blob: 1c5a8b94ea879616ae2e63972dced5f6391339e8 [file] [log] [blame]
/*
* Unit-tests for visitor-based serialization
*
* Copyright (C) 2014-2015 Red Hat, Inc.
* Copyright IBM, Corp. 2012
*
* Authors:
* Michael Roth <mdroth@linux.vnet.ibm.com>
*
* This work is licensed under the terms of the GNU GPL, version 2 or later.
* See the COPYING file in the top-level directory.
*/
#include "qemu/osdep.h"
#include <float.h>
#include "qemu-common.h"
#include "test-qapi-visit.h"
#include "qapi/error.h"
#include "qapi/qmp/qjson.h"
#include "qapi/qmp/qstring.h"
#include "qapi/qobject-input-visitor.h"
#include "qapi/qobject-output-visitor.h"
#include "qapi/string-input-visitor.h"
#include "qapi/string-output-visitor.h"
#include "qapi/dealloc-visitor.h"
enum PrimitiveTypeKind {
PTYPE_STRING = 0,
PTYPE_BOOLEAN,
PTYPE_NUMBER,
PTYPE_INTEGER,
PTYPE_U8,
PTYPE_U16,
PTYPE_U32,
PTYPE_U64,
PTYPE_S8,
PTYPE_S16,
PTYPE_S32,
PTYPE_S64,
PTYPE_EOL,
};
typedef struct PrimitiveType {
union {
const char *string;
bool boolean;
double number;
int64_t integer;
uint8_t u8;
uint16_t u16;
uint32_t u32;
uint64_t u64;
int8_t s8;
int16_t s16;
int32_t s32;
int64_t s64;
intmax_t max;
} value;
enum PrimitiveTypeKind type;
const char *description;
} PrimitiveType;
typedef struct PrimitiveList {
union {
strList *strings;
boolList *booleans;
numberList *numbers;
intList *integers;
int8List *s8_integers;
int16List *s16_integers;
int32List *s32_integers;
int64List *s64_integers;
uint8List *u8_integers;
uint16List *u16_integers;
uint32List *u32_integers;
uint64List *u64_integers;
} value;
enum PrimitiveTypeKind type;
const char *description;
} PrimitiveList;
/* test helpers */
typedef void (*VisitorFunc)(Visitor *v, void **native, Error **errp);
static void dealloc_helper(void *native_in, VisitorFunc visit, Error **errp)
{
Visitor *v = qapi_dealloc_visitor_new();
visit(v, &native_in, errp);
visit_free(v);
}
static void visit_primitive_type(Visitor *v, void **native, Error **errp)
{
PrimitiveType *pt = *native;
switch(pt->type) {
case PTYPE_STRING:
visit_type_str(v, NULL, (char **)&pt->value.string, errp);
break;
case PTYPE_BOOLEAN:
visit_type_bool(v, NULL, &pt->value.boolean, errp);
break;
case PTYPE_NUMBER:
visit_type_number(v, NULL, &pt->value.number, errp);
break;
case PTYPE_INTEGER:
visit_type_int(v, NULL, &pt->value.integer, errp);
break;
case PTYPE_U8:
visit_type_uint8(v, NULL, &pt->value.u8, errp);
break;
case PTYPE_U16:
visit_type_uint16(v, NULL, &pt->value.u16, errp);
break;
case PTYPE_U32:
visit_type_uint32(v, NULL, &pt->value.u32, errp);
break;
case PTYPE_U64:
visit_type_uint64(v, NULL, &pt->value.u64, errp);
break;
case PTYPE_S8:
visit_type_int8(v, NULL, &pt->value.s8, errp);
break;
case PTYPE_S16:
visit_type_int16(v, NULL, &pt->value.s16, errp);
break;
case PTYPE_S32:
visit_type_int32(v, NULL, &pt->value.s32, errp);
break;
case PTYPE_S64:
visit_type_int64(v, NULL, &pt->value.s64, errp);
break;
case PTYPE_EOL:
g_assert_not_reached();
}
}
static void visit_primitive_list(Visitor *v, void **native, Error **errp)
{
PrimitiveList *pl = *native;
