const char *cmdline,
int *pnb_args, char **args)
{
const char *p;
int nb_args, ret;
char buf[1024];
p = cmdline;
nb_args = 0;
for (;;) {
while (qemu_isspace(*p)) {
p++;
}
if (*p == '\0') {
break;
}
if (nb_args >= MAX_ARGS) {
goto fail;
}
ret = get_str(buf, sizeof(buf), &p);
if (ret < 0) {
goto fail;
}
args[nb_args] = g_strdup(buf);
nb_args++;
}
*pnb_args = nb_args;
return 0;
fail:
free_cmdline_args(args, nb_args);
return -1;
}
/*
* Can command @cmd be executed in preconfig state?
*/
static bool cmd_can_preconfig(const mon_cmd_t *cmd)
{
if (!cmd->flags) {
return false;
}
return strchr(cmd->flags, 'p');
}
static void help_cmd_dump_one(Monitor *mon,
const mon_cmd_t *cmd,
char **prefix_args,
int prefix_args_nb)
{
int i;
if (runstate_check(RUN_STATE_PRECONFIG) && !cmd_can_preconfig(cmd)) {
return;
}
for (i = 0; i < prefix_args_nb; i++) {
monitor_printf(mon, "%s ", prefix_args[i]);
}
monitor_printf(mon, "%s %s -- %s\n", cmd->name, cmd->params, cmd->help);
}
/* @args[@arg_index] is the valid command need to find in @cmds */
static void help_cmd_dump(Monitor *mon, const mon_cmd_t *cmds,
char **args, int nb_args, int arg_index)
{
const mon_cmd_t *cmd;
size_t i;
/* No valid arg need to compare with, dump all in *cmds */
if (arg_index >= nb_args) {
for (cmd = cmds; cmd->name != NULL; cmd++) {
help_cmd_dump_one(mon, cmd, args, arg_index);
}
return;
}
/* Find one entry to dump */
for (cmd = cmds; cmd->name != NULL; cmd++) {
if (compare_cmd(args[arg_index], cmd->name) &&
((!runstate_check(RUN_STATE_PRECONFIG) ||
cmd_can_preconfig(cmd)))) {
if (cmd->sub_table) {
/* continue with next arg */
help_cmd_dump(mon, cmd->sub_table,
args, nb_args, arg_index + 1);
} else {
help_cmd_dump_one(mon, cmd, args, arg_index);
}
return;
}
}
/* Command not found */
monitor_printf(mon, "unknown command: '");
for (i = 0; i <= arg_index; i++) {
monitor_printf(mon, "%s%s", args[i], i == arg_index ? "'\n" : " ");
}
}
static void help_cmd(Monitor *mon, const char *name)
{
char *args[MAX_ARGS];
int nb_args = 0;
/* 1. parse user input */
if (name) {
/* special case for log, directly dump and return */
if (!strcmp(name, "log")) {
const QEMULogItem *item;
monitor_printf(mon, "Log items (comma separated):\n");
monitor_printf(mon, "%-10s %s\n", "none", "remove all logs");
for (item = qemu_log_items; item->mask != 0; item++) {
monitor_printf(mon, "%-10s %s\n", item->name, item->help);
}
return;
}
if (parse_cmdline(name, &nb_args, args) < 0) {
return;
}
}
/* 2. dump the contents according to parsed args */
help_cmd_dump(mon, mon->cmd_table, args, nb_args, 0);
free_cmdline_args(args, nb_args);
}
static void do_help_cmd(Monitor *mon, const QDict *qdict)
{
help_cmd(mon, qdict_get_try_str(qdict, "name"));
}
static void hmp_trace_event(Monitor *mon, const QDict *qdict)
{
const char *tp_name = qdict_get_str(qdict, "name");
bool new_state = qdict_get_bool(qdict, "option");
bool has_vcpu = qdict_haskey(qdict, "vcpu");
int vcpu = qdict_get_try_int(qdict, "vcpu", 0);
Error *local_err = NULL;
if (vcpu < 0) {
monitor_printf(mon, "argument vcpu must be positive");
return;
}
qmp_trace_event_set_state(tp_name, new_state, true, true, has_vcpu, vcpu, &local_err);
if (local_err) {
error_report_err(local_err);
}
}
#ifdef CONFIG_TRACE_SIMPLE
static void hmp_trace_file(Monitor *mon, const QDict *qdict)
{
const char *op = qdict_get_try_str(qdict, "op");
const char *arg = qdict_get_try_str(qdict, "arg");
if (!op) {
st_print_trace_file_status((FILE *)mon, &monitor_fprintf);
} else if (!strcmp(op, "on")) {
st_set_trace_file_enabled(true);
} else if (!strcmp(op, "off")) {
st_set_trace_file_enabled(false);
} else if (!strcmp(op, "flush")) {
st_flush_trace_buffer();
} else if (!strcmp(op, "set")) {
if (arg) {
st_set_trace_file(arg);
}
} else {
monitor_printf(mon, "unexpected argument \"%s\"\n", op);
help_cmd(mon, "trace-file");
}
}
#endif
static void hmp_info_help(Monitor *mon, const QDict *qdict)
{
help_cmd(mon, "info");
}
static void query_commands_cb(QmpCommand *cmd, void *opaque)
{
CommandInfoList *info, **list = opaque;
if (!cmd->enabled) {
return;
}
info = g_malloc0(sizeof(*info));
info->value = g_malloc0(sizeof(*info->value));
info->value->name = g_strdup(cmd->name);
info->next = *list;
*list = info;
}
CommandInfoList *qmp_query_commands(Error **errp)
{
CommandInfoList *list = NULL;
qmp_for_each_command(cur_mon->qmp.commands, query_commands_cb, &list);
return list;
}
EventInfoList *qmp_query_events(Error **errp)
{
EventInfoList *info, *ev_list = NULL;
QAPIEvent e;
for (e = 0 ; e < QAPI_EVENT__MAX ; e++) {
const char *event_name = QAPIEvent_str(e);
assert(event_name != NULL);
info = g_malloc0(sizeof(*info));
info->value = g_malloc0(sizeof(*info->value));
info->value->name = g_strdup(event_name);
info->next = ev_list;
ev_list = info;
}
return ev_list;
}
/*
* Minor hack: generated marshalling suppressed for this command
* ('gen': false in the schema) so we can parse the JSON string
* directly into QObject instead of first parsing it with
* visit_type_SchemaInfoList() into a SchemaInfoList, then marshal it
* to QObject with generated output marshallers, every time. Instead,
* we do it in test-qobject-input-visitor.c, just to make sure
* qapi-gen.py's output actually conforms to the schema.
*/
static void qmp_query_qmp_schema(QDict *qdict, QObject **ret_data,
Error **errp)
{
*ret_data = qobject_from_qlit(&qmp_schema_qlit);
}
/*
* We used to define commands in qmp-commands.hx in addition to the
* QAPI schema. This permitted defining some of them only in certain
* configurations. query-commands has always reflected that (good,
* because it lets QMP clients figure out what's actually available),
* while query-qmp-schema never did (not so good). This function is a
* hack to keep the configuration-specific commands defined exactly as
* before, even though qmp-commands.hx is gone.
*
* FIXME Educate the QAPI schema on configuration-specific commands,
* and drop this hack.
*/
static void qmp_unregister_commands_hack(void)
{
#ifndef CONFIG_REPLICATION
qmp_unregister_command(&qmp_commands, "xen-set-replication");
qmp_unregister_command(&qmp_commands, "query-xen-replication-status");
qmp_unregister_command(&qmp_commands, "xen-colo-do-checkpoint");
#endif
#ifndef TARGET_I386
qmp_unregister_command(&qmp_commands, "rtc-reset-reinjection");
qmp_unregister_command(&qmp_commands, "query-sev");
qmp_unregister_command(&qmp_commands, "query-sev-launch-measure");
qmp_unregister_command(&qmp_commands, "query-sev-capabilities");
#endif
#ifndef TARGET_S390X
qmp_unregister_command(&qmp_commands, "dump-skeys");
#endif
#ifndef TARGET_ARM
qmp_unregister_command(&qmp_commands, "query-gic-capabilities");
#endif
#if !defined(TARGET_S390X) && !defined(TARGET_I386)
qmp_unregister_command(&qmp_commands, "query-cpu-model-expansion");
#endif
#if !defined(TARGET_S390X)
qmp_unregister_command(&qmp_commands, "query-cpu-model-baseline");
qmp_unregister_command(&qmp_commands, "query-cpu-model-comparison");
#endif
#if !defined(TARGET_PPC) && !defined(TARGET_ARM) && !defined(TARGET_I386) \
&& !defined(TARGET_S390X)
qmp_unregister_command(&qmp_commands, "query-cpu-definitions");
#endif
}
static void monitor_init_qmp_commands(void)
{
/*
* Two command lists:
* - qmp_commands contains all QMP commands
* - qmp_cap_negotiation_commands contains just
* "qmp_capabilities", to enforce capability negotiation
*/
qmp_init_marshal(&qmp_commands);
qmp_register_command(&qmp_commands, "query-qmp-schema",
qmp_query_qmp_schema, QCO_ALLOW_PRECONFIG);
qmp_register_command(&qmp_commands, "device_add", qmp_device_add,
QCO_NO_OPTIONS);
qmp_register_command(&qmp_commands, "netdev_add", qmp_netdev_add,
QCO_NO_OPTIONS);
qmp_unregister_commands_hack();
QTAILQ_INIT(&qmp_cap_negotiation_commands);
qmp_register_command(&qmp_cap_negotiation_commands, "qmp_capabilities",
qmp_marshal_qmp_capabilities, QCO_ALLOW_PRECONFIG);
}
static bool qmp_oob_enabled(Monitor *mon)
{
return mon->qmp.capab[QMP_CAPABILITY_OOB];
}
static void monitor_qmp_caps_reset(Monitor *mon)
{
memset(mon->qmp.capab_offered, 0, sizeof(mon->qmp.capab_offered));
memset(mon->qmp.capab, 0, sizeof(mon->qmp.capab));
mon->qmp.capab_offered[QMP_CAPABILITY_OOB] = mon->use_io_thread;
}
/*
* Accept QMP capabilities in @list for @mon.
* On success, set mon->qmp.capab[], and return true.
* On error, set @errp, and return false.