switch (pl->type) {
case PTYPE_STRING:
visit_type_strList(v, NULL, &pl->value.strings, errp);
break;
case PTYPE_BOOLEAN:
visit_type_boolList(v, NULL, &pl->value.booleans, errp);
break;
case PTYPE_NUMBER:
visit_type_numberList(v, NULL, &pl->value.numbers, errp);
break;
case PTYPE_INTEGER:
visit_type_intList(v, NULL, &pl->value.integers, errp);
break;
case PTYPE_S8:
visit_type_int8List(v, NULL, &pl->value.s8_integers, errp);
break;
case PTYPE_S16:
visit_type_int16List(v, NULL, &pl->value.s16_integers, errp);
break;
case PTYPE_S32:
visit_type_int32List(v, NULL, &pl->value.s32_integers, errp);
break;
case PTYPE_S64:
visit_type_int64List(v, NULL, &pl->value.s64_integers, errp);
break;
case PTYPE_U8:
visit_type_uint8List(v, NULL, &pl->value.u8_integers, errp);
break;
case PTYPE_U16:
visit_type_uint16List(v, NULL, &pl->value.u16_integers, errp);
break;
case PTYPE_U32:
visit_type_uint32List(v, NULL, &pl->value.u32_integers, errp);
break;
case PTYPE_U64:
visit_type_uint64List(v, NULL, &pl->value.u64_integers, errp);
break;
default:
g_assert_not_reached();
}
}
static TestStruct *struct_create(void)
{
TestStruct *ts = g_malloc0(sizeof(*ts));
ts->integer = -42;
ts->boolean = true;
ts->string = strdup("test string");
return ts;
}
static void struct_compare(TestStruct *ts1, TestStruct *ts2)
{
g_assert(ts1);
g_assert(ts2);
g_assert_cmpint(ts1->integer, ==, ts2->integer);
g_assert(ts1->boolean == ts2->boolean);
g_assert_cmpstr(ts1->string, ==, ts2->string);
}
static void struct_cleanup(TestStruct *ts)
{
g_free(ts->string);
g_free(ts);
}
static void visit_struct(Visitor *v, void **native, Error **errp)
{
visit_type_TestStruct(v, NULL, (TestStruct **)native, errp);
}
static UserDefTwo *nested_struct_create(void)
{
UserDefTwo *udnp = g_malloc0(sizeof(*udnp));
udnp->string0 = strdup("test_string0");
udnp->dict1 = g_malloc0(sizeof(*udnp->dict1));
udnp->dict1->string1 = strdup("test_string1");
udnp->dict1->dict2 = g_malloc0(sizeof(*udnp->dict1->dict2));
udnp->dict1->dict2->userdef = g_new0(UserDefOne, 1);
udnp->dict1->dict2->userdef->integer = 42;
udnp->dict1->dict2->userdef->string = strdup("test_string");
udnp->dict1->dict2->string = strdup("test_string2");
udnp->dict1->dict3 = g_malloc0(sizeof(*udnp->dict1->dict3));
udnp->dict1->has_dict3 = true;
udnp->dict1->dict3->userdef = g_new0(UserDefOne, 1);
udnp->dict1->dict3->userdef->integer = 43;
udnp->dict1->dict3->userdef->string = strdup("test_string");
udnp->dict1->dict3->string = strdup("test_string3");
return udnp;
}
static void nested_struct_compare(UserDefTwo *udnp1, UserDefTwo *udnp2)
{
g_assert(udnp1);
g_assert(udnp2);
g_assert_cmpstr(udnp1->string0, ==, udnp2->string0);
g_assert_cmpstr(udnp1->dict1->string1, ==, udnp2->dict1->string1);
g_assert_cmpint(udnp1->dict1->dict2->userdef->integer, ==,
udnp2->dict1->dict2->userdef->integer);
g_assert_cmpstr(udnp1->dict1->dict2->userdef->string, ==,
udnp2->dict1->dict2->userdef->string);
g_assert_cmpstr(udnp1->dict1->dict2->string, ==,
udnp2->dict1->dict2->string);
g_assert(udnp1->dict1->has_dict3 == udnp2->dict1->has_dict3);
g_assert_cmpint(udnp1->dict1->dict3->userdef->integer, ==,
udnp2->dict1->dict3->userdef->integer);
g_assert_cmpstr(udnp1->dict1->dict3->userdef->string, ==,
udnp2->dict1->dict3->userdef->string);
g_assert_cmpstr(udnp1->dict1->dict3->string, ==,
udnp2->dict1->dict3->string);
}
static void nested_struct_cleanup(UserDefTwo *udnp)
{
qapi_free_UserDefTwo(udnp);
}
static void visit_nested_struct(Visitor *v, void **native, Error **errp)
{
visit_type_UserDefTwo(v, NULL, (UserDefTwo **)native, errp);
}
static void visit_nested_struct_list(Visitor *v, void **native, Error **errp)
{
visit_type_UserDefTwoList(v, NULL, (UserDefTwoList **)native, errp);
}
/* test cases */
typedef enum VisitorCapabilities {
VCAP_PRIMITIVES = 1,
VCAP_STRUCTURES = 2,
VCAP_LISTS = 4,
VCAP_PRIMITIVE_LISTS = 8,
} VisitorCapabilities;
typedef struct SerializeOps {
void (*serialize)(void *native_in, void **datap,
VisitorFunc visit, Error **errp);
void (*deserialize)(void **native_out, void *datap,
VisitorFunc visit, Error **errp);
void (*cleanup)(void *datap);
const char *type;
VisitorCapabilities caps;
} SerializeOps;
typedef struct TestArgs {
const SerializeOps *ops;
void *test_data;
} TestArgs;
static void test_primitives(gconstpointer opaque)
{
TestArgs *args = (TestArgs *) opaque;
const SerializeOps *ops = args->ops;
PrimitiveType *pt = args->test_data;
PrimitiveType *pt_copy = g_malloc0(sizeof(*pt_copy));
void *serialize_data;
pt_copy->type = pt->type;
ops->serialize(pt, &serialize_data, visit_primitive_type, &error_abort);
ops->deserialize((void **)&pt_copy, serialize_data, visit_primitive_type,
&error_abort);
g_assert(pt_copy != NULL);
if (pt->type == PTYPE_STRING) {
g_assert_cmpstr(pt->value.string, ==, pt_copy->value.string);
g_free((char *)pt_copy->value.string);
} else if (pt->type == PTYPE_NUMBER) {
GString *double_expected = g_string_new("");
GString *double_actual = g_string_new("");
/* we serialize with %f for our reference visitors, so rather than fuzzy
* floating math to test "equality", just compare the formatted values
*/
g_string_printf(double_expected, "%.6f", pt->value.number);
g_string_printf(double_actual, "%.6f", pt_copy->value.number);
g_assert_cmpstr(double_actual->str, ==, double_expected->str);
g_string_free(double_expected, true);
g_string_free(double_actual, true);
} else if (pt->type == PTYPE_BOOLEAN) {
g_assert_cmpint(!!pt->value.max, ==, !!pt->value.max);
} else {
g_assert_cmpint(pt->value.max, ==, pt_copy->value.max);
}
ops->cleanup(serialize_data);
g_free(args);
g_free(pt_copy);
}
static void test_primitive_lists(gconstpointer opaque)
{
TestArgs *args = (TestArgs *) opaque;
const SerializeOps *ops = args->ops;
PrimitiveType *pt = args->test_data;
PrimitiveList pl = { .value = { NULL } };
PrimitiveList pl_copy = { .value = { NULL } };
PrimitiveList *pl_copy_ptr = &pl_copy;
void *serialize_data;
void *cur_head = NULL;
int i;
pl.type = pl_copy.type = pt->type;
/* build up our list of primitive types */
for (i = 0; i < 32; i++) {
switch (pl.type) {
case PTYPE_STRING: {
strList *tmp = g_new0(strList, 1);