*/
static bool qmp_caps_accept(Monitor *mon, QMPCapabilityList *list,
Error **errp)
{
GString *unavailable = NULL;
bool capab[QMP_CAPABILITY__MAX];
memset(capab, 0, sizeof(capab));
for (; list; list = list->next) {
if (!mon->qmp.capab_offered[list->value]) {
if (!unavailable) {
unavailable = g_string_new(QMPCapability_str(list->value));
} else {
g_string_append_printf(unavailable, ", %s",
QMPCapability_str(list->value));
}
}
capab[list->value] = true;
}
if (unavailable) {
error_setg(errp, "Capability %s not available", unavailable->str);
g_string_free(unavailable, true);
return false;
}
memcpy(mon->qmp.capab, capab, sizeof(capab));
return true;
}
void qmp_qmp_capabilities(bool has_enable, QMPCapabilityList *enable,
Error **errp)
{
if (cur_mon->qmp.commands == &qmp_commands) {
error_set(errp, ERROR_CLASS_COMMAND_NOT_FOUND,
"Capabilities negotiation is already complete, command "
"ignored");
return;
}
if (!qmp_caps_accept(cur_mon, enable, errp)) {
return;
}
cur_mon->qmp.commands = &qmp_commands;
}
/* Set the current CPU defined by the user. Callers must hold BQL. */
int monitor_set_cpu(int cpu_index)
{
CPUState *cpu;
cpu = qemu_get_cpu(cpu_index);
if (cpu == NULL) {
return -1;
}
g_free(cur_mon->mon_cpu_path);
cur_mon->mon_cpu_path = object_get_canonical_path(OBJECT(cpu));
return 0;
}
/* Callers must hold BQL. */
static CPUState *mon_get_cpu_sync(bool synchronize)
{
CPUState *cpu;
if (cur_mon->mon_cpu_path) {
cpu = (CPUState *) object_resolve_path_type(cur_mon->mon_cpu_path,
TYPE_CPU, NULL);
if (!cpu) {
g_free(cur_mon->mon_cpu_path);
cur_mon->mon_cpu_path = NULL;
}
}
if (!cur_mon->mon_cpu_path) {
if (!first_cpu) {
return NULL;
}
monitor_set_cpu(first_cpu->cpu_index);
cpu = first_cpu;
}
if (synchronize) {
cpu_synchronize_state(cpu);
}
return cpu;
}
CPUState *mon_get_cpu(void)
{
return mon_get_cpu_sync(true);
}
CPUArchState *mon_get_cpu_env(void)
{
CPUState *cs = mon_get_cpu();
return cs ? cs->env_ptr : NULL;
}
int monitor_get_cpu_index(void)
{
CPUState *cs = mon_get_cpu_sync(false);
return cs ? cs->cpu_index : UNASSIGNED_CPU_INDEX;
}
static void hmp_info_registers(Monitor *mon, const QDict *qdict)
{
bool all_cpus = qdict_get_try_bool(qdict, "cpustate_all", false);
CPUState *cs;
if (all_cpus) {
CPU_FOREACH(cs) {
monitor_printf(mon, "\nCPU#%d\n", cs->cpu_index);
cpu_dump_state(cs, (FILE *)mon, monitor_fprintf, CPU_DUMP_FPU);
}
} else {
cs = mon_get_cpu();
if (!cs) {
monitor_printf(mon, "No CPU available\n");
return;
}
cpu_dump_state(cs, (FILE *)mon, monitor_fprintf, CPU_DUMP_FPU);
}
}
#ifdef CONFIG_TCG
static void hmp_info_jit(Monitor *mon, const QDict *qdict)
{
if (!tcg_enabled()) {
error_report("JIT information is only available with accel=tcg");
return;
}
dump_exec_info((FILE *)mon, monitor_fprintf);
dump_drift_info((FILE *)mon, monitor_fprintf);
}
static void hmp_info_opcount(Monitor *mon, const QDict *qdict)
{
dump_opcount_info((FILE *)mon, monitor_fprintf);
}
#endif
static void hmp_info_sync_profile(Monitor *mon, const QDict *qdict)
{
int64_t max = qdict_get_try_int(qdict, "max", 10);
bool mean = qdict_get_try_bool(qdict, "mean", false);
bool coalesce = !qdict_get_try_bool(qdict, "no_coalesce", false);
enum QSPSortBy sort_by;
sort_by = mean ? QSP_SORT_BY_AVG_WAIT_TIME : QSP_SORT_BY_TOTAL_WAIT_TIME;
qsp_report((FILE *)mon, monitor_fprintf, max, sort_by, coalesce);
}
static void hmp_info_history(Monitor *mon, const QDict *qdict)
{
int i;
const char *str;
if (!mon->rs)
return;
i = 0;
for(;;) {
str = readline_get_history(mon->rs, i);
if (!str)
break;
monitor_printf(mon, "%d: '%s'\n", i, str);
i++;
}
}
static void hmp_info_cpustats(Monitor *mon, const QDict *qdict)
{
CPUState *cs = mon_get_cpu();
if (!cs) {
monitor_printf(mon, "No CPU available\n");
return;
}
cpu_dump_statistics(cs, (FILE *)mon, &monitor_fprintf, 0);
}
static void hmp_info_trace_events(Monitor *mon, const QDict *qdict)
{
const char *name = qdict_get_try_str(qdict, "name");
bool has_vcpu = qdict_haskey(qdict, "vcpu");
int vcpu = qdict_get_try_int(qdict, "vcpu", 0);
TraceEventInfoList *events;
TraceEventInfoList *elem;
Error *local_err = NULL;
if (name == NULL) {
name = "*";
}
if (vcpu < 0) {
monitor_printf(mon, "argument vcpu must be positive");
return;
}
events = qmp_trace_event_get_state(name, has_vcpu, vcpu, &local_err);
if (local_err) {
error_report_err(local_err);
return;
}
for (elem = events; elem != NULL; elem = elem->next) {
monitor_printf(mon, "%s : state %u\n",
elem->value->name,
elem->value->state == TRACE_EVENT_STATE_ENABLED ? 1 : 0);
}
qapi_free_TraceEventInfoList(events);
}
void qmp_client_migrate_info(const char *protocol, const char *hostname,
bool has_port, int64_t port,
bool has_tls_port, int64_t tls_port,
bool has_cert_subject, const char *cert_subject,
Error **errp)
{
if (strcmp(protocol, "spice") == 0) {
if (!qemu_using_spice(errp)) {
return;
}
if (!has_port && !has_tls_port) {
error_setg(errp, QERR_MISSING_PARAMETER, "port/tls-port");
return;
}
if (qemu_spice_migrate_info(hostname,
has_port ? port : -1,
has_tls_port ? tls_port : -1,
cert_subject)) {
error_setg(errp, QERR_UNDEFINED_ERROR);
return;
}
return;
}
error_setg(errp, QERR_INVALID_PARAMETER_VALUE, "protocol", "spice");
}
static void hmp_logfile(Monitor *mon, const QDict *qdict)
{
Error *err = NULL;
qemu_set_log_filename(qdict_get_str(qdict, "filename"), &err);
if (err) {
error_report_err(err);
}
}
static void hmp_log(Monitor *mon, const QDict *qdict)
{
int mask;
const char *items = qdict_get_str(qdict, "items");
if (!strcmp(items, "none")) {
mask = 0;
} else {
mask = qemu_str_to_log_mask(items);
if (!mask) {
help_cmd(mon, "log");
return;
}
}
qemu_set_log(mask);
}
static void hmp_singlestep(Monitor *mon, const QDict *qdict)
{
const char *option = qdict_get_try_str(qdict, "option");
if (!option || !strcmp(option, "on")) {
singlestep = 1;
} else if (!strcmp(option, "off")) {
singlestep = 0;
} else {
monitor_printf(mon, "unexpected option %s\n", option);
}
}
static void hmp_gdbserver(Monitor *mon, const QDict *qdict)
{
const char *device = qdict_get_try_str(qdict, "device");
if (!device)
device = "tcp::" DEFAULT_GDBSTUB_PORT;
if (gdbserver_start(device) < 0) {
monitor_printf(mon, "Could not open gdbserver on device '%s'\n",
device);
} else if (strcmp(device, "none") == 0) {
monitor_printf(mon, "Disabled gdbserver\n");
} else {
monitor_printf(mon, "Waiting for gdb connection on device '%s'\n",
device);
}
}
static void hmp_watchdog_action(Monitor *mon, const QDict *qdict)
{
const char *action = qdict_get_str(qdict, "action");
if (select_watchdog_action(action) == -1) {
monitor_printf(mon, "Unknown watchdog action '%s'\n", action);
}
}
static void monitor_printc(Monitor *mon, int c)
{
monitor_printf(mon, "'");
switch(c) {
case '\'':
monitor_printf(mon, "\\'");
break;
case '\\':
monitor_printf(mon, "\\\\");
break;
case '\n':
monitor_printf(mon, "\\n");
break;
case '\r':
monitor_printf(mon, "\\r");
break;
default:
if (c >= 32 && c <= 126) {
monitor_printf(mon, "%c", c);
} else {
monitor_printf(mon, "\\x%02x", c);
}
break;
}
monitor_printf(mon, "'");
}
static void memory_dump(Monitor *mon, int count, int format, int wsize,
hwaddr addr, int is_physical)
{
int l, line_size, i, max_digits, len;
uint8_t buf[16];
uint64_t v;
CPUState *cs = mon_get_cpu();
if (!cs && (format == 'i' || !is_physical)) {
monitor_printf(mon, "Can not dump without CPU\n");
return;
}
if (format == 'i') {
monitor_disas(mon, cs, addr, count, is_physical);
return;
}
len = wsize * count;
if (wsize == 1)
line_size = 8;
else
line_size = 16;
max_digits = 0;
switch(format) {
case 'o':
max_digits = DIV_ROUND_UP(wsize * 8, 3);
break;
default:
case 'x':
max_digits = (wsize * 8) / 4;
break;
case 'u':
case 'd':
max_digits = DIV_ROUND_UP(wsize * 8 * 10, 33);
break;
case 'c':
wsize = 1;
break;
}
while (len > 0) {
if (is_physical)
monitor_printf(mon, TARGET_FMT_plx ":", addr);
else
monitor_printf(mon, TARGET_FMT_lx ":", (target_ulong)addr);
l = len;
if (l > line_size)
l = line_size;
if (is_physical) {
cpu_physical_memory_read(addr, buf, l);
} else {
if (cpu_memory_rw_debug(cs, addr, buf, l, 0) < 0) {
monitor_printf(mon, " Cannot access memory\n");
break;
}
}
i = 0;
while (i < l) {
switch(wsize) {
default:
case 1:
v = ldub_p(buf + i);
break;
case 2:
v = lduw_p(buf + i);
break;
case 4:
v = (uint32_t)ldl_p(buf + i);
break;
case 8:
v = ldq_p(buf + i);
break;
}
monitor_printf(mon, " ");
switch(format) {
case 'o':
monitor_printf(mon, "%#*" PRIo64, max_digits, v);
break;
case 'x':
monitor_printf(mon, "0x%0*" PRIx64, max_digits, v);
break;
case 'u':
monitor_printf(mon, "%*" PRIu64, max_digits, v);
break;
case 'd':
monitor_printf(mon, "%*" PRId64, max_digits, v);
break;
case 'c':
monitor_printc(mon, v);
break;
}
i += wsize;
}
monitor_printf(mon, "\n");
addr += l;
len -= l;
}
}
static void hmp_memory_dump(Monitor *mon, const QDict *qdict)
{
int count = qdict_get_int(qdict, "count");
int format = qdict_get_int(qdict, "format");
int size = qdict_get_int(qdict, "size");
target_long addr = qdict_get_int(qdict, "addr");
memory_dump(mon, count, format, size, addr, 0);
}
static void hmp_physical_memory_dump(Monitor *mon, const QDict *qdict)
{
int count = qdict_get_int(qdict, "count");
int format = qdict_get_int(qdict, "format");
int size = qdict_get_int(qdict, "size");
hwaddr addr = qdict_get_int(qdict, "addr");
memory_dump(mon, count, format, size, addr, 1);
}
static void *gpa2hva(MemoryRegion **p_mr, hwaddr addr, Error **errp)
{
MemoryRegionSection mrs = memory_region_find(get_system_memory(),
addr, 1);
if (!mrs.mr) {
error_setg(errp, "No memory is mapped at address 0x%" HWADDR_PRIx, addr);
return NULL;
}
if (!memory_region_is_ram(mrs.mr) && !memory_region_is_romd(mrs.mr)) {
error_setg(errp, "Memory at address 0x%" HWADDR_PRIx "is not RAM", addr);
memory_region_unref(mrs.mr);
return NULL;
}
*p_mr = mrs.mr;
return qemu_map_ram_ptr(mrs.mr->ram_block, mrs.offset_within_region);
}
static void hmp_gpa2hva(Monitor *mon, const QDict *qdict)
{
hwaddr addr = qdict_get_int(qdict, "addr");
Error *local_err = NULL;
MemoryRegion *mr = NULL;
void *ptr;
ptr = gpa2hva(&mr, addr, &local_err);
if (local_err) {
error_report_err(local_err);
return;
}
monitor_printf(mon, "Host virtual address for 0x%" HWADDR_PRIx
" (%s) is %p\n",