tmp->value = g_strdup(pt->value.string);
if (pl.value.strings == NULL) {
pl.value.strings = tmp;
} else {
tmp->next = pl.value.strings;
pl.value.strings = tmp;
}
break;
}
case PTYPE_INTEGER: {
intList *tmp = g_new0(intList, 1);
tmp->value = pt->value.integer;
if (pl.value.integers == NULL) {
pl.value.integers = tmp;
} else {
tmp->next = pl.value.integers;
pl.value.integers = tmp;
}
break;
}
case PTYPE_S8: {
int8List *tmp = g_new0(int8List, 1);
tmp->value = pt->value.s8;
if (pl.value.s8_integers == NULL) {
pl.value.s8_integers = tmp;
} else {
tmp->next = pl.value.s8_integers;
pl.value.s8_integers = tmp;
}
break;
}
case PTYPE_S16: {
int16List *tmp = g_new0(int16List, 1);
tmp->value = pt->value.s16;
if (pl.value.s16_integers == NULL) {
pl.value.s16_integers = tmp;
} else {
tmp->next = pl.value.s16_integers;
pl.value.s16_integers = tmp;
}
break;
}
case PTYPE_S32: {
int32List *tmp = g_new0(int32List, 1);
tmp->value = pt->value.s32;
if (pl.value.s32_integers == NULL) {
pl.value.s32_integers = tmp;
} else {
tmp->next = pl.value.s32_integers;
pl.value.s32_integers = tmp;
}
break;
}
case PTYPE_S64: {
int64List *tmp = g_new0(int64List, 1);
tmp->value = pt->value.s64;
if (pl.value.s64_integers == NULL) {
pl.value.s64_integers = tmp;
} else {
tmp->next = pl.value.s64_integers;
pl.value.s64_integers = tmp;
}
break;
}
case PTYPE_U8: {
uint8List *tmp = g_new0(uint8List, 1);
tmp->value = pt->value.u8;
if (pl.value.u8_integers == NULL) {
pl.value.u8_integers = tmp;
} else {
tmp->next = pl.value.u8_integers;
pl.value.u8_integers = tmp;
}
break;
}
case PTYPE_U16: {
uint16List *tmp = g_new0(uint16List, 1);
tmp->value = pt->value.u16;
if (pl.value.u16_integers == NULL) {
pl.value.u16_integers = tmp;
} else {
tmp->next = pl.value.u16_integers;
pl.value.u16_integers = tmp;
}
break;
}
case PTYPE_U32: {
uint32List *tmp = g_new0(uint32List, 1);
tmp->value = pt->value.u32;
if (pl.value.u32_integers == NULL) {
pl.value.u32_integers = tmp;
} else {
tmp->next = pl.value.u32_integers;
pl.value.u32_integers = tmp;
}
break;
}
case PTYPE_U64: {
uint64List *tmp = g_new0(uint64List, 1);
tmp->value = pt->value.u64;
if (pl.value.u64_integers == NULL) {
pl.value.u64_integers = tmp;
} else {
tmp->next = pl.value.u64_integers;
pl.value.u64_integers = tmp;
}
break;
}
case PTYPE_NUMBER: {
numberList *tmp = g_new0(numberList, 1);
tmp->value = pt->value.number;
if (pl.value.numbers == NULL) {
pl.value.numbers = tmp;
} else {
tmp->next = pl.value.numbers;
pl.value.numbers = tmp;
}
break;
}
case PTYPE_BOOLEAN: {
boolList *tmp = g_new0(boolList, 1);
tmp->value = pt->value.boolean;
if (pl.value.booleans == NULL) {
pl.value.booleans = tmp;
} else {
tmp->next = pl.value.booleans;
pl.value.booleans = tmp;
}
break;
}
default:
g_assert_not_reached();
}
}
ops->serialize((void **)&pl, &serialize_data, visit_primitive_list,
&error_abort);
ops->deserialize((void **)&pl_copy_ptr, serialize_data,
visit_primitive_list, &error_abort);
i = 0;
/* compare our deserialized list of primitives to the original */
do {
switch (pl_copy.type) {
case PTYPE_STRING: {
strList *ptr;
if (cur_head) {
ptr = cur_head;
cur_head = ptr->next;
} else {
cur_head = ptr = pl_copy.value.strings;
}
g_assert_cmpstr(pt->value.string, ==, ptr->value);
break;
}
case PTYPE_INTEGER: {
intList *ptr;
if (cur_head) {
ptr = cur_head;
cur_head = ptr->next;
} else {
cur_head = ptr = pl_copy.value.integers;
}
g_assert_cmpint(pt->value.integer, ==, ptr->value);
break;
}
case PTYPE_S8: {
int8List *ptr;
if (cur_head) {
ptr = cur_head;
cur_head = ptr->next;
} else {
cur_head = ptr = pl_copy.value.s8_integers;
}
g_assert_cmpint(pt->value.s8, ==, ptr->value);
break;
}
case PTYPE_S16: {
int16List *ptr;
if (cur_head) {
ptr = cur_head;
cur_head = ptr->next;
} else {
cur_head = ptr = pl_copy.value.s16_integers;
}
g_assert_cmpint(pt->value.s16, ==, ptr->value);
break;
}
case PTYPE_S32: {
int32List *ptr;
if (cur_head) {
ptr = cur_head;
cur_head = ptr->next;
} else {
cur_head = ptr = pl_copy.value.s32_integers;
}
g_assert_cmpint(pt->value.s32, ==, ptr->value);
break;
}
case PTYPE_S64: {
int64List *ptr;
if (cur_head) {
ptr = cur_head;
cur_head = ptr->next;
} else {
cur_head = ptr = pl_copy.value.s64_integers;
}
g_assert_cmpint(pt->value.s64, ==, ptr->value);
break;
}
case PTYPE_U8: {
uint8List *ptr;
if (cur_head) {
ptr = cur_head;
cur_head = ptr->next;
} else {
cur_head = ptr = pl_copy.value.u8_integers;
}
g_assert_cmpint(pt->value.u8, ==, ptr->value);
break;
}
case PTYPE_U16: {
uint16List *ptr;
if (cur_head) {
ptr = cur_head;
cur_head = ptr->next;
} else {
cur_head = ptr = pl_copy.value.u16_integers;
}
g_assert_cmpint(pt->value.u16, ==, ptr->value);
break;
}
case PTYPE_U32: {
uint32List *ptr;
if (cur_head) {
ptr = cur_head;
cur_head = ptr->next;
} else {
cur_head = ptr = pl_copy.value.u32_integers;
}
g_assert_cmpint(pt->value.u32, ==, ptr->value);
break;
}
case PTYPE_U64: {
uint64List *ptr;
if (cur_head) {
ptr = cur_head;
cur_head = ptr->next;
} else {
cur_head = ptr = pl_copy.value.u64_integers;
}
g_assert_cmpint(pt->value.u64, ==, ptr->value);
break;
}
case PTYPE_NUMBER: {
numberList *ptr;
GString *double_expected = g_string_new("");
GString *double_actual = g_string_new("");
if (cur_head) {
ptr = cur_head;
cur_head = ptr->next;
} else {
cur_head = ptr = pl_copy.value.numbers;
}
/* we serialize with %f for our reference visitors, so rather than
* fuzzy floating math to test "equality", just compare the
* formatted values
*/
g_string_printf(double_expected, "%.6f", pt->value.number);
g_string_printf(double_actual, "%.6f", ptr->value);
g_assert_cmpstr(double_actual->str, ==, double_expected->str);
g_string_free(double_expected, true);
g_string_free(double_actual, true);
break;
}
case PTYPE_BOOLEAN: {
boolList *ptr;
if (cur_head) {
ptr = cur_head;
cur_head = ptr->next;
} else {
cur_head = ptr = pl_copy.value.booleans;
}
g_assert_cmpint(!!pt->value.boolean, ==, !!ptr->value);
break;
}
default:
g_assert_not_reached();
}
i++;
} while (cur_head);
g_assert_cmpint(i, ==, 33);
ops->cleanup(serialize_data);
dealloc_helper(&pl, visit_primitive_list, &error_abort);
dealloc_helper(&pl_copy, visit_primitive_list, &error_abort);