addr, mr->name, ptr);
memory_region_unref(mr);
}
#ifdef CONFIG_LINUX
static uint64_t vtop(void *ptr, Error **errp)
{
uint64_t pinfo;
uint64_t ret = -1;
uintptr_t addr = (uintptr_t) ptr;
uintptr_t pagesize = getpagesize();
off_t offset = addr / pagesize * sizeof(pinfo);
int fd;
fd = open("/proc/self/pagemap", O_RDONLY);
if (fd == -1) {
error_setg_errno(errp, errno, "Cannot open /proc/self/pagemap");
return -1;
}
/* Force copy-on-write if necessary. */
atomic_add((uint8_t *)ptr, 0);
if (pread(fd, &pinfo, sizeof(pinfo), offset) != sizeof(pinfo)) {
error_setg_errno(errp, errno, "Cannot read pagemap");
goto out;
}
if ((pinfo & (1ull << 63)) == 0) {
error_setg(errp, "Page not present");
goto out;
}
ret = ((pinfo & 0x007fffffffffffffull) * pagesize) | (addr & (pagesize - 1));
out:
close(fd);
return ret;
}
static void hmp_gpa2hpa(Monitor *mon, const QDict *qdict)
{
hwaddr addr = qdict_get_int(qdict, "addr");
Error *local_err = NULL;
MemoryRegion *mr = NULL;
void *ptr;
uint64_t physaddr;
ptr = gpa2hva(&mr, addr, &local_err);
if (local_err) {
error_report_err(local_err);
return;
}
physaddr = vtop(ptr, &local_err);
if (local_err) {
error_report_err(local_err);
} else {
monitor_printf(mon, "Host physical address for 0x%" HWADDR_PRIx
" (%s) is 0x%" PRIx64 "\n",
addr, mr->name, (uint64_t) physaddr);
}
memory_region_unref(mr);
}
#endif
static void do_print(Monitor *mon, const QDict *qdict)
{
int format = qdict_get_int(qdict, "format");
hwaddr val = qdict_get_int(qdict, "val");
switch(format) {
case 'o':
monitor_printf(mon, "%#" HWADDR_PRIo, val);
break;
case 'x':
monitor_printf(mon, "%#" HWADDR_PRIx, val);
break;
case 'u':
monitor_printf(mon, "%" HWADDR_PRIu, val);
break;
default:
case 'd':
monitor_printf(mon, "%" HWADDR_PRId, val);
break;
case 'c':
monitor_printc(mon, val);
break;
}
monitor_printf(mon, "\n");
}
static void hmp_sum(Monitor *mon, const QDict *qdict)
{
uint32_t addr;
uint16_t sum;
uint32_t start = qdict_get_int(qdict, "start");
uint32_t size = qdict_get_int(qdict, "size");
sum = 0;
for(addr = start; addr < (start + size); addr++) {
uint8_t val = address_space_ldub(&address_space_memory, addr,
MEMTXATTRS_UNSPECIFIED, NULL);
/* BSD sum algorithm ('sum' Unix command) */
sum = (sum >> 1) | (sum << 15);
sum += val;
}
monitor_printf(mon, "%05d\n", sum);
}
static int mouse_button_state;
static void hmp_mouse_move(Monitor *mon, const QDict *qdict)
{
int dx, dy, dz, button;
const char *dx_str = qdict_get_str(qdict, "dx_str");
const char *dy_str = qdict_get_str(qdict, "dy_str");
const char *dz_str = qdict_get_try_str(qdict, "dz_str");
dx = strtol(dx_str, NULL, 0);
dy = strtol(dy_str, NULL, 0);
qemu_input_queue_rel(NULL, INPUT_AXIS_X, dx);
qemu_input_queue_rel(NULL, INPUT_AXIS_Y, dy);
if (dz_str) {
dz = strtol(dz_str, NULL, 0);
if (dz != 0) {
button = (dz > 0) ? INPUT_BUTTON_WHEEL_UP : INPUT_BUTTON_WHEEL_DOWN;
qemu_input_queue_btn(NULL, button, true);
qemu_input_event_sync();
qemu_input_queue_btn(NULL, button, false);
}
}
qemu_input_event_sync();
}
static void hmp_mouse_button(Monitor *mon, const QDict *qdict)
{
static uint32_t bmap[INPUT_BUTTON__MAX] = {
[INPUT_BUTTON_LEFT] = MOUSE_EVENT_LBUTTON,
[INPUT_BUTTON_MIDDLE] = MOUSE_EVENT_MBUTTON,
[INPUT_BUTTON_RIGHT] = MOUSE_EVENT_RBUTTON,
};
int button_state = qdict_get_int(qdict, "button_state");
if (mouse_button_state == button_state) {
return;
}
qemu_input_update_buttons(NULL, bmap, mouse_button_state, button_state);
qemu_input_event_sync();
mouse_button_state = button_state;
}
static void hmp_ioport_read(Monitor *mon, const QDict *qdict)
{
int size = qdict_get_int(qdict, "size");
int addr = qdict_get_int(qdict, "addr");
int has_index = qdict_haskey(qdict, "index");
uint32_t val;
int suffix;
if (has_index) {
int index = qdict_get_int(qdict, "index");
cpu_outb(addr & IOPORTS_MASK, index & 0xff);
addr++;
}
addr &= 0xffff;
switch(size) {
default:
case 1:
val = cpu_inb(addr);
suffix = 'b';
break;
case 2:
val = cpu_inw(addr);
suffix = 'w';
break;
case 4:
val = cpu_inl(addr);
suffix = 'l';
break;
}
monitor_printf(mon, "port%c[0x%04x] = %#0*x\n",
suffix, addr, size * 2, val);
}
static void hmp_ioport_write(Monitor *mon, const QDict *qdict)
{
int size = qdict_get_int(qdict, "size");
int addr = qdict_get_int(qdict, "addr");
int val = qdict_get_int(qdict, "val");
addr &= IOPORTS_MASK;
switch (size) {
default:
case 1:
cpu_outb(addr, val);
break;
case 2:
cpu_outw(addr, val);
break;
case 4:
cpu_outl(addr, val);
break;
}
}
static void hmp_boot_set(Monitor *mon, const QDict *qdict)
{
Error *local_err = NULL;
const char *bootdevice = qdict_get_str(qdict, "bootdevice");
qemu_boot_set(bootdevice, &local_err);
if (local_err) {
error_report_err(local_err);
} else {
monitor_printf(mon, "boot device list now set to %s\n", bootdevice);
}
}
static void hmp_info_mtree(Monitor *mon, const QDict *qdict)
{
bool flatview = qdict_get_try_bool(qdict, "flatview", false);
bool dispatch_tree = qdict_get_try_bool(qdict, "dispatch_tree", false);
bool owner = qdict_get_try_bool(qdict, "owner", false);
mtree_info((fprintf_function)monitor_printf, mon, flatview, dispatch_tree,
owner);
}
static void hmp_info_numa(Monitor *mon, const QDict *qdict)
{
int i;
NumaNodeMem *node_mem;
CpuInfoList *cpu_list, *cpu;
cpu_list = qmp_query_cpus(&error_abort);
node_mem = g_new0(NumaNodeMem, nb_numa_nodes);
query_numa_node_mem(node_mem);
monitor_printf(mon, "%d nodes\n", nb_numa_nodes);
for (i = 0; i < nb_numa_nodes; i++) {
monitor_printf(mon, "node %d cpus:", i);
for (cpu = cpu_list; cpu; cpu = cpu->next) {
if (cpu->value->has_props && cpu->value->props->has_node_id &&
cpu->value->props->node_id == i) {
monitor_printf(mon, " %" PRIi64, cpu->value->CPU);
}
}
monitor_printf(mon, "\n");
monitor_printf(mon, "node %d size: %" PRId64 " MB\n", i,
node_mem[i].node_mem >> 20);
monitor_printf(mon, "node %d plugged: %" PRId64 " MB\n", i,
node_mem[i].node_plugged_mem >> 20);
}
qapi_free_CpuInfoList(cpu_list);
g_free(node_mem);
}
#ifdef CONFIG_PROFILER
int64_t dev_time;
static void hmp_info_profile(Monitor *mon, const QDict *qdict)
{
static int64_t last_cpu_exec_time;
int64_t cpu_exec_time;
int64_t delta;
cpu_exec_time = tcg_cpu_exec_time();
delta = cpu_exec_time - last_cpu_exec_time;
monitor_printf(mon, "async time %" PRId64 " (%0.3f)\n",
dev_time, dev_time / (double)NANOSECONDS_PER_SECOND);
monitor_printf(mon, "qemu time %" PRId64 " (%0.3f)\n",
delta, delta / (double)NANOSECONDS_PER_SECOND);
last_cpu_exec_time = cpu_exec_time;
dev_time = 0;
}
#else
static void hmp_info_profile(Monitor *mon, const QDict *qdict)
{
monitor_printf(mon, "Internal profiler not compiled\n");
}
#endif
/* Capture support */
static QLIST_HEAD (capture_list_head, CaptureState) capture_head;
static void hmp_info_capture(Monitor *mon, const QDict *qdict)
{
int i;
CaptureState *s;
for (s = capture_head.lh_first, i = 0; s; s = s->entries.le_next, ++i) {
monitor_printf(mon, "[%d]: ", i);
s->ops.info (s->opaque);
}
}
static void hmp_stopcapture(Monitor *mon, const QDict *qdict)
{
int i;
int n = qdict_get_int(qdict, "n");
CaptureState *s;
for (s = capture_head.lh_first, i = 0; s; s = s->entries.le_next, ++i) {
if (i == n) {
s->ops.destroy (s->opaque);
QLIST_REMOVE (s, entries);
g_free (s);
return;
}
}
}
static void hmp_wavcapture(Monitor *mon, const QDict *qdict)
{
const char *path = qdict_get_str(qdict, "path");
int has_freq = qdict_haskey(qdict, "freq");
int freq = qdict_get_try_int(qdict, "freq", -1);
int has_bits = qdict_haskey(qdict, "bits");
int bits = qdict_get_try_int(qdict, "bits", -1);
int has_channels = qdict_haskey(qdict, "nchannels");
int nchannels = qdict_get_try_int(qdict, "nchannels", -1);
CaptureState *s;
s = g_malloc0 (sizeof (*s));
freq = has_freq ? freq : 44100;
bits = has_bits ? bits : 16;
nchannels = has_channels ? nchannels : 2;
if (wav_start_capture (s, path, freq, bits, nchannels)) {
monitor_printf(mon, "Failed to add wave capture\n");
g_free (s);
return;
}
QLIST_INSERT_HEAD (&capture_head, s, entries);
}
static qemu_acl *find_acl(Monitor *mon, const char *name)
{
qemu_acl *acl = qemu_acl_find(name);
if (!acl) {
monitor_printf(mon, "acl: unknown list '%s'\n", name);
}
return acl;
}
static void hmp_acl_show(Monitor *mon, const QDict *qdict)
{
const char *aclname = qdict_get_str(qdict, "aclname");
qemu_acl *acl = find_acl(mon, aclname);
qemu_acl_entry *entry;
int i = 0;
if (acl) {
monitor_printf(mon, "policy: %s\n",
acl->defaultDeny ? "deny" : "allow");
QTAILQ_FOREACH(entry, &acl->entries, next) {
i++;
monitor_printf(mon, "%d: %s %s\n", i,
entry->deny ? "deny" : "allow", entry->match);
}
}
}
static void hmp_acl_reset(Monitor *mon, const QDict *qdict)
{
const char *aclname = qdict_get_str(qdict, "aclname");
qemu_acl *acl = find_acl(mon, aclname);
if (acl) {
qemu_acl_reset(acl);
monitor_printf(mon, "acl: removed all rules\n");
}
}
static void hmp_acl_policy(Monitor *mon, const QDict *qdict)
{
const char *aclname = qdict_get_str(qdict, "aclname");
const char *policy = qdict_get_str(qdict, "policy");
qemu_acl *acl = find_acl(mon, aclname);
if (acl) {
if (strcmp(policy, "allow") == 0) {
acl->defaultDeny = 0;
monitor_printf(mon, "acl: policy set to 'allow'\n");
} else if (strcmp(policy, "deny") == 0) {
acl->defaultDeny = 1;
monitor_printf(mon, "acl: policy set to 'deny'\n");
} else {
monitor_printf(mon, "acl: unknown policy '%s', "
"expected 'deny' or 'allow'\n", policy);
}
}
}
static void hmp_acl_add(Monitor *mon, const QDict *qdict)
{
const char *aclname = qdict_get_str(qdict, "aclname");
const char *match = qdict_get_str(qdict, "match");
const char *policy = qdict_get_str(qdict, "policy");
int has_index = qdict_haskey(qdict, "index");
int index = qdict_get_try_int(qdict, "index", -1);
qemu_acl *acl = find_acl(mon, aclname);
int deny, ret;
if (acl) {
if (strcmp(policy, "allow") == 0) {
deny = 0;
} else if (strcmp(policy, "deny") == 0) {
deny = 1;
} else {
monitor_printf(mon, "acl: unknown policy '%s', "
"expected 'deny' or 'allow'\n", policy);
return;
}
if (has_index)
ret = qemu_acl_insert(acl, deny, match, index);
else
ret = qemu_acl_append(acl, deny, match);
if (ret < 0)
monitor_printf(mon, "acl: unable to add acl entry\n");
else
monitor_printf(mon, "acl: added rule at position %d\n", ret);
}
}
static void hmp_acl_remove(Monitor *mon, const QDict *qdict)
{
const char *aclname = qdict_get_str(qdict, "aclname");
const char *match = qdict_get_str(qdict, "match");
qemu_acl *acl = find_acl(mon, aclname);
int ret;
if (acl) {
ret = qemu_acl_remove(acl, match);
if (ret < 0)
monitor_printf(mon, "acl: no matching acl entry\n");
else
monitor_printf(mon, "acl: removed rule at position %d\n", ret);
}
}
void qmp_getfd(const char *fdname, Error **errp)
{
mon_fd_t *monfd;
int fd, tmp_fd;
fd = qemu_chr_fe_get_msgfd(&cur_mon->chr);
if (fd == -1) {
error_setg(errp, QERR_FD_NOT_SUPPLIED);
return;
}
if (qemu_isdigit(fdname[0])) {
close(fd);
error_setg(errp, QERR_INVALID_PARAMETER_VALUE, "fdname",
"a name not starting with a digit");
return;
}
qemu_mutex_lock(&cur_mon->mon_lock);
QLIST_FOREACH(monfd, &cur_mon->fds, next) {
if (strcmp(monfd->name, fdname) != 0) {
continue;
}
tmp_fd = monfd->fd;
monfd->fd = fd;
qemu_mutex_unlock(&cur_mon->mon_lock);
/* Make sure close() is outside critical section */
close(tmp_fd);
return;
}
monfd = g_malloc0(sizeof(mon_fd_t));
monfd->name = g_strdup(fdname);
monfd->fd = fd;
QLIST_INSERT_HEAD(&cur_mon->fds, monfd, next);
qemu_mutex_unlock(&cur_mon->mon_lock);
}
void qmp_closefd(const char *fdname, Error **errp)
{
mon_fd_t *monfd;
int tmp_fd;
qemu_mutex_lock(&cur_mon->mon_lock);
QLIST_FOREACH(monfd, &cur_mon->fds, next) {
if (strcmp(monfd->name, fdname) != 0) {
continue;
}
QLIST_REMOVE(monfd, next);
tmp_fd = monfd->fd;
g_free(monfd->name);
g_free(monfd);
qemu_mutex_unlock(&cur_mon->mon_lock);
/* Make sure close() is outside critical section */
close(tmp_fd);
return;
}
qemu_mutex_unlock(&cur_mon->mon_lock);
error_setg(errp, QERR_FD_NOT_FOUND, fdname);
}
int monitor_get_fd(Monitor *mon, const char *fdname, Error **errp)
{
mon_fd_t *monfd;
qemu_mutex_lock(&mon->mon_lock);
QLIST_FOREACH(monfd, &mon->fds, next) {
int fd;
if (strcmp(monfd->name, fdname) != 0) {
continue;
}
fd = monfd->fd;
/* caller takes ownership of fd */
QLIST_REMOVE(monfd, next);
g_free(monfd->name);
g_free(monfd);
qemu_mutex_unlock(&mon->mon_lock);
return fd;
}
qemu_mutex_unlock(&mon->mon_lock);
error_setg(errp, "File descriptor named '%s' has not been found", fdname);
return -1;
}
static void monitor_fdset_cleanup(MonFdset *mon_fdset)
{
MonFdsetFd *mon_fdset_fd;
MonFdsetFd *mon_fdset_fd_next;
QLIST_FOREACH_SAFE(mon_fdset_fd, &mon_fdset->fds, next, mon_fdset_fd_next) {
if ((mon_fdset_fd->removed ||
(QLIST_EMPTY(&mon_fdset->dup_fds) && mon_refcount == 0)) &&
runstate_is_running()) {
close(mon_fdset_fd->fd);
g_free(mon_fdset_fd->opaque);
QLIST_REMOVE(mon_fdset_fd, next);
g_free(mon_fdset_fd);
}
}
if (QLIST_EMPTY(&mon_fdset->fds) && QLIST_EMPTY(&mon_fdset->dup_fds)) {
QLIST_REMOVE(mon_fdset, next);
g_free(mon_fdset);
}
}
static void monitor_fdsets_cleanup(void)
{
MonFdset *mon_fdset;
MonFdset *mon_fdset_next;
qemu_mutex_lock(&mon_fdsets_lock);
QLIST_FOREACH_SAFE(mon_fdset, &mon_fdsets, next, mon_fdset_next) {
monitor_fdset_cleanup(mon_fdset);
}
qemu_mutex_unlock(&mon_fdsets_lock);
}
AddfdInfo *qmp_add_fd(bool has_fdset_id, int64_t fdset_id, bool has_opaque,
const char *opaque, Error **errp)
{
int fd;
Monitor *mon = cur_mon;
AddfdInfo *fdinfo;
fd = qemu_chr_fe_get_msgfd(&mon->chr);
if (fd == -1) {
error_setg(errp, QERR_FD_NOT_SUPPLIED);
goto error;
}
fdinfo = monitor_fdset_add_fd(fd, has_fdset_id, fdset_id,
has_opaque, opaque, errp);
if (fdinfo) {
return fdinfo;
}
error:
if (fd != -1) {
close(fd);
}
return NULL;
}
void qmp_remove_fd(int64_t fdset_id, bool has_fd, int64_t fd, Error **errp)
{
MonFdset *mon_fdset;
MonFdsetFd *mon_fdset_fd;
char fd_str[60];
qemu_mutex_lock(&mon_fdsets_lock);
QLIST_FOREACH(mon_fdset, &mon_fdsets, next) {
if (mon_fdset->id != fdset_id) {
continue;
}
QLIST_FOREACH(mon_fdset_fd, &mon_fdset->fds, next) {
if (has_fd) {
if (mon_fdset_fd->fd != fd) {
continue;
}
mon_fdset_fd->removed = true;
break;
} else {
mon_fdset_fd->removed = true;
}
}
if (has_fd && !mon_fdset_fd) {
goto error;
}
monitor_fdset_cleanup(mon_fdset);
qemu_mutex_unlock(&mon_fdsets_lock);
return;
}
error:
qemu_mutex_unlock(&mon_fdsets_lock);
if (has_fd) {
snprintf(fd_str, sizeof(fd_str), "fdset-id:%" PRId64 ", fd:%" PRId64,
fdset_id, fd);
} else {
snprintf(fd_str, sizeof(fd_str), "fdset-id:%" PRId64, fdset_id);
}
error_setg(errp, QERR_FD_NOT_FOUND, fd_str);
}
FdsetInfoList *qmp_query_fdsets(Error **errp)
{
MonFdset *mon_fdset;
MonFdsetFd *mon_fdset_fd;
FdsetInfoList *fdset_list = NULL;
qemu_mutex_lock(&mon_fdsets_lock);
QLIST_FOREACH(mon_fdset, &mon_fdsets, next) {
FdsetInfoList *fdset_info = g_malloc0(sizeof(*fdset_info));
FdsetFdInfoList *fdsetfd_list = NULL;
fdset_info->value = g_malloc0(sizeof(*fdset_info->value));
fdset_info->value->fdset_id = mon_fdset->id;
QLIST_FOREACH(mon_fdset_fd, &mon_fdset->fds, next) {
FdsetFdInfoList *fdsetfd_info;
fdsetfd_info = g_malloc0(sizeof(*fdsetfd_info));
fdsetfd_info->value = g_malloc0(sizeof(*fdsetfd_info->value));
fdsetfd_info->value->fd = mon_fdset_fd->fd;
if (mon_fdset_fd->opaque) {
fdsetfd_info->value->has_opaque = true;
fdsetfd_info->value->opaque = g_strdup(mon_fdset_fd->opaque);
} else {
fdsetfd_info->value->has_opaque = false;
}
fdsetfd_info->next = fdsetfd_list;
fdsetfd_list = fdsetfd_info;
}
fdset_info->value->fds = fdsetfd_list;
fdset_info->next = fdset_list;
fdset_list = fdset_info;
}
qemu_mutex_unlock(&mon_fdsets_lock);
return fdset_list;
}
AddfdInfo *monitor_fdset_add_fd(int fd, bool has_fdset_id, int64_t fdset_id,
bool has_opaque, const char *opaque,
Error **errp)
{
MonFdset *mon_fdset = NULL;
MonFdsetFd *mon_fdset_fd;
AddfdInfo *fdinfo;
qemu_mutex_lock(&mon_fdsets_lock);
if (has_fdset_id) {
QLIST_FOREACH(mon_fdset, &mon_fdsets, next) {
/* Break if match found or match impossible due to ordering by ID */
if (fdset_id <= mon_fdset->id) {
if (fdset_id < mon_fdset->id) {
mon_fdset = NULL;
}
break;
}
}
}
if (mon_fdset == NULL) {
int64_t fdset_id_prev = -1;
MonFdset *mon_fdset_cur = QLIST_FIRST(&mon_fdsets);
if (has_fdset_id) {
if (fdset_id < 0) {
error_setg(errp, QERR_INVALID_PARAMETER_VALUE, "fdset-id",
"a non-negative value");
qemu_mutex_unlock(&mon_fdsets_lock);
return NULL;
}
/* Use specified fdset ID */
QLIST_FOREACH(mon_fdset, &mon_fdsets, next) {
mon_fdset_cur = mon_fdset;
if (fdset_id < mon_fdset_cur->id) {
break;
}
}
} else {
/* Use first available fdset ID */
QLIST_FOREACH(mon_fdset, &mon_fdsets, next) {
mon_fdset_cur = mon_fdset;
if (fdset_id_prev == mon_fdset_cur->id - 1) {
fdset_id_prev = mon_fdset_cur->id;
continue;
}
break;
}
}
mon_fdset = g_malloc0(sizeof(*mon_fdset));
if (has_fdset_id) {
mon_fdset->id = fdset_id;
} else {
mon_fdset->id = fdset_id_prev + 1;
}
/* The fdset list is ordered by fdset ID */
if (!mon_fdset_cur) {
QLIST_INSERT_HEAD(&mon_fdsets, mon_fdset, next);
} else if (mon_fdset->id < mon_fdset_cur->id) {
QLIST_INSERT_BEFORE(mon_fdset_cur, mon_fdset, next);
} else {
QLIST_INSERT_AFTER(mon_fdset_cur, mon_fdset, next);
}
}
mon_fdset_fd = g_malloc0(sizeof(*mon_fdset_fd));
mon_fdset_fd->fd = fd;
mon_fdset_fd->removed = false;
if (has_opaque) {
mon_fdset_fd->opaque = g_strdup(opaque);
}
QLIST_INSERT_HEAD(&mon_fdset->fds, mon_fdset_fd, next);
fdinfo = g_malloc0(sizeof(*fdinfo));
fdinfo->fdset_id = mon_fdset->id;
fdinfo->fd = mon_fdset_fd->fd;
qemu_mutex_unlock(&mon_fdsets_lock);
return fdinfo;
}
int monitor_fdset_get_fd(int64_t fdset_id, int flags)
{
#ifdef _WIN32
return -ENOENT;
#else
MonFdset *mon_fdset;
MonFdsetFd *mon_fdset_fd;
int mon_fd_flags;
int ret;
qemu_mutex_lock(&mon_fdsets_lock);
QLIST_FOREACH(mon_fdset, &mon_fdsets, next) {
if (mon_fdset->id != fdset_id) {
continue;
}
QLIST_FOREACH(mon_fdset_fd, &mon_fdset->fds, next) {
mon_fd_flags = fcntl(mon_fdset_fd->fd, F_GETFL);
if (mon_fd_flags == -1) {
ret = -errno;
goto out;
}
if ((flags & O_ACCMODE) == (mon_fd_flags & O_ACCMODE)) {
ret = mon_fdset_fd->fd;
goto out;
}
}
ret = -EACCES;
goto out;
}
ret = -ENOENT;
out:
qemu_mutex_unlock(&mon_fdsets_lock);
return ret;
#endif
}
int monitor_fdset_dup_fd_add(int64_t fdset_id, int dup_fd)
{
MonFdset *mon_fdset;
MonFdsetFd *mon_fdset_fd_dup;
qemu_mutex_lock(&mon_fdsets_lock);
QLIST_FOREACH(mon_fdset, &mon_fdsets, next) {
if (mon_fdset->id != fdset_id) {
continue;
}
QLIST_FOREACH(mon_fdset_fd_dup, &mon_fdset->dup_fds, next) {
if (mon_fdset_fd_dup->fd == dup_fd) {
goto err;
}
}
mon_fdset_fd_dup = g_malloc0(sizeof(*mon_fdset_fd_dup));
mon_fdset_fd_dup->fd = dup_fd;
QLIST_INSERT_HEAD(&mon_fdset->dup_fds, mon_fdset_fd_dup, next);
qemu_mutex_unlock(&mon_fdsets_lock);
return 0;
}
err:
qemu_mutex_unlock(&mon_fdsets_lock);
return -1;
}
static int monitor_fdset_dup_fd_find_remove(int dup_fd, bool remove)
{
MonFdset *mon_fdset;
MonFdsetFd *mon_fdset_fd_dup;
qemu_mutex_lock(&mon_fdsets_lock);
QLIST_FOREACH(mon_fdset, &mon_fdsets, next) {
QLIST_FOREACH(mon_fdset_fd_dup, &mon_fdset->dup_fds, next) {
if (mon_fdset_fd_dup->fd == dup_fd) {
if (remove) {
QLIST_REMOVE(mon_fdset_fd_dup, next);
if (QLIST_EMPTY(&mon_fdset->dup_fds)) {
monitor_fdset_cleanup(mon_fdset);
}
goto err;
} else {
qemu_mutex_unlock(&mon_fdsets_lock);
return mon_fdset->id;
}
}
}
}
err:
qemu_mutex_unlock(&mon_fdsets_lock);
return -1;
}
int monitor_fdset_dup_fd_find(int dup_fd)
{
return monitor_fdset_dup_fd_find_remove(dup_fd, false);
}
void monitor_fdset_dup_fd_remove(int dup_fd)
{
monitor_fdset_dup_fd_find_remove(dup_fd, true);
}
int monitor_fd_param(Monitor *mon, const char *fdname, Error **errp)
{
int fd;
Error *local_err = NULL;
if (!qemu_isdigit(fdname[0]) && mon) {
fd = monitor_get_fd(mon, fdname, &local_err);
} else {
fd = qemu_parse_fd(fdname);
if (fd == -1) {
error_setg(&local_err, "Invalid file descriptor number '%s'",
fdname);
}
}
if (local_err) {
error_propagate(errp, local_err);
assert(fd == -1);
} else {
assert(fd != -1);
}
return fd;
}
/* Please update hmp-commands.hx when adding or changing commands */
static mon_cmd_t info_cmds[] = {
#include "hmp-commands-info.h"
{ NULL, NULL, },
};
/* mon_cmds and info_cmds would be sorted at runtime */
static mon_cmd_t mon_cmds[] = {
#include "hmp-commands.h"
{ NULL, NULL, },
};
/*******************************************************************/
static const char *pch;
static sigjmp_buf expr_env;
static void GCC_FMT_ATTR(2, 3) QEMU_NORETURN
expr_error(Monitor *mon, const char *fmt, ...)