g_free(args);
}
static void test_struct(gconstpointer opaque)
{
TestArgs *args = (TestArgs *) opaque;
const SerializeOps *ops = args->ops;
TestStruct *ts = struct_create();
TestStruct *ts_copy = NULL;
void *serialize_data;
ops->serialize(ts, &serialize_data, visit_struct, &error_abort);
ops->deserialize((void **)&ts_copy, serialize_data, visit_struct,
&error_abort);
struct_compare(ts, ts_copy);
struct_cleanup(ts);
struct_cleanup(ts_copy);
ops->cleanup(serialize_data);
g_free(args);
}
static void test_nested_struct(gconstpointer opaque)
{
TestArgs *args = (TestArgs *) opaque;
const SerializeOps *ops = args->ops;
UserDefTwo *udnp = nested_struct_create();
UserDefTwo *udnp_copy = NULL;
void *serialize_data;
ops->serialize(udnp, &serialize_data, visit_nested_struct, &error_abort);
ops->deserialize((void **)&udnp_copy, serialize_data, visit_nested_struct,
&error_abort);
nested_struct_compare(udnp, udnp_copy);
nested_struct_cleanup(udnp);
nested_struct_cleanup(udnp_copy);
ops->cleanup(serialize_data);
g_free(args);
}
static void test_nested_struct_list(gconstpointer opaque)
{
TestArgs *args = (TestArgs *) opaque;
const SerializeOps *ops = args->ops;
UserDefTwoList *listp = NULL, *tmp, *tmp_copy, *listp_copy = NULL;
void *serialize_data;
int i = 0;
for (i = 0; i < 8; i++) {
tmp = g_new0(UserDefTwoList, 1);
tmp->value = nested_struct_create();
tmp->next = listp;
listp = tmp;
}
ops->serialize(listp, &serialize_data, visit_nested_struct_list,
&error_abort);
ops->deserialize((void **)&listp_copy, serialize_data,
visit_nested_struct_list, &error_abort);
tmp = listp;
tmp_copy = listp_copy;
while (listp_copy) {
g_assert(listp);
nested_struct_compare(listp->value, listp_copy->value);
listp = listp->next;
listp_copy = listp_copy->next;
}
qapi_free_UserDefTwoList(tmp);
qapi_free_UserDefTwoList(tmp_copy);
ops->cleanup(serialize_data);
g_free(args);
}
static PrimitiveType pt_values[] = {
/* string tests */
{
.description = "string_empty",
.type = PTYPE_STRING,
.value.string = "",
},
{
.description = "string_whitespace",
.type = PTYPE_STRING,
.value.string = "a b c\td",
},
{
.description = "string_newlines",
.type = PTYPE_STRING,
.value.string = "a\nb\n",
},
{
.description = "string_commas",
.type = PTYPE_STRING,
.value.string = "a,b, c,d",
},
{
.description = "string_single_quoted",
.type = PTYPE_STRING,
.value.string = "'a b',cd",
},
{
.description = "string_double_quoted",
.type = PTYPE_STRING,
.value.string = "\"a b\",cd",
},
/* boolean tests */
{
.description = "boolean_true1",
.type = PTYPE_BOOLEAN,
.value.boolean = true,
},
{
.description = "boolean_true2",
.type = PTYPE_BOOLEAN,
.value.boolean = 8,
},
{
.description = "boolean_true3",
.type = PTYPE_BOOLEAN,
.value.boolean = -1,
},
{
.description = "boolean_false1",
.type = PTYPE_BOOLEAN,
.value.boolean = false,
},
{
.description = "boolean_false2",
.type = PTYPE_BOOLEAN,
.value.boolean = 0,
},
/* number tests (double) */
/* note: we format these to %.6f before comparing, since that's how
* we serialize them and it doesn't make sense to check precision
* beyond that.