{
va_list ap;
va_start(ap, fmt);
monitor_vprintf(mon, fmt, ap);
monitor_printf(mon, "\n");
va_end(ap);
siglongjmp(expr_env, 1);
}
/* return 0 if OK, -1 if not found */
static int get_monitor_def(target_long *pval, const char *name)
{
const MonitorDef *md = target_monitor_defs();
CPUState *cs = mon_get_cpu();
void *ptr;
uint64_t tmp = 0;
int ret;
if (cs == NULL || md == NULL) {
return -1;
}
for(; md->name != NULL; md++) {
if (compare_cmd(name, md->name)) {
if (md->get_value) {
*pval = md->get_value(md, md->offset);
} else {
CPUArchState *env = mon_get_cpu_env();
ptr = (uint8_t *)env + md->offset;
switch(md->type) {
case MD_I32:
*pval = *(int32_t *)ptr;
break;
case MD_TLONG:
*pval = *(target_long *)ptr;
break;
default:
*pval = 0;
break;
}
}
return 0;
}
}
ret = target_get_monitor_def(cs, name, &tmp);
if (!ret) {
*pval = (target_long) tmp;
}
return ret;
}
static void next(void)
{
if (*pch != '\0') {
pch++;
while (qemu_isspace(*pch))
pch++;
}
}
static int64_t expr_sum(Monitor *mon);
static int64_t expr_unary(Monitor *mon)
{
int64_t n;
char *p;
int ret;
switch(*pch) {
case '+':
next();
n = expr_unary(mon);
break;
case '-':
next();
n = -expr_unary(mon);
break;
case '~':
next();
n = ~expr_unary(mon);
break;
case '(':
next();
n = expr_sum(mon);
if (*pch != ')') {
expr_error(mon, "')' expected");
}
next();
break;
case '\'':
pch++;
if (*pch == '\0')
expr_error(mon, "character constant expected");
n = *pch;
pch++;
if (*pch != '\'')
expr_error(mon, "missing terminating \' character");
next();
break;
case '$':
{
char buf[128], *q;
target_long reg=0;
pch++;
q = buf;
while ((*pch >= 'a' && *pch <= 'z') ||
(*pch >= 'A' && *pch <= 'Z') ||
(*pch >= '0' && *pch <= '9') ||
*pch == '_' || *pch == '.') {
if ((q - buf) < sizeof(buf) - 1)
*q++ = *pch;
pch++;
}
while (qemu_isspace(*pch))
pch++;
*q = 0;
ret = get_monitor_def(&reg, buf);
if (ret < 0)
expr_error(mon, "unknown register");
n = reg;
}
break;
case '\0':
expr_error(mon, "unexpected end of expression");
n = 0;
break;
default:
errno = 0;
n = strtoull(pch, &p, 0);
if (errno == ERANGE) {
expr_error(mon, "number too large");
}
if (pch == p) {
expr_error(mon, "invalid char '%c' in expression", *p);
}
pch = p;
while (qemu_isspace(*pch))
pch++;
break;
}
return n;
}
static int64_t expr_prod(Monitor *mon)
{
int64_t val, val2;
int op;
val = expr_unary(mon);
for(;;) {
op = *pch;
if (op != '*' && op != '/' && op != '%')
break;
next();
val2 = expr_unary(mon);
switch(op) {
default:
case '*':
val *= val2;
break;
case '/':
case '%':
if (val2 == 0)
expr_error(mon, "division by zero");
if (op == '/')
val /= val2;
else
val %= val2;
break;
}
}
return val;
}
static int64_t expr_logic(Monitor *mon)
{
int64_t val, val2;
int op;
val = expr_prod(mon);
for(;;) {
op = *pch;
if (op != '&' && op != '|' && op != '^')
break;
next();
val2 = expr_prod(mon);
switch(op) {
default:
case '&':
val &= val2;
break;
case '|':
val |= val2;
break;
case '^':
val ^= val2;
break;
}
}
return val;
}
static int64_t expr_sum(Monitor *mon)
{
int64_t val, val2;
int op;
val = expr_logic(mon);
for(;;) {
op = *pch;
if (op != '+' && op != '-')
break;
next();
val2 = expr_logic(mon);
if (op == '+')
val += val2;
else
val -= val2;
}
return val;
}
static int get_expr(Monitor *mon, int64_t *pval, const char **pp)
{
pch = *pp;
if (sigsetjmp(expr_env, 0)) {
*pp = pch;
return -1;
}
while (qemu_isspace(*pch))
pch++;
*pval = expr_sum(mon);
*pp = pch;
return 0;
}
static int get_double(Monitor *mon, double *pval, const char **pp)
{
const char *p = *pp;
char *tailp;
double d;
d = strtod(p, &tailp);
if (tailp == p) {
monitor_printf(mon, "Number expected\n");
return -1;
}
if (d != d || d - d != 0) {
/* NaN or infinity */
monitor_printf(mon, "Bad number\n");
return -1;
}
*pval = d;
*pp = tailp;
return 0;
}
/*
* Store the command-name in cmdname, and return a pointer to
* the remaining of the command string.
*/
static const char *get_command_name(const char *cmdline,
char *cmdname, size_t nlen)
{
size_t len;
const char *p, *pstart;
p = cmdline;
while (qemu_isspace(*p))
p++;
if (*p == '\0')
return NULL;
pstart = p;
while (*p != '\0' && *p != '/' && !qemu_isspace(*p))
p++;
len = p - pstart;
if (len > nlen - 1)
len = nlen - 1;
memcpy(cmdname, pstart, len);
cmdname[len] = '\0';
return p;
}
/**
* Read key of 'type' into 'key' and return the current
* 'type' pointer.
*/
static char *key_get_info(const char *type, char **key)
{
size_t len;
char *p, *str;
if (*type == ',')
type++;
p = strchr(type, ':');
if (!p) {
*key = NULL;
return NULL;
}
len = p - type;
str = g_malloc(len + 1);
memcpy(str, type, len);
str[len] = '\0';
*key = str;
return ++p;
}
static int default_fmt_format = 'x';
static int default_fmt_size = 4;
static int is_valid_option(const char *c, const char *typestr)
{
char option[3];
option[0] = '-';
option[1] = *c;
option[2] = '\0';
typestr = strstr(typestr, option);
return (typestr != NULL);
}
static const mon_cmd_t *search_dispatch_table(const mon_cmd_t *disp_table,
const char *cmdname)
{
const mon_cmd_t *cmd;
for (cmd = disp_table; cmd->name != NULL; cmd++) {
if (compare_cmd(cmdname, cmd->name)) {
return cmd;
}
}
return NULL;
}
/*
* Parse command name from @cmdp according to command table @table.
* If blank, return NULL.
* Else, if no valid command can be found, report to @mon, and return
* NULL.
* Else, change @cmdp to point right behind the name, and return its
* command table entry.
* Do not assume the return value points into @table! It doesn't when
* the command is found in a sub-command table.
*/
static const mon_cmd_t *monitor_parse_command(Monitor *mon,
const char *cmdp_start,
const char **cmdp,
mon_cmd_t *table)
{
const char *p;
const mon_cmd_t *cmd;
char cmdname[256];
/* extract the command name */
p = get_command_name(*cmdp, cmdname, sizeof(cmdname));
if (!p)
return NULL;
cmd = search_dispatch_table(table, cmdname);
if (!cmd) {
monitor_printf(mon, "unknown command: '%.*s'\n",
(int)(p - cmdp_start), cmdp_start);
return NULL;
}
if (runstate_check(RUN_STATE_PRECONFIG) && !cmd_can_preconfig(cmd)) {
monitor_printf(mon, "Command '%.*s' not available with -preconfig "
"until after exit_preconfig.\n",
(int)(p - cmdp_start), cmdp_start);
return NULL;
}
/* filter out following useless space */
while (qemu_isspace(*p)) {
p++;
}
*cmdp = p;
/* search sub command */
if (cmd->sub_table != NULL && *p != '\0') {
return monitor_parse_command(mon, cmdp_start, cmdp, cmd->sub_table);
}
return cmd;
}
/*
* Parse arguments for @cmd.
* If it can't be parsed, report to @mon, and return NULL.
* Else, insert command arguments into a QDict, and return it.
* Note: On success, caller has to free the QDict structure.
*/
static QDict *monitor_parse_arguments(Monitor *mon,
const char **endp,
const mon_cmd_t *cmd)
{
const char *typestr;
char *key;
int c;
const char *p = *endp;
char buf[1024];
QDict *qdict = qdict_new();
/* parse the parameters */
typestr = cmd->args_type;
for(;;) {
typestr = key_get_info(typestr, &key);
if (!typestr)
break;
c = *typestr;
typestr++;
switch(c) {
case 'F':
case 'B':
case 's':
{
int ret;
while (qemu_isspace(*p))
p++;
if (*typestr == '?') {
typestr++;
if (*p == '\0') {
/* no optional string: NULL argument */
break;
}
}
ret = get_str(buf, sizeof(buf), &p);
if (ret < 0) {
switch(c) {
case 'F':
monitor_printf(mon, "%s: filename expected\n",
cmd->name);
break;
case 'B':
monitor_printf(mon, "%s: block device name expected\n",
cmd->name);
break;
default:
monitor_printf(mon, "%s: string expected\n", cmd->name);
break;
}
goto fail;
}
qdict_put_str(qdict, key, buf);
}
break;
case 'O':
{
QemuOptsList *opts_list;
QemuOpts *opts;
opts_list = qemu_find_opts(key);
if (!opts_list || opts_list->desc->name) {
goto bad_type;
}
while (qemu_isspace(*p)) {
p++;
}
if (!*p)
break;
if (get_str(buf, sizeof(buf), &p) < 0) {
goto fail;
}
opts = qemu_opts_parse_noisily(opts_list, buf, true);
if (!opts) {
goto fail;
}
qemu_opts_to_qdict(opts, qdict);
qemu_opts_del(opts);
}
break;
case '/':
{
int count, format, size;
while (qemu_isspace(*p))
p++;
if (*p == '/') {
/* format found */
p++;
count = 1;
if (qemu_isdigit(*p)) {
count = 0;
while (qemu_isdigit(*p)) {
count = count * 10 + (*p - '0');
p++;
}
}
size = -1;
format = -1;
for(;;) {
switch(*p) {
case 'o':
case 'd':
case 'u':
case 'x':
case 'i':
case 'c':
format = *p++;
break;
case 'b':
size = 1;
p++;
break;
case 'h':
size = 2;
p++;
break;
case 'w':
size = 4;
p++;
break;
case 'g':
case 'L':
size = 8;
p++;
break;
default:
goto next;
}
}
next:
if (*p != '\0' && !qemu_isspace(*p)) {
monitor_printf(mon, "invalid char in format: '%c'\n",
*p);
goto fail;
}
if (format < 0)
format = default_fmt_format;
if (format != 'i') {
/* for 'i', not specifying a size gives -1 as size */
if (size < 0)
size = default_fmt_size;
default_fmt_size = size;
}
default_fmt_format = format;
} else {
count = 1;
format = default_fmt_format;
if (format != 'i') {
size = default_fmt_size;
} else {
size = -1;
}
}
qdict_put_int(qdict, "count", count);
qdict_put_int(qdict, "format", format);
qdict_put_int(qdict, "size", size);
}
break;
case 'i':
case 'l':
case 'M':
{
int64_t val;
while (qemu_isspace(*p))
p++;
if (*typestr == '?' || *typestr == '.') {
if (*typestr == '?') {
if (*p == '\0') {
typestr++;
break;
}
} else {
if (*p == '.') {
p++;
while (qemu_isspace(*p))
p++;
} else {
typestr++;
break;
}
}
typestr++;
}
if (get_expr(mon, &val, &p))
goto fail;
/* Check if 'i' is greater than 32-bit */
if ((c == 'i') && ((val >> 32) & 0xffffffff)) {
monitor_printf(mon, "\'%s\' has failed: ", cmd->name);
monitor_printf(mon, "integer is for 32-bit values\n");
goto fail;
} else if (c == 'M') {
if (val < 0) {
monitor_printf(mon, "enter a positive value\n");
goto fail;
}
val *= MiB;
}
qdict_put_int(qdict, key, val);
}
break;
case 'o':
{
int ret;
uint64_t val;
char *end;
while (qemu_isspace(*p)) {
p++;
}
if (*typestr == '?') {
typestr++;
if (*p == '\0') {
break;
}
}
ret = qemu_strtosz_MiB(p, &end, &val);
if (ret < 0 || val > INT64_MAX) {
monitor_printf(mon, "invalid size\n");
goto fail;
}
qdict_put_int(qdict, key, val);
p = end;
}
break;
case 'T':
{
double val;
while (qemu_isspace(*p))
p++;
if (*typestr == '?') {
typestr++;
if (*p == '\0') {
break;
}
}
if (get_double(mon, &val, &p) < 0) {
goto fail;
}
if (p[0] && p[1] == 's') {
switch (*p) {
case 'm':
val /= 1e3; p += 2; break;
case 'u':
val /= 1e6; p += 2; break;
case 'n':
val /= 1e9; p += 2; break;
}
}
if (*p && !qemu_isspace(*p)) {
monitor_printf(mon, "Unknown unit suffix\n");
goto fail;
}
qdict_put(qdict, key, qnum_from_double(val));
}
break;
case 'b':
{
const char *beg;
bool val;
while (qemu_isspace(*p)) {
p++;
}
beg = p;
while (qemu_isgraph(*p)) {
p++;
}
if (p - beg == 2 && !memcmp(beg, "on", p - beg)) {
val = true;
} else if (p - beg == 3 && !memcmp(beg, "off", p - beg)) {
val = false;
} else {
monitor_printf(mon, "Expected 'on' or 'off'\n");
goto fail;
}
qdict_put_bool(qdict, key, val);
}
break;
case '-':
{
const char *tmp = p;
int skip_key = 0;
/* option */
c = *typestr++;
if (c == '\0')
goto bad_type;
while (qemu_isspace(*p))
p++;
if (*p == '-') {
p++;
if(c != *p) {
if(!is_valid_option(p, typestr)) {
monitor_printf(mon, "%s: unsupported option -%c\n",
cmd->name, *p);
goto fail;
} else {
skip_key = 1;
}
}
if(skip_key) {
p = tmp;
} else {
/* has option */
p++;
qdict_put_bool(qdict, key, true);
}
}
}
break;
case 'S':
{
/* package all remaining string */
int len;
while (qemu_isspace(*p)) {
p++;
}
if (*typestr == '?') {
typestr++;
if (*p == '\0') {
/* no remaining string: NULL argument */
break;
}
}
len = strlen(p);
if (len <= 0) {
monitor_printf(mon, "%s: string expected\n",
cmd->name);
goto fail;
}
qdict_put_str(qdict, key, p);
p += len;
}
break;
default:
bad_type:
monitor_printf(mon, "%s: unknown type '%c'\n", cmd->name, c);
goto fail;
}
g_free(key);
key = NULL;
}
/* check that all arguments were parsed */
while (qemu_isspace(*p))
p++;
if (*p != '\0') {
monitor_printf(mon, "%s: extraneous characters at the end of line\n",
cmd->name);
goto fail;
}
return qdict;
fail:
qobject_unref(qdict);
g_free(key);
return NULL;
}
static void handle_hmp_command(Monitor *mon, const char *cmdline)
{
QDict *qdict;
const mon_cmd_t *cmd;
const char *cmd_start = cmdline;
trace_handle_hmp_command(mon, cmdline);
cmd = monitor_parse_command(mon, cmdline, &cmdline, mon->cmd_table);
if (!cmd) {
return;
}
qdict = monitor_parse_arguments(mon, &cmdline, cmd);
if (!qdict) {
while (cmdline > cmd_start && qemu_isspace(cmdline[-1])) {
cmdline--;
}
monitor_printf(mon, "Try \"help %.*s\" for more information\n",
(int)(cmdline - cmd_start), cmd_start);
return;
}
cmd->cmd(mon, qdict);
qobject_unref(qdict);
}
static void cmd_completion(Monitor *mon, const char *name, const char *list)
{
const char *p, *pstart;
char cmd[128];
int len;
p = list;
for(;;) {
pstart = p;
p = qemu_strchrnul(p, '|');
len = p - pstart;
if (len > sizeof(cmd) - 2)
len = sizeof(cmd) - 2;
memcpy(cmd, pstart, len);
cmd[len] = '\0';
if (name[0] == '\0' || !strncmp(name, cmd, strlen(name))) {
readline_add_completion(mon->rs, cmd);
}
if (*p == '\0')
break;
p++;
}
}
static void file_completion(Monitor *mon, const char *input)
{
DIR *ffs;
struct dirent *d;
char path[1024];
char file[1024], file_prefix[1024];
int input_path_len;
const char *p;
p = strrchr(input, '/');
if (!p) {
input_path_len = 0;
pstrcpy(file_prefix, sizeof(file_prefix), input);
pstrcpy(path, sizeof(path), ".");
} else {
input_path_len = p - input + 1;
memcpy(path, input, input_path_len);
if (input_path_len > sizeof(path) - 1)
input_path_len = sizeof(path) - 1;
path[input_path_len] = '\0';
pstrcpy(file_prefix, sizeof(file_prefix), p + 1);
}
ffs = opendir(path);
if (!ffs)
return;
for(;;) {
struct stat sb;
d = readdir(ffs);
if (!d)
break;
if (strcmp(d->d_name, ".") == 0 || strcmp(d->d_name, "..") == 0) {
continue;
}
if (strstart(d->d_name, file_prefix, NULL)) {
memcpy(file, input, input_path_len);
if (input_path_len < sizeof(file))
pstrcpy(file + input_path_len, sizeof(file) - input_path_len,
d->d_name);
/* stat the file to find out if it's a directory.
* In that case add a slash to speed up typing long paths
*/
if (stat(file, &sb) == 0 && S_ISDIR(sb.st_mode)) {
pstrcat(file, sizeof(file), "/");
}
readline_add_completion(mon->rs, file);
}
}
closedir(ffs);
}
static const char *next_arg_type(const char *typestr)
{
const char *p = strchr(typestr, ':');
return (p != NULL ? ++p : typestr);
}
static void add_completion_option(ReadLineState *rs, const char *str,
const char *option)
{
if (!str || !option) {
return;
}
if (!strncmp(option, str, strlen(str))) {
readline_add_completion(rs, option);
}
}
void chardev_add_completion(ReadLineState *rs, int nb_args, const char *str)
{
size_t len;
ChardevBackendInfoList *list, *start;
if (nb_args != 2) {
return;
}
len = strlen(str);
readline_set_completion_index(rs, len);
start = list = qmp_query_chardev_backends(NULL);
while (list) {
const char *chr_name = list->value->name;
if (!strncmp(chr_name, str, len)) {
readline_add_completion(rs, chr_name);
}
list = list->next;
}
qapi_free_ChardevBackendInfoList(start);
}
void netdev_add_completion(ReadLineState *rs, int nb_args, const char *str)
{
size_t len;
int i;
if (nb_args != 2) {
return;
}
len = strlen(str);
readline_set_completion_index(rs, len);
for (i = 0; i < NET_CLIENT_DRIVER__MAX; i++) {
add_completion_option(rs, str, NetClientDriver_str(i));
}
}
void device_add_completion(ReadLineState *rs, int nb_args, const char *str)
{
GSList *list, *elt;
size_t len;
if (nb_args != 2) {
return;
}
len = strlen(str);
readline_set_completion_index(rs, len);
list = elt = object_class_get_list(TYPE_DEVICE, false);
while (elt) {
const char *name;
DeviceClass *dc = OBJECT_CLASS_CHECK(DeviceClass, elt->data,
TYPE_DEVICE);
name = object_class_get_name(OBJECT_CLASS(dc));
if (dc->user_creatable
&& !strncmp(name, str, len)) {
readline_add_completion(rs, name);
}
elt = elt->next;
}
g_slist_free(list);
}
void object_add_completion(ReadLineState *rs, int nb_args, const char *str)
{
GSList *list, *elt;
size_t len;
if (nb_args != 2) {
return;
}
len = strlen(str);
readline_set_completion_index(rs, len);
list = elt = object_class_get_list(TYPE_USER_CREATABLE, false);
while (elt) {
const char *name;
name = object_class_get_name(OBJECT_CLASS(elt->data));
if (!strncmp(name, str, len) && strcmp(name, TYPE_USER_CREATABLE)) {
readline_add_completion(rs, name);
}
elt = elt->next;
}
g_slist_free(list);
}
static void peripheral_device_del_completion(ReadLineState *rs,
const char *str, size_t len)
{
Object *peripheral = container_get(qdev_get_machine(), "/peripheral");
GSList *list, *item;
list = qdev_build_hotpluggable_device_list(peripheral);
if (!list) {
return;
}
for (item = list; item; item = g_slist_next(item)) {
DeviceState *dev = item->data;
if (dev->id && !strncmp(str, dev->id, len)) {
readline_add_completion(rs, dev->id);
}
}
g_slist_free(list);
}
void chardev_remove_completion(ReadLineState *rs, int nb_args, const char *str)
{
size_t len;
ChardevInfoList *list, *start;
if (nb_args != 2) {
return;
}
len = strlen(str);
readline_set_completion_index(rs, len);
start = list = qmp_query_chardev(NULL);
while (list) {
ChardevInfo *chr = list->value;
if (!strncmp(chr->label, str, len)) {
readline_add_completion(rs, chr->label);
}
list = list->next;
}
qapi_free_ChardevInfoList(start);
}
static void ringbuf_completion(ReadLineState *rs, const char *str)
{
size_t len;
ChardevInfoList *list, *start;
len = strlen(str);
readline_set_completion_index(rs, len);
start = list = qmp_query_chardev(NULL);
while (list) {
ChardevInfo *chr_info = list->value;
if (!strncmp(chr_info->label, str, len)) {
Chardev *chr = qemu_chr_find(chr_info->label);
if (chr && CHARDEV_IS_RINGBUF(chr)) {
readline_add_completion(rs, chr_info->label);
}
}
list = list->next;
}
qapi_free_ChardevInfoList(start);
}
void ringbuf_write_completion(ReadLineState *rs, int nb_args, const char *str)
{
if (nb_args != 2) {
return;
}
ringbuf_completion(rs, str);
}
void device_del_completion(ReadLineState *rs, int nb_args, const char *str)
{
size_t len;
if (nb_args != 2) {
return;
}
len = strlen(str);
readline_set_completion_index(rs, len);
peripheral_device_del_completion(rs, str, len);
}
void object_del_completion(ReadLineState *rs, int nb_args, const char *str)
{
ObjectPropertyInfoList *list, *start;
size_t len;
if (nb_args != 2) {
return;
}
len = strlen(str);
readline_set_completion_index(rs, len);
start = list = qmp_qom_list("/objects", NULL);
while (list) {
ObjectPropertyInfo *info = list->value;
if (!strncmp(info->type, "child<", 5)
&& !strncmp(info->name, str, len)) {
readline_add_completion(rs, info->name);
}
list = list->next;
}
qapi_free_ObjectPropertyInfoList(start);
}
void sendkey_completion(ReadLineState *rs, int nb_args, const char *str)
{
int i;
char *sep;
size_t len;
if (nb_args != 2) {
return;
}
sep = strrchr(str, '-');
if (sep) {
str = sep + 1;
}
len = strlen(str);
readline_set_completion_index(rs, len);
for (i = 0; i < Q_KEY_CODE__MAX; i++) {
if (!strncmp(str, QKeyCode_str(i), len)) {
readline_add_completion(rs, QKeyCode_str(i));
}
}
}
void set_link_completion(ReadLineState *rs, int nb_args, const char *str)
{
size_t len;
len = strlen(str);
readline_set_completion_index(rs, len);
if (nb_args == 2) {
NetClientState *ncs[MAX_QUEUE_NUM];
int count, i;
count = qemu_find_net_clients_except(NULL, ncs,
NET_CLIENT_DRIVER_NONE,
MAX_QUEUE_NUM);
for (i = 0; i < MIN(count, MAX_QUEUE_NUM); i++) {
const char *name = ncs[i]->name;
if (!strncmp(str, name, len)) {
readline_add_completion(rs, name);
}
}
} else if (nb_args == 3) {
add_completion_option(rs, str, "on");
add_completion_option(rs, str, "off");
}
}
void netdev_del_completion(ReadLineState *rs, int nb_args, const char *str)
{
int len, count, i;
NetClientState *ncs[MAX_QUEUE_NUM];
if (nb_args != 2) {
return;
}
len = strlen(str);
readline_set_completion_index(rs, len);
count = qemu_find_net_clients_except(NULL, ncs, NET_CLIENT_DRIVER_NIC,
MAX_QUEUE_NUM);
for (i = 0; i < MIN(count, MAX_QUEUE_NUM); i++) {
QemuOpts *opts;
const char *name = ncs[i]->name;
if (strncmp(str, name, len)) {
continue;
}
opts = qemu_opts_find(qemu_find_opts_err("netdev", NULL), name);
if (opts) {
readline_add_completion(rs, name);
}
}
}
void info_trace_events_completion(ReadLineState *rs, int nb_args, const char *str)
{
size_t len;
len = strlen(str);
readline_set_completion_index(rs, len);
if (nb_args == 2) {
TraceEventIter iter;
TraceEvent *ev;
char *pattern = g_strdup_printf("%s*", str);
trace_event_iter_init(&iter, pattern);
while ((ev = trace_event_iter_next(&iter)) != NULL) {