*/
{
.description = "number_sanity1",
.type = PTYPE_NUMBER,
.value.number = -1,
},
{
.description = "number_sanity2",
.type = PTYPE_NUMBER,
.value.number = 3.14159265,
},
{
.description = "number_min",
.type = PTYPE_NUMBER,
.value.number = DBL_MIN,
},
{
.description = "number_max",
.type = PTYPE_NUMBER,
.value.number = DBL_MAX,
},
/* integer tests (int64) */
{
.description = "integer_sanity1",
.type = PTYPE_INTEGER,
.value.integer = -1,
},
{
.description = "integer_sanity2",
.type = PTYPE_INTEGER,
.value.integer = INT64_MAX / 2 + 1,
},
{
.description = "integer_min",
.type = PTYPE_INTEGER,
.value.integer = INT64_MIN,
},
{
.description = "integer_max",
.type = PTYPE_INTEGER,
.value.integer = INT64_MAX,
},
/* uint8 tests */
{
.description = "uint8_sanity1",
.type = PTYPE_U8,
.value.u8 = 1,
},
{
.description = "uint8_sanity2",
.type = PTYPE_U8,
.value.u8 = UINT8_MAX / 2 + 1,
},
{
.description = "uint8_min",
.type = PTYPE_U8,
.value.u8 = 0,
},
{
.description = "uint8_max",
.type = PTYPE_U8,
.value.u8 = UINT8_MAX,
},
/* uint16 tests */
{
.description = "uint16_sanity1",
.type = PTYPE_U16,
.value.u16 = 1,
},
{
.description = "uint16_sanity2",
.type = PTYPE_U16,
.value.u16 = UINT16_MAX / 2 + 1,
},
{
.description = "uint16_min",
.type = PTYPE_U16,
.value.u16 = 0,
},
{
.description = "uint16_max",
.type = PTYPE_U16,
.value.u16 = UINT16_MAX,
},
/* uint32 tests */
{
.description = "uint32_sanity1",
.type = PTYPE_U32,
.value.u32 = 1,
},
{
.description = "uint32_sanity2",
.type = PTYPE_U32,
.value.u32 = UINT32_MAX / 2 + 1,
},
{
.description = "uint32_min",
.type = PTYPE_U32,
.value.u32 = 0,
},
{
.description = "uint32_max",
.type = PTYPE_U32,
.value.u32 = UINT32_MAX,
},
/* uint64 tests */
{
.description = "uint64_sanity1",
.type = PTYPE_U64,
.value.u64 = 1,
},
{
.description = "uint64_sanity2",
.type = PTYPE_U64,
.value.u64 = UINT64_MAX / 2 + 1,
},
{
.description = "uint64_min",
.type = PTYPE_U64,
.value.u64 = 0,
},
{
.description = "uint64_max",
.type = PTYPE_U64,
.value.u64 = UINT64_MAX,
},
/* int8 tests */
{
.description = "int8_sanity1",
.type = PTYPE_S8,
.value.s8 = -1,
},
{
.description = "int8_sanity2",
.type = PTYPE_S8,
.value.s8 = INT8_MAX / 2 + 1,
},
{
.description = "int8_min",
.type = PTYPE_S8,
.value.s8 = INT8_MIN,
},
{
.description = "int8_max",
.type = PTYPE_S8,
.value.s8 = INT8_MAX,
},
/* int16 tests */
{
.description = "int16_sanity1",
.type = PTYPE_S16,
.value.s16 = -1,
},
{
.description = "int16_sanity2",
.type = PTYPE_S16,
.value.s16 = INT16_MAX / 2 + 1,
},
{
.description = "int16_min",
.type = PTYPE_S16,
.value.s16 = INT16_MIN,
},
{
.description = "int16_max",
.type = PTYPE_S16,
.value.s16 = INT16_MAX,
},
/* int32 tests */
{
.description = "int32_sanity1",
.type = PTYPE_S32,
.value.s32 = -1,
},
{
.description = "int32_sanity2",
.type = PTYPE_S32,
.value.s32 = INT32_MAX / 2 + 1,
},
{
.description = "int32_min",
.type = PTYPE_S32,
.value.s32 = INT32_MIN,
},
{
.description = "int32_max",
.type = PTYPE_S32,
.value.s32 = INT32_MAX,
},
/* int64 tests */
{
.description = "int64_sanity1",
.type = PTYPE_S64,
.value.s64 = -1,
},
{
.description = "int64_sanity2",
.type = PTYPE_S64,
.value.s64 = INT64_MAX / 2 + 1,
},
{
.description = "int64_min",
.type = PTYPE_S64,
.value.s64 = INT64_MIN,
},
{
.description = "int64_max",
.type = PTYPE_S64,
.value.s64 = INT64_MAX,
},
{ .type = PTYPE_EOL }
};
/* visitor-specific op implementations */
typedef struct QmpSerializeData {
Visitor *qov;
QObject *obj;
Visitor *qiv;
} QmpSerializeData;
static void qmp_serialize(void *native_in, void **datap,
VisitorFunc visit, Error **errp)
{
QmpSerializeData *d = g_malloc0(sizeof(*d));
d->qov = qobject_output_visitor_new(&d->obj);