readline_add_completion(rs, trace_event_get_name(ev));
}
g_free(pattern);
}
}
void trace_event_completion(ReadLineState *rs, int nb_args, const char *str)
{
size_t len;
len = strlen(str);
readline_set_completion_index(rs, len);
if (nb_args == 2) {
TraceEventIter iter;
TraceEvent *ev;
char *pattern = g_strdup_printf("%s*", str);
trace_event_iter_init(&iter, pattern);
while ((ev = trace_event_iter_next(&iter)) != NULL) {
readline_add_completion(rs, trace_event_get_name(ev));
}
g_free(pattern);
} else if (nb_args == 3) {
add_completion_option(rs, str, "on");
add_completion_option(rs, str, "off");
}
}
void watchdog_action_completion(ReadLineState *rs, int nb_args, const char *str)
{
int i;
if (nb_args != 2) {
return;
}
readline_set_completion_index(rs, strlen(str));
for (i = 0; i < WATCHDOG_ACTION__MAX; i++) {
add_completion_option(rs, str, WatchdogAction_str(i));
}
}
void migrate_set_capability_completion(ReadLineState *rs, int nb_args,
const char *str)
{
size_t len;
len = strlen(str);
readline_set_completion_index(rs, len);
if (nb_args == 2) {
int i;
for (i = 0; i < MIGRATION_CAPABILITY__MAX; i++) {
const char *name = MigrationCapability_str(i);
if (!strncmp(str, name, len)) {
readline_add_completion(rs, name);
}
}
} else if (nb_args == 3) {
add_completion_option(rs, str, "on");
add_completion_option(rs, str, "off");
}
}
void migrate_set_parameter_completion(ReadLineState *rs, int nb_args,
const char *str)
{
size_t len;
len = strlen(str);
readline_set_completion_index(rs, len);
if (nb_args == 2) {
int i;
for (i = 0; i < MIGRATION_PARAMETER__MAX; i++) {
const char *name = MigrationParameter_str(i);
if (!strncmp(str, name, len)) {
readline_add_completion(rs, name);
}
}
}
}
static void vm_completion(ReadLineState *rs, const char *str)
{
size_t len;
BlockDriverState *bs;
BdrvNextIterator it;
len = strlen(str);
readline_set_completion_index(rs, len);
for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) {
SnapshotInfoList *snapshots, *snapshot;
AioContext *ctx = bdrv_get_aio_context(bs);
bool ok = false;
aio_context_acquire(ctx);
if (bdrv_can_snapshot(bs)) {
ok = bdrv_query_snapshot_info_list(bs, &snapshots, NULL) == 0;
}
aio_context_release(ctx);
if (!ok) {
continue;
}
snapshot = snapshots;
while (snapshot) {
char *completion = snapshot->value->name;
if (!strncmp(str, completion, len)) {
readline_add_completion(rs, completion);
}
completion = snapshot->value->id;
if (!strncmp(str, completion, len)) {
readline_add_completion(rs, completion);
}
snapshot = snapshot->next;
}
qapi_free_SnapshotInfoList(snapshots);
}
}
void delvm_completion(ReadLineState *rs, int nb_args, const char *str)
{
if (nb_args == 2) {
vm_completion(rs, str);
}
}
void loadvm_completion(ReadLineState *rs, int nb_args, const char *str)
{
if (nb_args == 2) {
vm_completion(rs, str);
}
}
static void monitor_find_completion_by_table(Monitor *mon,
const mon_cmd_t *cmd_table,
char **args,
int nb_args)
{
const char *cmdname;
int i;
const char *ptype, *old_ptype, *str, *name;
const mon_cmd_t *cmd;
BlockBackend *blk = NULL;
if (nb_args <= 1) {
/* command completion */
if (nb_args == 0)
cmdname = "";
else
cmdname = args[0];
readline_set_completion_index(mon->rs, strlen(cmdname));
for (cmd = cmd_table; cmd->name != NULL; cmd++) {
if (!runstate_check(RUN_STATE_PRECONFIG) ||
cmd_can_preconfig(cmd)) {
cmd_completion(mon, cmdname, cmd->name);
}
}
} else {
/* find the command */
for (cmd = cmd_table; cmd->name != NULL; cmd++) {
if (compare_cmd(args[0], cmd->name) &&
(!runstate_check(RUN_STATE_PRECONFIG) ||
cmd_can_preconfig(cmd))) {
break;
}
}
if (!cmd->name) {
return;
}
if (cmd->sub_table) {
/* do the job again */
monitor_find_completion_by_table(mon, cmd->sub_table,
&args[1], nb_args - 1);
return;
}
if (cmd->command_completion) {
cmd->command_completion(mon->rs, nb_args, args[nb_args - 1]);
return;
}
ptype = next_arg_type(cmd->args_type);
for(i = 0; i < nb_args - 2; i++) {
if (*ptype != '\0') {
ptype = next_arg_type(ptype);
while (*ptype == '?')
ptype = next_arg_type(ptype);
}
}
str = args[nb_args - 1];
old_ptype = NULL;
while (*ptype == '-' && old_ptype != ptype) {
old_ptype = ptype;
ptype = next_arg_type(ptype);
}
switch(*ptype) {
case 'F':
/* file completion */
readline_set_completion_index(mon->rs, strlen(str));
file_completion(mon, str);
break;
case 'B':
/* block device name completion */
readline_set_completion_index(mon->rs, strlen(str));
while ((blk = blk_next(blk)) != NULL) {
name = blk_name(blk);
if (str[0] == '\0' ||
!strncmp(name, str, strlen(str))) {
readline_add_completion(mon->rs, name);
}
}
break;
case 's':
case 'S':
if (!strcmp(cmd->name, "help|?")) {
monitor_find_completion_by_table(mon, cmd_table,
&args[1], nb_args - 1);
}
break;
default:
break;
}
}
}
static void monitor_find_completion(void *opaque,
const char *cmdline)
{
Monitor *mon = opaque;
char *args[MAX_ARGS];
int nb_args, len;
/* 1. parse the cmdline */
if (parse_cmdline(cmdline, &nb_args, args) < 0) {
return;
}
/* if the line ends with a space, it means we want to complete the
next arg */
len = strlen(cmdline);
if (len > 0 && qemu_isspace(cmdline[len - 1])) {
if (nb_args >= MAX_ARGS) {
goto cleanup;
}
args[nb_args++] = g_strdup("");
}
/* 2. auto complete according to args */
monitor_find_completion_by_table(mon, mon->cmd_table, args, nb_args);
cleanup:
free_cmdline_args(args, nb_args);
}
static int monitor_can_read(void *opaque)
{
Monitor *mon = opaque;
return !atomic_mb_read(&mon->suspend_cnt);
}
/*
* Emit QMP response @rsp with ID @id to @mon.
* Null @rsp can only happen for commands with QCO_NO_SUCCESS_RESP.
* Nothing is emitted then.
*/
static void monitor_qmp_respond(Monitor *mon, QDict *rsp, QObject *id)
{
if (rsp) {
if (id) {
qdict_put_obj(rsp, "id", qobject_ref(id));
}
qmp_send_response(mon, rsp);
}
}
static void monitor_qmp_dispatch(Monitor *mon, QObject *req, QObject *id)
{
Monitor *old_mon;
QDict *rsp;
QDict *error;
old_mon = cur_mon;
cur_mon = mon;
rsp = qmp_dispatch(mon->qmp.commands, req, qmp_oob_enabled(mon));
cur_mon = old_mon;
if (mon->qmp.commands == &qmp_cap_negotiation_commands) {
error = qdict_get_qdict(rsp, "error");
if (error
&& !g_strcmp0(qdict_get_try_str(error, "class"),
QapiErrorClass_str(ERROR_CLASS_COMMAND_NOT_FOUND))) {
/* Provide a more useful error message */
qdict_del(error, "desc");
qdict_put_str(error, "desc", "Expecting capabilities negotiation"
" with 'qmp_capabilities'");
}
}
monitor_qmp_respond(mon, rsp, id);
qobject_unref(rsp);
}
/*
* Pop a QMP request from a monitor request queue.
* Return the request, or NULL all request queues are empty.
* We are using round-robin fashion to pop the request, to avoid
* processing commands only on a very busy monitor. To achieve that,
* when we process one request on a specific monitor, we put that
* monitor to the end of mon_list queue.
*/
static QMPRequest *monitor_qmp_requests_pop_any(void)
{
QMPRequest *req_obj = NULL;
Monitor *mon;
qemu_mutex_lock(&monitor_lock);
QTAILQ_FOREACH(mon, &mon_list, entry) {
qemu_mutex_lock(&mon->qmp.qmp_queue_lock);
req_obj = g_queue_pop_head(mon->qmp.qmp_requests);
qemu_mutex_unlock(&mon->qmp.qmp_queue_lock);
if (req_obj) {
break;
}
}
if (req_obj) {
/*
* We found one request on the monitor. Degrade this monitor's
* priority to lowest by re-inserting it to end of queue.
*/
QTAILQ_REMOVE(&mon_list, mon, entry);
QTAILQ_INSERT_TAIL(&mon_list, mon, entry);
}
qemu_mutex_unlock(&monitor_lock);
return req_obj;
}
static void monitor_qmp_bh_dispatcher(void *data)
{
QMPRequest *req_obj = monitor_qmp_requests_pop_any();
QDict *rsp;
bool need_resume;
if (!req_obj) {
return;
}
/* qmp_oob_enabled() might change after "qmp_capabilities" */
need_resume = !qmp_oob_enabled(req_obj->mon);
if (req_obj->req) {
trace_monitor_qmp_cmd_in_band(qobject_get_try_str(req_obj->id) ?: "");
monitor_qmp_dispatch(req_obj->mon, req_obj->req, req_obj->id);
} else {
assert(req_obj->err);
rsp = qmp_error_response(req_obj->err);
req_obj->err = NULL;
monitor_qmp_respond(req_obj->mon, rsp, NULL);
qobject_unref(rsp);
}
if (need_resume) {
/* Pairs with the monitor_suspend() in handle_qmp_command() */
monitor_resume(req_obj->mon);
}
qmp_request_free(req_obj);
/* Reschedule instead of looping so the main loop stays responsive */
qemu_bh_schedule(qmp_dispatcher_bh);
}
#define QMP_REQ_QUEUE_LEN_MAX (8)
static void handle_qmp_command(void *opaque, QObject *req, Error *err)
{
Monitor *mon = opaque;
QObject *id = NULL;
QDict *qdict;
QMPRequest *req_obj;
assert(!req != !err);
qdict = qobject_to(QDict, req);
if (qdict) {
id = qobject_ref(qdict_get(qdict, "id"));
qdict_del(qdict, "id");
} /* else will fail qmp_dispatch() */
if (req && trace_event_get_state_backends(TRACE_HANDLE_QMP_COMMAND)) {
QString *req_json = qobject_to_json(req);
trace_handle_qmp_command(mon, qstring_get_str(req_json));
qobject_unref(req_json);
}
if (qdict && qmp_is_oob(qdict)) {
/* OOB commands are executed immediately */
trace_monitor_qmp_cmd_out_of_band(qobject_get_try_str(id)
?: "");
monitor_qmp_dispatch(mon, req, id);
qobject_unref(req);
qobject_unref(id);
return;
}
req_obj = g_new0(QMPRequest, 1);
req_obj->mon = mon;
req_obj->id = id;
req_obj->req = req;
req_obj->err = err;
/* Protect qmp_requests and fetching its length. */
qemu_mutex_lock(&mon->qmp.qmp_queue_lock);
/*
* If OOB is not enabled on the current monitor, we'll emulate the
* old behavior that we won't process the current monitor any more
* until it has responded. This helps make sure that as long as
* OOB is not enabled, the server will never drop any command.
*/
if (!qmp_oob_enabled(mon)) {
monitor_suspend(mon);
} else {
/* Drop the request if queue is full. */
if (mon->qmp.qmp_requests->length >= QMP_REQ_QUEUE_LEN_MAX) {
qemu_mutex_unlock(&mon->qmp.qmp_queue_lock);
/*
* FIXME @id's scope is just @mon, and broadcasting it is
* wrong. If another monitor's client has a command with
* the same ID in flight, the event will incorrectly claim
* that command was dropped.
*/
qapi_event_send_command_dropped(id,
COMMAND_DROP_REASON_QUEUE_FULL);
qmp_request_free(req_obj);
return;
}
}
/*
* Put the request to the end of queue so that requests will be
* handled in time order. Ownership for req_obj, req, id,
* etc. will be delivered to the handler side.