visit(d->qov, &native_in, errp);
*datap = d;
}
static void qmp_deserialize(void **native_out, void *datap,
VisitorFunc visit, Error **errp)
{
QmpSerializeData *d = datap;
QString *output_json;
QObject *obj_orig, *obj;
visit_complete(d->qov, &d->obj);
obj_orig = d->obj;
output_json = qobject_to_json(obj_orig);
obj = qobject_from_json(qstring_get_str(output_json), &error_abort);
qobject_unref(output_json);
d->qiv = qobject_input_visitor_new(obj);
qobject_unref(obj_orig);
qobject_unref(obj);
visit(d->qiv, native_out, errp);
}
static void qmp_cleanup(void *datap)
{
QmpSerializeData *d = datap;
visit_free(d->qov);
visit_free(d->qiv);
g_free(d);
}
typedef struct StringSerializeData {
char *string;
Visitor *sov;
Visitor *siv;
} StringSerializeData;
static void string_serialize(void *native_in, void **datap,
VisitorFunc visit, Error **errp)
{
StringSerializeData *d = g_malloc0(sizeof(*d));
d->sov = string_output_visitor_new(false, &d->string);
visit(d->sov, &native_in, errp);
*datap = d;
}
static void string_deserialize(void **native_out, void *datap,
VisitorFunc visit, Error **errp)
{
StringSerializeData *d = datap;
visit_complete(d->sov, &d->string);
d->siv = string_input_visitor_new(d->string);
visit(d->siv, native_out, errp);
}
static void string_cleanup(void *datap)
{
StringSerializeData *d = datap;
visit_free(d->sov);
visit_free(d->siv);
g_free(d->string);
g_free(d);
}
/* visitor registration, test harness */
/* note: to function interchangeably as a serialization mechanism your
* visitor test implementation should pass the test cases for all visitor
* capabilities: primitives, structures, and lists
*/
static const SerializeOps visitors[] = {
{
.type = "QMP",
.serialize = qmp_serialize,
.deserialize = qmp_deserialize,
.cleanup = qmp_cleanup,
.caps = VCAP_PRIMITIVES | VCAP_STRUCTURES | VCAP_LISTS |
VCAP_PRIMITIVE_LISTS
},
{
.type = "String",
.serialize = string_serialize,
.deserialize = string_deserialize,
.cleanup = string_cleanup,
.caps = VCAP_PRIMITIVES
},
{ NULL }
};
static void add_visitor_type(const SerializeOps *ops)
{
char testname_prefix[32];
char testname[128];
TestArgs *args;
int i = 0;
sprintf(testname_prefix, "/visitor/serialization/%s", ops->type);
if (ops->caps & VCAP_PRIMITIVES) {
while (pt_values[i].type != PTYPE_EOL) {
sprintf(testname, "%s/primitives/%s", testname_prefix,
pt_values[i].description);
args = g_malloc0(sizeof(*args));
args->ops = ops;
args->test_data = &pt_values[i];
g_test_add_data_func(testname, args, test_primitives);
i++;
}
}
if (ops->caps & VCAP_STRUCTURES) {
sprintf(testname, "%s/struct", testname_prefix);
args = g_malloc0(sizeof(*args));
args->ops = ops;
args->test_data = NULL;
g_test_add_data_func(testname, args, test_struct);
sprintf(testname, "%s/nested_struct", testname_prefix);
args = g_malloc0(sizeof(*args));
args->ops = ops;
args->test_data = NULL;
g_test_add_data_func(testname, args, test_nested_struct);
}
if (ops->caps & VCAP_LISTS) {
sprintf(testname, "%s/nested_struct_list", testname_prefix);
args = g_malloc0(sizeof(*args));
args->ops = ops;
args->test_data = NULL;
g_test_add_data_func(testname, args, test_nested_struct_list);
}
if (ops->caps & VCAP_PRIMITIVE_LISTS) {
i = 0;
while (pt_values[i].type != PTYPE_EOL) {
sprintf(testname, "%s/primitive_list/%s", testname_prefix,
pt_values[i].description);
args = g_malloc0(sizeof(*args));
args->ops = ops;
args->test_data = &pt_values[i];
g_test_add_data_func(testname, args, test_primitive_lists);
i++;
}
}
}
int main(int argc, char **argv)
{
int i = 0;
g_test_init(&argc, &argv, NULL);
while (visitors[i].type != NULL) {
add_visitor_type(&visitors[i]);
i++;
}
g_test_run();
return 0;
}