*/
g_queue_push_tail(mon->qmp.qmp_requests, req_obj);
qemu_mutex_unlock(&mon->qmp.qmp_queue_lock);
/* Kick the dispatcher routine */
qemu_bh_schedule(qmp_dispatcher_bh);
}
static void monitor_qmp_read(void *opaque, const uint8_t *buf, int size)
{
Monitor *mon = opaque;
json_message_parser_feed(&mon->qmp.parser, (const char *) buf, size);
}
static void monitor_read(void *opaque, const uint8_t *buf, int size)
{
Monitor *old_mon = cur_mon;
int i;
cur_mon = opaque;
if (cur_mon->rs) {
for (i = 0; i < size; i++)
readline_handle_byte(cur_mon->rs, buf[i]);
} else {
if (size == 0 || buf[size - 1] != 0)
monitor_printf(cur_mon, "corrupted command\n");
else
handle_hmp_command(cur_mon, (char *)buf);
}
cur_mon = old_mon;
}
static void monitor_command_cb(void *opaque, const char *cmdline,
void *readline_opaque)
{
Monitor *mon = opaque;
monitor_suspend(mon);
handle_hmp_command(mon, cmdline);
monitor_resume(mon);
}
int monitor_suspend(Monitor *mon)
{
if (monitor_is_hmp_non_interactive(mon)) {
return -ENOTTY;
}
atomic_inc(&mon->suspend_cnt);
if (monitor_is_qmp(mon) && mon->use_io_thread) {
/*
* Kick I/O thread to make sure this takes effect. It'll be
* evaluated again in prepare() of the watch object.
*/
aio_notify(iothread_get_aio_context(mon_iothread));
}
trace_monitor_suspend(mon, 1);
return 0;
}
void monitor_resume(Monitor *mon)
{
if (monitor_is_hmp_non_interactive(mon)) {
return;
}
if (atomic_dec_fetch(&mon->suspend_cnt) == 0) {
if (monitor_is_qmp(mon)) {
/*
* For QMP monitors that are running in the I/O thread,
* let's kick the thread in case it's sleeping.
*/
if (mon->use_io_thread) {
aio_notify(iothread_get_aio_context(mon_iothread));
}
} else {
assert(mon->rs);
readline_show_prompt(mon->rs);
}
qemu_chr_fe_accept_input(&mon->chr);
}
trace_monitor_suspend(mon, -1);
}
static QDict *qmp_greeting(Monitor *mon)
{
QList *cap_list = qlist_new();
QObject *ver = NULL;
QMPCapability cap;
qmp_marshal_query_version(NULL, &ver, NULL);
for (cap = 0; cap < QMP_CAPABILITY__MAX; cap++) {
if (mon->qmp.capab_offered[cap]) {
qlist_append_str(cap_list, QMPCapability_str(cap));
}
}
return qdict_from_jsonf_nofail(
"{'QMP': {'version': %p, 'capabilities': %p}}",
ver, cap_list);
}
static void monitor_qmp_event(void *opaque, int event)
{
QDict *data;
Monitor *mon = opaque;
switch (event) {
case CHR_EVENT_OPENED:
mon->qmp.commands = &qmp_cap_negotiation_commands;
monitor_qmp_caps_reset(mon);
data = qmp_greeting(mon);
qmp_send_response(mon, data);
qobject_unref(data);
mon_refcount++;
break;
case CHR_EVENT_CLOSED:
/*
* Note: this is only useful when the output of the chardev
* backend is still open. For example, when the backend is
* stdio, it's possible that stdout is still open when stdin
* is closed.
*/
monitor_qmp_cleanup_queues(mon);
json_message_parser_destroy(&mon->qmp.parser);
json_message_parser_init(&mon->qmp.parser, handle_qmp_command,
mon, NULL);
mon_refcount--;
monitor_fdsets_cleanup();
break;
}
}
static void monitor_event(void *opaque, int event)
{
Monitor *mon = opaque;
switch (event) {
case CHR_EVENT_MUX_IN:
qemu_mutex_lock(&mon->mon_lock);
mon->mux_out = 0;
qemu_mutex_unlock(&mon->mon_lock);
if (mon->reset_seen) {
readline_restart(mon->rs);
monitor_resume(mon);
monitor_flush(mon);
} else {
atomic_mb_set(&mon->suspend_cnt, 0);
}
break;
case CHR_EVENT_MUX_OUT:
if (mon->reset_seen) {
if (atomic_mb_read(&mon->suspend_cnt) == 0) {
monitor_printf(mon, "\n");
}
monitor_flush(mon);
monitor_suspend(mon);
} else {
atomic_inc(&mon->suspend_cnt);
}
qemu_mutex_lock(&mon->mon_lock);
mon->mux_out = 1;
qemu_mutex_unlock(&mon->mon_lock);
break;
case CHR_EVENT_OPENED:
monitor_printf(mon, "QEMU %s monitor - type 'help' for more "
"information\n", QEMU_VERSION);
if (!mon->mux_out) {
readline_restart(mon->rs);
readline_show_prompt(mon->rs);
}
mon->reset_seen = 1;
mon_refcount++;
break;
case CHR_EVENT_CLOSED:
mon_refcount--;
monitor_fdsets_cleanup();
break;
}
}
static int
compare_mon_cmd(const void *a, const void *b)
{
return strcmp(((const mon_cmd_t *)a)->name,
((const mon_cmd_t *)b)->name);
}
static void sortcmdlist(void)
{
int array_num;
int elem_size = sizeof(mon_cmd_t);
array_num = sizeof(mon_cmds)/elem_size-1;
qsort((void *)mon_cmds, array_num, elem_size, compare_mon_cmd);
array_num = sizeof(info_cmds)/elem_size-1;
qsort((void *)info_cmds, array_num, elem_size, compare_mon_cmd);
}
static GMainContext *monitor_get_io_context(void)
{
return iothread_get_g_main_context(mon_iothread);
}
static AioContext *monitor_get_aio_context(void)
{
return iothread_get_aio_context(mon_iothread);
}
static void monitor_iothread_init(void)
{
mon_iothread = iothread_create("mon_iothread", &error_abort);
}
void monitor_init_globals(void)
{
monitor_init_qmp_commands();
monitor_qapi_event_init();
sortcmdlist();
qemu_mutex_init(&monitor_lock);
qemu_mutex_init(&mon_fdsets_lock);
/*
* The dispatcher BH must run in the main loop thread, since we
* have commands assuming that context. It would be nice to get
* rid of those assumptions.
*/
qmp_dispatcher_bh = aio_bh_new(iohandler_get_aio_context(),
monitor_qmp_bh_dispatcher,
NULL);
}
/* These functions just adapt the readline interface in a typesafe way. We
* could cast function pointers but that discards compiler checks.
*/
static void GCC_FMT_ATTR(2, 3) monitor_readline_printf(void *opaque,
const char *fmt, ...)
{
va_list ap;
va_start(ap, fmt);
monitor_vprintf(opaque, fmt, ap);
va_end(ap);
}
static void monitor_readline_flush(void *opaque)
{
monitor_flush(opaque);
}
/*
* Print to current monitor if we have one, else to stream.
* TODO should return int, so callers can calculate width, but that
* requires surgery to monitor_vprintf(). Left for another day.
*/
void monitor_vfprintf(FILE *stream, const char *fmt, va_list ap)
{
if (cur_mon && !monitor_cur_is_qmp()) {
monitor_vprintf(cur_mon, fmt, ap);
} else {
vfprintf(stream, fmt, ap);
}
}
/*
* Print to current monitor if we have one, else to stderr.
* TODO should return int, so callers can calculate width, but that
* requires surgery to monitor_vprintf(). Left for another day.
*/
void error_vprintf(const char *fmt, va_list ap)
{
monitor_vfprintf(stderr, fmt, ap);
}
void error_vprintf_unless_qmp(const char *fmt, va_list ap)
{
if (cur_mon && !monitor_cur_is_qmp()) {
monitor_vprintf(cur_mon, fmt, ap);
} else if (!cur_mon) {
vfprintf(stderr, fmt, ap);
}
}
static void monitor_list_append(Monitor *mon)
{
qemu_mutex_lock(&monitor_lock);
QTAILQ_INSERT_HEAD(&mon_list, mon, entry);
qemu_mutex_unlock(&monitor_lock);
}
static void monitor_qmp_setup_handlers_bh(void *opaque)
{
Monitor *mon = opaque;
GMainContext *context;
assert(mon->use_io_thread);
context = monitor_get_io_context();
assert(context);
qemu_chr_fe_set_handlers(&mon->chr, monitor_can_read, monitor_qmp_read,
monitor_qmp_event, NULL, mon, context, true);
monitor_list_append(mon);
}
void monitor_init(Chardev *chr, int flags)
{
Monitor *mon = g_malloc(sizeof(*mon));
bool use_readline = flags & MONITOR_USE_READLINE;
bool use_oob = flags & MONITOR_USE_OOB;
if (use_oob) {
if (CHARDEV_IS_MUX(chr)) {
error_report("Monitor out-of-band is not supported with "
"MUX typed chardev backend");
exit(1);
}
if (use_readline) {
error_report("Monitor out-of-band is only supported by QMP");
exit(1);
}
}
monitor_data_init(mon, false, use_oob);
qemu_chr_fe_init(&mon->chr, chr, &error_abort);
mon->flags = flags;
if (use_readline) {
mon->rs = readline_init(monitor_readline_printf,
monitor_readline_flush,
mon,
monitor_find_completion);
monitor_read_command(mon, 0);
}
if (monitor_is_qmp(mon)) {
qemu_chr_fe_set_echo(&mon->chr, true);
json_message_parser_init(&mon->qmp.parser, handle_qmp_command,
mon, NULL);
if (mon->use_io_thread) {
/*
* Make sure the old iowatch is gone. It's possible when
* e.g. the chardev is in client mode, with wait=on.
*/
remove_fd_in_watch(chr);
/*
* We can't call qemu_chr_fe_set_handlers() directly here
* since chardev might be running in the monitor I/O
* thread. Schedule a bottom half.
*/
aio_bh_schedule_oneshot(monitor_get_aio_context(),
monitor_qmp_setup_handlers_bh, mon);
/* The bottom half will add @mon to @mon_list */
return;
} else {
qemu_chr_fe_set_handlers(&mon->chr, monitor_can_read,
monitor_qmp_read, monitor_qmp_event,
NULL, mon, NULL, true);
}
} else {
qemu_chr_fe_set_handlers(&mon->chr, monitor_can_read, monitor_read,
monitor_event, NULL, mon, NULL, true);
}
monitor_list_append(mon);
}
void monitor_cleanup(void)
{
Monitor *mon, *next;
/*
* We need to explicitly stop the I/O thread (but not destroy it),
* clean up the monitor resources, then destroy the I/O thread since
* we need to unregister from chardev below in
* monitor_data_destroy(), and chardev is not thread-safe yet
*/
if (mon_iothread) {
iothread_stop(mon_iothread);
}
/* Flush output buffers and destroy monitors */
qemu_mutex_lock(&monitor_lock);
QTAILQ_FOREACH_SAFE(mon, &mon_list, entry, next) {
QTAILQ_REMOVE(&mon_list, mon, entry);
monitor_flush(mon);
monitor_data_destroy(mon);
g_free(mon);
}
qemu_mutex_unlock(&monitor_lock);
/* QEMUBHs needs to be deleted before destroying the I/O thread */
qemu_bh_delete(qmp_dispatcher_bh);
qmp_dispatcher_bh = NULL;
if (mon_iothread) {
iothread_destroy(mon_iothread);
mon_iothread = NULL;
}
}
QemuOptsList qemu_mon_opts = {
.name = "mon",
.implied_opt_name = "chardev",
.head = QTAILQ_HEAD_INITIALIZER(qemu_mon_opts.head),
.desc = {
{
.name = "mode",
.type = QEMU_OPT_STRING,
},{
.name = "chardev",
.type = QEMU_OPT_STRING,
},{
.name = "pretty",
.type = QEMU_OPT_BOOL,
},{
.name = "x-oob",
.type = QEMU_OPT_BOOL,
},
{ /* end of list */ }
},
};
#ifndef TARGET_I386
void qmp_rtc_reset_reinjection(Error **errp)
{
error_setg(errp, QERR_FEATURE_DISABLED, "rtc-reset-reinjection");
}
SevInfo *qmp_query_sev(Error **errp)
{
error_setg(errp, QERR_FEATURE_DISABLED, "query-sev");
return NULL;
}
SevLaunchMeasureInfo *qmp_query_sev_launch_measure(Error **errp)
{
error_setg(errp, QERR_FEATURE_DISABLED, "query-sev-launch-measure");
return NULL;
}
SevCapability *qmp_query_sev_capabilities(Error **errp)
{
error_setg(errp, QERR_FEATURE_DISABLED, "query-sev-capabilities");
return NULL;
}
#endif
#ifndef TARGET_S390X
void qmp_dump_skeys(const char *filename, Error **errp)
{
error_setg(errp, QERR_FEATURE_DISABLED, "dump-skeys");
}
#endif
#ifndef TARGET_ARM
GICCapabilityList *qmp_query_gic_capabilities(Error **errp)
{
error_setg(errp, QERR_FEATURE_DISABLED, "query-gic-capabilities");
return NULL;
}
#endif
HotpluggableCPUList *qmp_query_hotpluggable_cpus(Error **errp)
{
MachineState *ms = MACHINE(qdev_get_machine());
MachineClass *mc = MACHINE_GET_CLASS(ms);
if (!mc->has_hotpluggable_cpus) {
error_setg(errp, QERR_FEATURE_DISABLED, "query-hotpluggable-cpus");
return NULL;
}
return machine_query_hotpluggable_cpus(ms);
}